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II. GENERAL CONSIDERATIONS

(M. Lax: Rev. Mod. Phys. 23. (1951) 287.)

single scatterer: inhomogeneous wave equation
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( )rU  scattering potential not specialized
( )r1Ψ  amplitude of scattered wave not specialized

k vacuum wave number






=

10
01

I unity matrix

many scatterers: homogeneous three dimensional
wave equation for the coherent
field ( )rΨ
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f coherent forward scattering amplitude
N density of scattering centers

stratified media: one dimensional wave equation
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4πχ ≡ susceptibility

Θ glancing angle



III. COMMON OPTICAL FORMALISM
Using matrix notation and the definition ( ) ( )zz ''' Ψ≡Φ  we get
from Eq. (3) a system of first order differential equations
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In the case of s different homogeneous layers with thickness dl:
(l=1...s, layer s is the substrate)

M(z) = Ml = const. for the lth layer, (6)

so the solution may be given by the 44×  characteristic matrix L,
that is the product of the characteristic matrices ( )lll MikdL exp=  of
the individual layers

( ) ( ) ( )112212 expexp...exp... MikdMikdMikdLLLL sss ⋅⋅⋅=⋅⋅⋅= . (7)

Denoting the 22×  submatrices of L with [ ]ijL  (ij=1,2) the 22×
reflectivity matrix r reads

[ ] [ ] [ ] [ ][ ] [ ] [ ] [ ] [ ][ ]22211211122211211 LLLLLLLLr −−++−−=
−

. (8)

The reflected intensity Ir is

[ ],ρrrTrI r +=  (9)
and ρ  is the 22×  polarization density matrix of the incident radiation.



TREATMENT OF THE NUMERICAL PROBLEMS

Problem #1:  Calculation of the 44×  matrix exponentials
( )lll MikdL exp=
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where lll IkdF χ−Θ−= 2sin  and Θ= sinll ikdx . !OK

Problem #2: the calculation of the 22×  square root matrix Fl from
the problem #1

from the Cayley–Hamilton theory for any 22×  matrices G
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!OK

Problem #3: Calculation of the 22×  (sinh and cosh) → exp
functions in problem #1

Using the identity:
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Problem #4: The substrate:

The characteristic matrix of a semi-infinite layer ∞→ LLs  is
calculated by taking the ∞→sd  limes. From Eq. (10) we get
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where ( )[ ]∞= Fa TrResgn  is the sign of the real part of the trace of

sIF χ−Θ−=∞
2sin . !OK

Problem #5: Interface and surface roughness:

In the case of rough interfaces the characteristic matrix Ll of layer l
has to be modified:
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where

1 and +ll σσ : RMS surface roughness at the top and bottom of the layer.

We assume 1, +<< llld σσ .

The approximation is in the order of ( ) χσ 2k . !OK



NEUTRON REFLECTOMETRY:

Using the potential ( ) ( ) ( )rrr mp UUU +=  as the sum of the
isotropic nuclear potential

( ) ( )IbU p rr δπ4=  (15)

and the anisotropic magnetic potential
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where
α i is the abundance of the ith type nuclear scattering center,

( )∫
ΩΩ

= rBrB 3d1 , and Ω is the volume of the interaction.



NEUTRON OPTICS
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where:

momentum transfer: 
Q=2k sin θ

scattering length density:
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magnetic field:
(Bx,By,Bz)=B .

External magnetic field ⇒  0≠K  ⇒  vacuum is an
anisotropic
medium

⇓
Eq. (8) invalid!!!

The solution is well known in (photon) optics: impedance tensor
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And finally the reflectivity matrix:

[ ] [ ]( ) [ ] [ ][ ] [ ] [ ]( ) [ ] [ ][ ]22122111122122111 LLLLLLLLr −+−+−−= − γγ . (19)



MÖSSBAUER REFLECTOMETRY:

FROM THE DYNAMICAL THEORY:

J.P. Hannon et al, Phys. Rev B 32, 6363 (1985)

The grazing incidence limit of the dynamical theory of Mössbauer
radiation in matrix form:
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where T and R are the amplitudes of waves incident from above
and below, respectively. With Θ= sin0 kg  and ( ) fkNG Θ= sin2/4π
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Validity: mrad 10<Θ



FROM THE OPTICAL THEORY:

L. Deák et al, Phys. Rev B 53, 6158 (1996):

The 3×3 nuclear susceptibility tensor (Afanas’ev and Kagan):
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where: Ek: the energy of the photon,

gemmE : the energy difference between the nuclear
excited and ground states,

Γ: the natural width of the excited states,
J: the current density operator.
°: the symbol of the dyadic vector product

Using the anisotropic optical formalism (Borzdov–Barkovskii–
Lavrukovich) and the Andreeva approximation, the Maxwell
equations transform into
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Conclusion: common differential equations for different scattering
processes

Validity: mrad 10 mrad 1 <Θ<



IV. OFF-SPECULAR SCATTERING

inhomogeneous wave equation
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Defining ( )IIrll χχ =  we can separate the ( )rcohΨ  (coherent)
specular and ( )roffΨ  off-specular fields
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1st DWBA: neglecting the second term in Eq. (27)
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( )II', KllC  is the two dimensional Fourier transformation of the
cross correlation function of ( )( )ll χχ −II'r  and K=k’-k



V. APPLICATIONS

Fig.: Different type of reflectometry measurements of
 [57Fe(2.33 nm)/natFe(2.33 nm)]10/ZERODUR
 multilayer. The data evaluation was made in terms of
 the common optical algorithm.
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Fig.: Time spectra at the total reflection peak and the first Bragg peak in
 [57Fe(2.33 nm)/natFe(2.33 nm)]10/ZERODUR
 multilayer. The data evaluation was made in terms of
 the common optical algorithm.



VI. SUMMARY

•  Without specifying the scattering process
a common formalism is derived, which

•  simplifies to a 2 × 2 matrix algebra and which is

•  suitable for x-ray-, Mössbauer- and n-reflectometry

•  This analogy helped when treating the external magnetic
field as an anisotropic optical medium (for neutrons).

•  Common formalism ⇒  common evaluation program
(EFFINO - Environment For Fitting Nuclear Optics)


