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II. GENERAL CONSIDERATIONS

(M. Lax: Rev. Mod. Phys. 23. (1951) 287.)

single scatterer: Inhomogeneous wave equation
(a+&2 ) -U(r)|w,(r)=0 (1)

U (r) scattering potential not specialized

Y (r) amplitude of scattered wave not specialized
k vacuum wave number

1:51 OH unity matrix
0 1r

many scatterers: homogeneous three dimensional
wave equation for the coherent
field LIJ(r)
(& + &2 )r + 4rvy [w(r) =0 2)
7 coherent forward scattering amplitude
N density of scattering centers

stratified media: one dimensional wave equation

lJJ"(z)+stinG)§sinG)+ X %P(z):o (3)

sIn®

X AZZV f susceptibility
C)

glancing angle



III. COMMON OPTICAL FORMALISM

Using matrix notation and the definition ®'(z)=¥"(z) we get
from Eq. (3) a system of first order differential equations

d =
d—ZEﬁQ— ikM (z)EﬁEH where (4)
- X
M(Z):E O ISIneJrsinG)E ()
[/sin® 0 i

In the case of s different homogeneous layers with thickness d;:
(I=1...s, layer s is the substrate)

M(z) = M, = const. for the I layer, (6)

so the solution may be given by the 4x4 characteristic matrix L,
that is the product of the characteristic matrices L, = exp(ikd,M,) of

the individual layers
L=L [0, 1, =exp(ikd M)l @xp(ikd,M, ) @xp(ikd M,). (7)

Denoting the 2x2 submatrices of L with jidl (i7=1,2) the 2x2
reflectivity matrix » reads

= [L[11] _ Al _f2 |22 ]-1[L[11] L1412 _[2d ] )

The reflected intensity 7’ is

I" = Trlr+er, (9)
and p is the 2x2 polarization density matrix of the incident radiation.



TREATMENT OF THE NUMERICAL PROBLEMS

Problem #1: Calculation of the 4x4 matrix exponentials
L, =exp(ikd,M,)

:H cosh(F,) iF,sinh(Fl)H

L =q X, 0 (10)
oo Ftsin(F)  cosh(F) O
WhereE:kdl\/—lsinze—Xl and x; =ikd, sin®©. v OK

Problem #2: the calculation of the 2x2 square root matrix £; from
the problem #1

from the Cayley—Hamilton theory for any 2x2 matrices G

ol G+1-/detG (if G~ 1, then G2 = I(det G} )
JTIG +2/detG
(11)
v OK

Problem #3: Calculation of the 2x2 (sinh and cosh) — exp
functions In problem #1

Using the identity:

— indetG =0
expG =ex gTrG osx/detG1+SIn —— JG 12
P pEQ % \JdetG % (12)

where @zG—%ITrG v OK



Problem #4: The substrate:

The characteristic matrix of a semi-infinite layer L, - L, IS
calculated by taking the ¢, - « limes. From Eqg. (10) we get

R
SINn
0 (13)

%\/1+ I ﬁ
sin G)

where a =sgn[Re(Tr £, )] is the sign of the real part of the trace of
F, =-1Isin?0-x, . v OK

DDEEI

Problem #5: Interface and surface roughness:

In the case of rough interfaces the characteristic matrix L, of layer /
LI;Z] ! —kzgalz +012+1;X1

has to be modified:
I 511]1"']‘2 012_012+1 Xi
l [121]1+k2 ol +0fa X LEZZ]I‘kZ af -0l )X
(14)

where

0, and 0,,,: RMS surface roughness at the top and bottom of the layer.

We assume d, <<o,,0;,;.

The approximation is in the order of (ka)*|x]. ¥ OK



NEUTRON REFLECTOMETRY:

Using the potential U(r)=U (r)+U,, (r) as the sum of the
Isotropic nuclear potential

U,(r)=4md(r)! (15)

and the anisotropic magnetic potential

2 .
U, (1)=="7 gtt,o (B, (r) +B,,] == 7 cu1,0 B(r),

(16)

where

U, =5.050x107%" Am?,

g =-1.9132,

G = (aE oy ac) is the Pauli operator,

b: isthe nuclearscattering length, and

B_(r)and B, are the atomic and the external magnetic field.

ext

In the 1% order Born approximation the coherent forward scattering
: - ATIN -
amplitude is 7 = —ﬁj’dsrU(r), and y = o

12 _ O
= Eh%a gl 6B - 4an or,.bl.lB (17)

where
a;, is the abundance of the i type nuclear scattering center,

B= éj’d% B(r), and Q is the volume of the interaction.
Q



NEUTRON OPTICS

dFPE 40 0 IS'”@J’Sin@gﬁziD 2 0O
g Y. [] 0 WO
[/sin® 0 i,_ 0
2 [
(18)
where:

momentum transfer:
O=2ksin 0

scattering length density:

2m B. B —iB,
K:h—zguNEB LB y—B %47720119,1
y z x z'

magnetic field: B
(B..B,B.)=B.

External magnetic field 0 K #0 [ vacuum is an
anisotropic

medium

[]
Eq. (8) invalid!!!

The solution is well known in (photon) optics: impedance tensor

. 8
y = /1+Z—If:é g %EWIthQ?QZih—TgHN

And finally the reflectivity matrix:

— [(L[n] _ /L2 )y— ghal | L[zz]]‘l[(L[ll] _ /L2 )y 4+ hal _ L[zz]] . (19)

B ext




MOSSBAUER REFLECTOMETRY:

FROM THE DYNAMICAL THEORY:
J.P. Hannon et al, Phys. Rev B 32, 6363 (1985)

The grazing incidence limit of the dynamical theory of Mdssbauer
radiation in matrix form:

d g l+G G
@i%%G gol+G%§ (0)

where T and R are the amplitudes of waves incident from above
and below, respectively. With g, =ksin® and G = (4rV / 2k sin ©) f

- X X
©
QHTH:Z.,E[S'” " 2sin© 2s5in@ %TH 21)
dz (R _ X _rsino-_ X 0
% 2sin© l ZsinG%jR
: : : -1
Applying the unitary transformation C :%g ; gwe get
d . Isi X '
d_HTH:lkE O Sm@JrsinG)%;H, (22)
2RO sin® 0 O

and again: dEW(z):ikM (z)w(z).
Z

Validity: © <10 mrad



FROM THE OPTICAL THEORY:
L. Deak et al, Phys. Rev B 53, 6158 (1996):

The 3x3 nuclear susceptibility tensor (Afanas’ev and Kagan):

- 4imr N ngme ° JEaemg
X="55 > e (23)
ck 2[g +1memg E, —Ememg +il /2
where: Ej the energy of the photon,
E . the energy difference between the nuclear

MM o
excited and ground states,

[ the natural width of the excited states,
J: the current density operator.
°: the symbol of the dyadic vector product

Using the anisotropic optical formalism (Borzdov-Barkovskii—

Lavrukovich) and the Andreeva approximation, the Maxwell
equations transform into

dHTH: H 0 [Sine+si§@%;§
0

dz (R glsm@

where

x=""7 (24)

Conclusion: common differential equations for different scattering
processes

Validity: 1mrad < © <10 mrad



IV. OFF-SPECULAR SCATTERING

inhomogeneous wave equation

A+ K21 W) = -2 x ()W (), (25)
where  x(r)= %X, (r,,) and 7 is the layer index.
Eil

Defining X, = (x,(r;,)) we can separate the W, (r) (coherent)
specular and W, (r) off-specular fields

p+ K2 1|0E) = K25 X W) -5 (o) - X W6 (26)
0
with LIJ(r) = LlJcoh (I')+ LIJOﬁ‘ (l')

lA "‘kZIJLPoﬁf(l’) = —k* > O () = X Weon () = 2 > X () )%, (r)
[] (27)
known

W (r) = W, (rp )exp(ik Oy )

- [L[Zl] (rp) + 1122 (ro )r] W exp(ik, Oy ) (25)

1% DWBA: neglecting the second term in Eq. (27)



0y 0= 45 1P ) 29)

where R = \r r\

In the Fraunhofer approximation

expgkR) _ explikr) exp(k'F)
r
and the scattered intensity is proportional to:

k4

Ly = (4 JJ Peon (ré)lzrcl,z'(Kll)ﬂpcoh (‘"D)Ej

explik 'D (r'D - ré jdrﬁdri

(30)

C,,l.(K,,) Is the two dimensional Fourier transformation of the
cross correlation function of (x;(r';;)- x;) and K=k’-k



V. APPLICATIONS
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Fig.: Different type of reflectometry measurements of
[°’Fe(2.33 nm)/"™Fe(2.33 nm)],o/ZERODUR
multilayer. The data evaluation was made in terms of
the common optical algorithm.
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Fig.: Time spectra at the total reflection peak and the first Bragg peak in
[°’Fe(2.33 nm)/"™Fe(2.33 nm)],o/ZERODUR
multilayer. The data evaluation was made in terms of
the common optical algorithm.



VI. SUMMARY

Without specifying the scattering process
a common formalism is derived, which

simplifies to a 2 x 2 matrix algebra and which is
suitable for xX-ray-, Mossbauer- and n-reflectometry

This analogy helped when treating the external magnetic
field as an anisotropic optical medium (for neutrons).

Common formalism [0 common evaluation program
(EFFINO - Environment For Fitting Nuclear Optics)



