June 22-24 2006, Budapest

"O'RAIFEARTAIGH SYMPOSIUM

ON

NON-PERTURBATIVE AND SYMMETRY METHODS IN FIELD THEORY"

Lattice Field Theory with the Sign Problem and

the Maximum Entropy Method

H. Yoneyama (Saga Univ.)

in collaboration with M. Imachi (Fukuoka) and Y. Shinno (Takamatsu)

1 Introduction

2 Sign problem and flattening of the free energy

3 Maximum Entropy Method

4 Results

5 Conclusions

based on

M. Imachi, Y. Shinno and H.Y., Prog. Theor. Phys., 111, 387-411, 2004

M. Imachi , Y. Shinno and H.Y., hep-lat/0506032 $\,$

M. Imachi, Y. Shinno and H.Y., Prog. Theor. Phys., 115, 931-949, 2006

- 1 Introduction
 - Lattice Field Theory (LFT)
 - as a powerful tool to study non-perturbative dynamics of Quantum Field Theory
 - Monte Carlo (MC) study combined with Renormalization Group idea to reach the continuum limit of LFT
 - Notorious sign problem is a big obstacle to study
 - finite density QCD
 - LFT with the heta term
 - Study of LFT with a θ term:
 - strong CP problem Schierholz's work (1994) : flattening of $f(\theta)$ at $\theta \ge \theta_c(<\pi)$ for finite volume $V \Rightarrow$ a signal of a first order phase transition, and θ_c moves to 0 as V increases (#).
 - Possible rich phase structure
 Cardy and Rabinovici's work in Z(N) theory: oblique confinement phase
 - However, (#) turns out to be spurious, coming form the sign problem
 - A standard way to circumvent it is to use the Fourier transform method (FTM):

$$\mathcal{Z}(\theta) = \sum_{Q} e^{i\theta Q} P(Q), \qquad (1)$$

 $\mathcal{Z}(\theta)$: the partition function

P(Q): topological charge distribution calculated with the real Boltzmann weight

– It turns out in the FTM that flattening is due to the error in P(Q) and then exhibits spurious phase transition.

• Study of the sign problem

- Factorization method (Anagnostopulos and Nishimura)
- Imaginary θ (Azcoiti et.al.)
- Our approach: using the maximum entropy method (MEM)
 - \Rightarrow main subject of this talk
- 2 Sign Problem and flattening of the free energy
 - Partition function is given by the complex action

$$\mathcal{Z}(heta) = rac{\int [dar{z}dz] e^{-S+i heta \hat{Q}(ar{z},z)}}{\int [dar{z}dz] e^{-S}}.$$

impossible to generate configurations according to the complex Boltzmann weight (complex action problem or sign problem)

• $\mathcal{Z}(\theta)$ is obtained by Fourier-transforming P(Q).

$$\mathcal{Z}(\theta) = \frac{\int [d\bar{z}dz]e^{-S+i\theta\hat{Q}(\bar{z},z)}}{\int [d\bar{z}dz]e^{-S}} \equiv \sum_{Q} e^{i\theta Q} P(Q), \qquad (2)$$

where

$$P(Q) \equiv \frac{\int [d\bar{z}dz]_Q e^{-S}}{\int d\bar{z}dz e^{-S}}.$$
(3)

Figure 1: Gaussian topological charge distribution and corresponding $f(\theta)$ for various lattice volumes. The parameter δ is chosen to be 1/400.

- -P(Q) is calculated by counting the number of the configurations and constructing a histogram.
- Numerical Fourier transform of $P(Q) \Rightarrow$ flattening of $f(\theta)$ at large θ in V = 50 case in Fig.1
- Reason for flattening
 - obtained P(Q) consists of two parts, a true value $\tilde{P}(Q)$ and an error of P(Q).

$$P(Q) = \tilde{P}(Q) + \delta P(Q), \qquad (4)$$

- Suppose that the error at Q = 0 dominates. Then the free energy density looks like

$$f(\theta) = -\frac{1}{V} \log \mathcal{Z}(\theta) \approx -\frac{1}{V} \log \left\{ \sum_{Q} \tilde{P}(Q) e^{i\theta Q} + \delta P(0) \right\}$$
$$= -\frac{1}{V} \log \left\{ e^{-V\tilde{f}(\theta)} + \delta P(0) \right\}, \tag{5}$$

where $\tilde{f}(\theta)$ is the true free energy density and $\delta P(0)$ is error at Q = 0. If

$$e^{-V\hat{f}(\theta)} \approx \delta P(0)$$
 at $\theta = \theta_f$ (< π), (6)

then

$$f(\theta) = \begin{cases} \tilde{f}(\theta) & \theta \le \theta_f \\ -\frac{1}{V} \log\{\delta P(0)\} = \text{const. } \theta_f < \theta \quad (<\pi) \end{cases}$$
(7)

• comments

- $-\delta P(Q) < 0 \text{ could leads to negative values of } \mathcal{Z}(\theta)$ $\Rightarrow \text{ also referred to as flattening}$ (e.g., V = 30 case in Fig.1)
- To overcome such flattening, need statistics proportional to e^V .

Summary of this part: -

- sign problem appears as flattening of $f(\theta)$
- could lead to a spurious first order phase transition at $\theta \approx \theta_{\rm f}$
- 3 Maximum Entropy Method (MEM)
 - What is the MEM?
 - based on the Bayesian statistics
 - a method for the parameter inference in data analysis
 - suited to ill-posed problems
 - (# of data \ll # of parameters)
 - a wide variety of applicability

--- Motivation for using the MEM ----

- Can a true signal be extracted from data, contaminated by errors?
- Have a look at the sign problem from a different point of view

• Bayes theorem

$$\operatorname{prob}(A|B) = \operatorname{prob}(A) \frac{\operatorname{prob}(B|A)}{\operatorname{prob}(B)},$$
(8)

- $-\operatorname{prob}(A)$: the probability that an event A occurs
- $-\operatorname{prob}(A|B)$: the conditional probability that A occurs under the condition that B occurs.

• Bayesian approach for parameter (ξ) inference for data x

 $\operatorname{prob}(\xi|x) \propto \operatorname{prob}(\xi) \operatorname{prob}(x|\xi)$

- Posterior probability $prob(\xi|x)$ that ξ realizes for a given data x
- Prior probability $prob(\xi)$ that reflects the knowledge of ξ before x is given
- likelihood $\operatorname{prob}(x|\xi)$
- What we do is to apply the above idea to determine the behavior of $\mathcal{Z}(\theta)$ for given data P(Q) in

$$P(Q) = \int_{-\pi}^{\pi} d\theta \frac{e^{-i\theta Q}}{2\pi} \mathcal{Z}(\theta).$$
(9)

$$\operatorname{prob}(\mathcal{Z}(\theta)|P(Q), I) = \operatorname{prob}(\mathcal{Z}(\theta)|I) \frac{\operatorname{prob}(P(Q)|\mathcal{Z}(\theta), I)}{\operatorname{prob}(P(Q)|I)},$$
(10)

– Likelihood function

$$\operatorname{prob}(P(Q)|\mathcal{Z}(\theta), I) = \frac{e^{-\frac{1}{2}\chi^2}}{X_L},$$
(11)

$$\chi^{2} \equiv \sum_{Q,Q'} (P^{(\mathcal{Z})}(Q) - \bar{P}(Q)) C_{Q,Q'}^{-1}(P^{(\mathcal{Z})}(Q') - \bar{P}(Q'))$$
(12)

 $P^{(\mathcal{Z})}(Q) {:}$ constructed from $\mathcal{Z}(\theta)$ through

$$P^{(\mathcal{Z})}(Q) = \int_{-\pi}^{\pi} d\theta \frac{e^{-i\theta Q}}{2\pi} \mathcal{Z}(\theta).$$
(13)

$$\bar{P}(Q) = \frac{1}{N_d} \sum_{l=1}^{N_d} P^{(l)}(Q), \qquad (14)$$

 N_d : the number of sets of data.

 C^{-1} : inverse covariance matrix obtained by the data set $\{P(Q)\}$.

- Prior probability

$$\operatorname{prob}(\mathcal{Z}(\theta)|I,\alpha) = \frac{e^{\alpha S}}{X_S(\alpha)},\tag{15}$$

S: Shannon-Jaynes entropy

$$S = \int_{-\pi}^{\pi} d\theta \left[\mathcal{Z}(\theta) - m(\theta) - \mathcal{Z}(\theta) \log \frac{\mathcal{Z}(\theta)}{m(\theta)} \right], \quad (16)$$

 $\begin{array}{l} m(\theta) \text{: "default model"} \\ \text{reflecting the prior knowledge about } \mathcal{Z}(\theta) \\ \alpha \text{: a real positive parameter} \end{array}$

– Posterior probability -

$$\operatorname{prob}(\mathcal{Z}(\theta)|P(Q), I, \alpha, m) = \frac{\exp\left(-\frac{1}{2}\chi^2 + \alpha S\right)}{X_L X_S(\alpha)}.$$
 (17)

two limitting cases:

 $\alpha \to 0$: usual maximum likelihood method (MLM), or min $\{\chi^2\}$ gives $\mathcal{Z}(\theta)$ $\alpha \to \infty$: $\mathcal{Z}(\theta) = m(\theta)$

- ill posed problem ($\alpha = 0$) # of data (discrete variable Q) \ll # of parameters (continuous variable θ) MLM yields degenerate solutions

 \Rightarrow MEM ($\alpha \neq 0$) gives an unique solution

- For the information I, we impose the criterion

$$\mathcal{Z}(\theta) > 0 \tag{18}$$

so that $\operatorname{prob}(\mathcal{Z}(\theta) \leq 0 | I, m) = 0$.

$\underline{\mathbf{MEM}}$

maximizes the probability $\operatorname{prob}(\mathcal{Z}(\theta)|P(Q), I)$ for obtaining the best image of $\mathcal{Z}(\theta) \equiv \hat{\mathcal{Z}}(\theta)$

- Procedure for obtaining the best image $\hat{\mathcal{Z}}(heta)$ –

- (1) Maximizing W for a fixed α to obtain $\mathcal{Z}_n^{(\alpha)}$
- (2) Averaging $\mathcal{Z}_n^{(\alpha)}$
- (3) Error estimation
- (1) Maximizing W for a fixed α to obtain $\mathcal{Z}_n^{(\alpha)}$: Find the image that maximizes W

$$W \equiv -\frac{1}{2}\chi^2 + \alpha S \tag{19}$$

in functional space of \mathcal{Z}_n for a given α :

$$\frac{\delta}{\delta \mathcal{Z}(\theta)} \left(-\frac{1}{2}\chi^2 + \alpha S\right)\Big|_{\mathcal{Z}=\mathcal{Z}^{(\alpha)}} = 0.$$
 (20)

(2) Averaging $\mathcal{Z}_n^{(\alpha)}$:

The α -independent final image $\hat{\mathcal{Z}}_n$ can be calculated according to the probability.

$$\hat{\mathcal{Z}}_n = \int d\alpha \, \operatorname{prob}(\alpha | P(Q), I, m) \mathcal{Z}_n^{(\alpha)}, \qquad (21)$$

$$\operatorname{prob}(\alpha | P(Q), I, m) = \exp\left\{\Lambda(\alpha) + W(\mathcal{Z}^{(\alpha)})\right\}, \qquad (22)$$

$$\Lambda(\alpha) \equiv \frac{1}{2} \sum_{k} \log \frac{\alpha}{\alpha + \lambda_k},$$

where λ_k are eigenvalues of the matrix in θ space;

$$\frac{1}{2}\sqrt{\mathcal{Z}_m}\frac{\partial^2\chi^2}{\partial\mathcal{Z}_m\partial\mathcal{Z}_n}\sqrt{\mathcal{Z}_n}\Big|_{\mathcal{Z}=\mathcal{Z}^{(\alpha)}}.$$
(23)

(3) Error estimation:

Error of the final output image $\hat{\mathcal{Z}}_n$ is calculated based on the uncertainty of the image:

$$\langle (\delta \hat{\mathcal{Z}}_n)^2 \rangle \equiv \int d\alpha \langle (\delta \mathcal{Z}_n^{(\alpha)})^2 \rangle \operatorname{prob}(\alpha | P(Q), I, m), \quad (24)$$

where

$$\langle (\delta \mathcal{Z}_{m}^{(\alpha)})^{2} \rangle \equiv \frac{\int [d\mathcal{Z}] \int_{\Theta} d\theta_{n} d\theta_{n'} \delta \mathcal{Z}_{n} \delta \mathcal{Z}_{n'} \operatorname{prob}(\mathcal{Z}_{m} | P(Q), I, m, \alpha)}{\int [d\mathcal{Z}] \int_{\Theta} d\theta_{n} d\theta_{n'} \operatorname{prob}(\mathcal{Z}_{m} | P(Q), I, m, \alpha)}$$
$$\simeq -\frac{1}{\int_{\Theta} d\theta_{n} d\theta_{n'}} \int_{\Theta} d\theta_{n} d\theta_{n'} \left(\frac{\partial^{2} W}{\partial \mathcal{Z}_{n} \partial \mathcal{Z}_{n'}} \Big|_{\mathcal{Z}=\mathcal{Z}^{(\alpha)}} \right)^{-1} (25)$$

4 Results

---- MEM analysis –

- 1. MEM analysis using mock data
 - (a) Gaussian P(Q)
 - (b) 'True' flattening
- 2. MEM analysis using MC data (CP³ model)

4.1 preparation

• Mock data: Gaussian case

$$-P(Q) = A \exp\left(-c \ Q^2/V\right)$$

- Add to P(Q) Gaussian noise generated with the variance $\delta \times P(Q)$ for each value of Q.
- δ is varied (from 1/10 to 1/600), and the results are stable for $\delta > 1/300$ for V = 50.
- Covariance matrix:

$$C_{Q,Q'} = \frac{1}{N_d(N_d - 1)} \sum_{l=1}^{N_d} (P^{(l)}(Q) - \bar{P}(Q))(P^{(l)}(Q') - \bar{P}(Q')),$$
(26)

- Each set of data consists of P(Q) from Q = 0 to $Q = N_q 1$.
- $-N_d$: the number of sets of the data
- $-P^{(l)}(Q)$: the *l*-th set of data for P(Q)
- $\bar{P}(Q)$: the average
- $-N_d$ is varied, and the outcome is stable for $30 \leq N_d$.
- Techinical details
 - Use of Singular Value Decomposition (SVD) and the Newton method
 - Inverting $C_{Q,Q'}$ requires the quadruple precision.

Various Default models $m(\theta)$

- (i) constant default model: $m(\theta) = 0.1, 0.3, 1.0.$
- (ii) strong coupling limit of the CP^{N-1} model: $m(\theta) = (\sin(\theta/2)/(\theta/2))^V$
- (iii) Gaussian default : $m(\theta) = \exp(-\frac{\ln 10}{\pi^2}\gamma\theta^2)$ (The parameter γ is varied in the analysis.)

Figure 2: Gaussian topological charge distribution and corresponding $f(\theta)$ obtained by using the Fourier method for various lattice volumes. The parameter δ is chosen to be 1/400.

4.2 Analysis of the models

4.2.1 Gaussian P(Q) as a mock data

In order to check the MEM results, we choose

$$P(Q) = \exp[-\frac{c}{V}Q^2], \qquad (27)$$

because $\mathcal{Z}(\theta)$ is analytically known

$$\mathcal{Z}_{\text{pois}}(\theta) = \sqrt{\frac{\pi V}{c}} \sum_{n=-\infty}^{\infty} \exp\left[-\frac{V}{4c}(\theta - 2\pi n)^2\right].$$
 (28)

- Two types of data (c is fixed to 7.42):
 - 1. no flattening case (V = 8, 12, 20)
 - **2. flattening case** (V = 30, 50)

Figure 3: $\mathcal{Z}^{(\alpha)}(\theta)$ for the data without flattening. Here, V = 12. The default model $m(\theta)$ is chosen to be the constant 1.0 and the Gaussian function with $\gamma = 0.8$.

Remember the three step-procedure — (i) Calculate $\mathcal{Z}_n^{(\alpha)}$ by maximizing W for a fixed α . (ii) Calculate $\hat{\mathcal{Z}}_n$ by averaging $\mathcal{Z}_n^{(\alpha)}$ with the weight $\operatorname{prob}(\alpha|P(Q), I, m) \equiv \operatorname{prob}(\alpha)$ according to $\hat{\mathcal{Z}}_n = \int d\alpha \operatorname{prob}(\alpha|P(Q), I, m) \mathcal{Z}_n^{(\alpha)}$. (29) (iii) Error estimation

Figure 4: $\operatorname{prob}(\alpha|P(Q), I, m)$ for the data without flattening. Here, V = 12. The default model is chosen to be the constant $m(\theta) = 1.0$ and the Gaussian function with $\gamma = 0.6$, 0.8 and 1.0.

Figure 5: $\mathcal{Z}^{(\alpha)}(\theta)$ for the data with flattening. Here, V = 50. The default model $m(\theta)$ is chosen to be the constant 1.0 and the Gaussian function with $\gamma = 6$. Comparing with the result of the Fourier transform (circles), the result of the MEM for certain values of α ($\alpha \approx 300$ for $m(\theta) = 1.0$ and $\alpha \approx 2000$ for the Gaussian) approximately reproduces that of the exact partition function (filled circles).

Figure 6: prob $(\alpha|P(Q), I, m)$ for various $m(\theta)$. V is fixed to 50.

Figure 7: Averaged partition function $\hat{\mathcal{Z}}(\theta)$ for various $m(\theta)$. $\hat{\mathcal{Z}}_n = \int d\alpha \operatorname{prob}(\alpha | P(Q), I, m) \mathcal{Z}_n^{(\alpha)}$. V=50. The result of the Fourier transform is also included. Those for the Gaussian default models with $\gamma = 5$ and 6 agree reasonably with the exact result, $\mathcal{Z}_{\text{pois}}(\theta)$. The result for $m_{\text{strg}}(\theta)$ shows a large deviation from $\mathcal{Z}_{\text{pois}}(\theta)$.

Figure 8: $\hat{\mathcal{Z}}(\theta)$ (crosses) with the error bars for the Gaussian default model with $\gamma = 5.5$. Here, V = 50. Compared to the result of the Fourier transform (circles), a remarkable improvement is clearly seen.

Figure 9: Free energy density $f(\theta)$ calculated from $\hat{\mathcal{Z}}(\theta)$ for various volumes.

Figure 10: $f(\theta)$ calculated by using the Fourier method. (The same as Fig.1.)

Figure 11: $f(\theta)$ calculated from $\hat{\mathcal{Z}}(\theta)$:MEM.

- Summary of this section -

We applied the MEM to two types of data for P(Q):

- (1) the data without flattening: The MEM reproduces $f(\theta)$, which agree with those obtained by using the FTM.
- (2) the data with flattening: The best image with the least errors could reproduce smooth behavior of $f(\theta)$ in contrary to the FTM.
- 4.2.2 MEM analysis using MC data (CP³ model)
 - \mathbb{CP}^{N-1} model exhibits common dynamical properties with QCD
 - Application of the MEM to MC data
 - Simulation of the 2-d \mathbb{CP}^3 model with the fixed point action
 - $-f(\theta)$ for various values of volume $L \times L$

Table 1: Parameter values used in the MC simulations of the CP^3 model with the FP action. For the MEM analysis, new MC simulations were performed for L = 38 and 50.

β	L :	$Q_{\min}-Q$	P _{max} : t	otal number of measurements (M/set)
3.0	12:	0 - 30	:	10.0
	24:	0 - 18	:	10.0
	32:	0 - 24	:	3.0
	38:	0 - 27	:	5.0
	46:	0 - 33	:	1.0
	50:	0 - 15	:	30.0
	56:	0 - 18	:	5.0

Figure 12: Topological charge distributions P(Q) (left panel) and free energy densities $f(\theta)$ (right panel) of the CP³ model for $\beta = 3.0$ and various lattice sizes L.

- $-\beta = 3.0 \ (\xi \approx 7)$
- Concentrate on two values of L
 - 1. L = 38 in the non flattening case
 - 2. L = 50 in the flattening case
- default models
 - (i) Gaussian with various values of γ $m_{\rm G}(\theta) = \exp\left[-\gamma \frac{\ln 10}{\pi^2} \theta^2\right]$
 - (ii) $m(\theta) = \hat{\mathcal{Z}}(\theta)$ for smaller volumes For the analysis of $L_0 = 50$, $\hat{\mathcal{Z}}(\theta)$ for L = 24, 32 and 38 are employed as the default models. $\equiv m_{L/L_0}(\theta) = m_{L/50}(\theta)$.

Results

1. non-flattening (L=38)

the similar behavior to that in the Gaussian mock data

2. flattening (L=50)

Figure 13: Images $\mathcal{Z}^{(\alpha)}(\theta)$ for a given α (left panel) and probabilities $P(\alpha)$ in the non-flattening case (L = 38). In the left panel, $m_{\rm c}(\theta)$ and $m_{\rm G}(\theta)$ with $\gamma = 1.0$ are used. In addition, $m_{\rm G}(\theta)$ with $\gamma = 0.6$ and 1.2 are used in the right panel.

Figure 14: Partition function $Z_{\text{Four}}(\theta)$ obtained using the FTM in the case with flattening (L = 50). The number of measurements is 30.0M/set. The arrow indicates the value of $\epsilon (= 3.610 \times 10^{-4})$.

• statistics dependence

varied the # of statistics $2.0 - 30.0 \times 10^6$ /set.

Figure 15: The five most probable images $\hat{\mathcal{Z}}(\theta)$ for L = 50 with 2.0M/set. Here, the Gaussian default model with $\gamma = 5.0$ was used. The arrow indicates the value of $\epsilon (= 1.441 \times 10^{-3})$ in Data A.

Figure 16: Values of $\hat{Z}(\theta)$ for $\theta=2.31$ (left panel) and 3.14 (right panel). L = 50. The horizontal axis represents the number of measurements. Here, the Gaussian default model with $\gamma = 5.0$ was used.

a qualitative difference between $\theta \lesssim$ and $\gtrsim 2.5$.

• prior dependence

 $-g(\alpha)$:prior probability of α in

$$\operatorname{prob}(\alpha | P(Q), I, m) \equiv P(\alpha) \propto g(\alpha) e^{W(\alpha) + \Lambda(\alpha)}, \quad (30)$$

- $-g(\alpha)$ is chosen according to prior information.
- two types of $g(\alpha)$, in general,
 - (i) Laplace's rule, $g_{\text{Lap}}(\alpha) = \text{const:}$ corresponding to no knowledge about the prior information of α
 - (ii) Jeffrey's rule, $g_{\text{Jef}}(\alpha) = 1/\alpha$: $P(\alpha)$ be invariant with respect to a change in scale
- investigate the sensitivity of $\hat{\mathcal{Z}}(\theta)$ to the choice of $g(\alpha)$ by studying

$$\Delta(\theta) \equiv \frac{|\hat{\mathcal{Z}}_{\text{Lap}}(\theta) - \hat{\mathcal{Z}}_{\text{Jef}}(\theta)|}{(\hat{\mathcal{Z}}_{\text{Lap}}(\theta) + \hat{\mathcal{Z}}_{\text{Jef}}(\theta))/2},$$
(31)

 $\hat{\mathcal{Z}}_{\text{Lap}}(\theta)$: the most probable images according to Laplace's rule

 $\hat{\mathcal{Z}}_{\mathrm{Jef}}(heta)$: the most probable images according to Jeffrey's rule

Figure 17: $P_{\text{Lap}}(\alpha)$ and $P_{\text{Jef}}(\alpha)$. As the default models, Gaussian functions with $\gamma = 5.0$ (left panel) and 13.0 (right panel) were used.

 default model dependence
 Δ(θ) depends on the default models.
 The Gaussian default with γ = 5.0 is the minimum
 case. (See Table 2 and Figure 18.)

Table 2: Values of $\Delta(\theta)$ at $\theta = 2.31, 2.60, 2.83$ and 3.14 for various $m(\theta)$.

default model	$\Delta(2.31)$	$\Delta(2.60)$	$\Delta(2.83)$	$\Delta(3.14)$
$m_{\rm G}(\theta)$ with $\gamma = 3.0$	6.30×10^{-3}	1.30×10^{-2}	1.87×10^{-2}	2.24×10^{-2}
$m_{\rm G}(\theta)$ with $\gamma = 5.0$	5.35×10^{-3}	1.41×10^{-3}	1.12×10^{-2}	1.84×10^{-2}
$m_{\rm G}(\theta)$ with $\gamma = 8.0$	1.03×10^{-1}	1.50×10^{-1}	1.70×10^{-1}	1.75×10^{-1}
$m_{\rm G}(\theta)$ with $\gamma = 10.0$	1.01×10^{-1}	4.67×10^{-1}	8.21×10^{-1}	9.60×10^{-1}
$m_{\rm G}(\theta)$ with $\gamma = 13.0$	1.05×10^{-1}	4.96×10^{-1}	7.12×10^{-1}	7.95×10^{-1}
$m_{24/50}(heta)$	3.44×10^{-3}	7.67×10^{-3}	1.13×10^{-2}	1.36×10^{-2}
$m_{32/50}(\theta)$	7.30×10^{-3}	1.57×10^{-2}	2.29×10^{-2}	2.72×10^{-2}
$m_{38/50}(heta)$	1.30×10^{-2}	2.60×10^{-2}	3.65×10^{-2}	4.26×10^{-2}

– Summary of this section -

We applied the MEM to two types of real data for P(Q) (CP³ model):

(1) the data without flattening (L = 32): The MEM reproduces $f(\theta)$, which agree with those obtained by using the FTM.

(2) the data with flattening (L = 50):

- studied the prior dependence

- studied the default model dependence

- The image with the least prior dependence exhibits a smooth behavior of $f(\theta)$ with small errors ($\gamma = 5.0$).
- At $\theta \gtrsim 2.5$, the default model dependence is large.

Figure 18: Values of $\Delta(\theta)$ for $\theta = 2.60$. The Gaussian functions are used as the default models. The horizontal axis represents the value of γ in $m_{\rm G}(\theta)$.

Figure 19: $\hat{\mathcal{Z}}_{Lap}(\theta)$ and $\hat{\mathcal{Z}}_{Jef}(\theta)$ for $\theta \in [2.0, \pi]$.

Figure 20: The most probable images $\hat{Z}(\theta)$ for various $m(\theta)$. The arrow indicates the value of $\epsilon (= 3.610 \times 10^{-4})$.

• using mock data

- Gaussian P(Q)

- 'true' flattening

- using MC data (CP(3) model)
 - default model dependence

– prior dependence

Further study

- favorable prior ?
- application of the MEM to finite density QCD