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1 Introduction

• Lattice Field Theory (LFT)

– as a powerful tool to study non-perturbative dy-

namics of Quantum Field Theory

– Monte Carlo (MC) study combined with Renor-

malization Group idea to reach the continuum

limit of LFT

• Notorious sign problem is a big obstacle to study

– finite density QCD

– LFT with the θ term

• Study of LFT with a θ term:

– strong CP problem

Schierholz’s work (1994)：
flattening of f (θ) at θ ≥ θc(< π) for finite volume

V ⇒ a signal of a first order phase transition, and

θc moves to 0 as V increases (#).

– Possible rich phase structure

Cardy and Rabinovici’s work in Z(N) theory:

oblique confinement phase

• However, (#) turns out to be spurious, coming

form the sign problem

– A standard way to circumvent it is to use the

Fourier transform method (FTM):

Z(θ) =
∑

Q

eiθQP (Q), (1)

Z(θ): the partition function
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P (Q): topological charge distribution calcu-

lated with the real Boltzmann weight

– It turns out in the FTM that flattening is due

to the error in P (Q) and then exhibits spurious

phase transition.

• Study of the sign problem

– Factorization method (Anagnostopulos and Nishimura)

– Imaginary θ (Azcoiti et.al.)

– Our approach: using the maximum entropy method

(MEM)

⇒ main subject of this talk

2 Sign Problem and flattening of the free energy

• Partition function is given by the complex action

Z(θ) =

∫
[dz̄dz]e−S+iθQ̂(z̄,z)

∫
[dz̄dz]e−S

.

impossible to generate configurations according to

the complex Boltzmann weight

(complex action problem or sign problem)

• Z(θ) is obtained by Fourier-transforming P (Q).

Z(θ) =

∫
[dz̄dz]e−S+iθQ̂(z̄,z)

∫
[dz̄dz]e−S

≡
∑

Q

eiθQP (Q), (2)

where

P (Q) ≡
∫

[dz̄dz]Qe−S

∫
dz̄dze−S

. (3)
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Figure 1: Gaussian topological charge distribution and correspond-
ing f(θ) for various lattice volumes. The parameter δ is chosen
to be 1/400.
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– P (Q) is calculated by counting the number of the

configurations and constructing a histogram.

– Numerical Fourier transform of P (Q)⇒ flattening

of f (θ) at large θ in V = 50 case in Fig.1

• Reason for flattening

– obtained P (Q) consists of two parts, a true value

P̃ (Q) and an error of P (Q).

P (Q) = P̃ (Q) + δP (Q), (4)

– Suppose that the error at Q = 0 dominates.

Then the free energy density looks like

f (θ) = − 1

V
logZ(θ) ≈ − 1

V
log

{∑

Q

P̃ (Q)eiθQ + δP (0)
}

= − 1

V
log

{
e−V f̃(θ) + δP (0)

}
, (5)

where f̃ (θ) is the true free energy density and

δP (0) is error at Q = 0. If

e−V f̃(θ) ≈ δP (0) at θ = θf (< π), (6)

then

f (θ) =

{
f̃ (θ) θ ≤ θf

− 1
V log

{
δP (0)

}
= const. θf < θ (< π)

(7)

• comments

– δP (Q) < 0 could leads to negative values of Z(θ)

⇒ also referred to as flattening

(e.g., V = 30 case in Fig.1)

– To overcome such flattening, need statistics pro-

portional to eV .
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Summary of this part:¶ ³

• sign problem appears as flattening of f (θ)

• could lead to a spurious first order phase tran-

sition at θ ≈ θf
µ ´

3 Maximum Entropy Method (MEM)

• What is the MEM?

– based on the Bayesian statistics

– a method for the parameter inference in data

analysis

– suited to ill-posed problems

(# of data ¿ # of parameters)

– a wide variety of applicability

Motivation for using the MEM¶ ³

– Can a true signal be extracted from data,

contaminated by errors?

– Have a look at the sign problem from a dif-

ferent point of view
µ ´

• Bayes theorem

prob(A|B) = prob(A)
prob(B|A)

prob(B)
, (8)

– prob(A): the probability that an event A occurs

– prob(A|B): the conditional probability that A oc-

curs under the condition that B occurs.
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• Bayesian approach for parameter (ξ) inference for

data x

prob(ξ|x) ∝ prob(ξ)prob(x|ξ)

– Posterior probability prob(ξ|x) that ξ realizes for

a given data x

– Prior probability prob(ξ) that reflects the knowl-

edge of ξ before x is given

– likelihood prob(x|ξ)

• What we do is to apply the above idea to determine

the behavior of Z(θ) for given data P (Q) in

P (Q) =

∫ π

−π

dθ
e−iθQ

2π
Z(θ). (9)

prob(Z(θ)|P (Q), I) = prob(Z(θ)|I)
prob(P (Q)|Z(θ), I)

prob(P (Q)|I)
,

(10)

– Likelihood function

prob(P (Q)|Z(θ), I) =
e−

1
2χ2

XL
, (11)

χ2 ≡
∑

Q,Q′
(P (Z)(Q)− P̄ (Q))C−1

Q,Q′(P
(Z)(Q′)− P̄ (Q′))

(12)

P (Z)(Q): constructed from Z(θ) through

P (Z)(Q) =

∫ π

−π

dθ
e−iθQ

2π
Z(θ). (13)

P̄ (Q) =
1

Nd

Nd∑

l=1

P (l)(Q), (14)

Nd: the number of sets of data.
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C−1 : inverse covariance matrix obtained by

the data set {P (Q)}.
– Prior probability

prob(Z(θ)|I, α) =
eαS

XS(α)
, (15)

S: Shannon-Jaynes entropy

S =

∫ π

−π

dθ

[
Z(θ)−m(θ)−Z(θ) log

Z(θ)

m(θ)

]
, (16)

m(θ): “default model”

reflecting the prior knowledge about Z(θ)

α: a real positive parameter

Posterior probability¶ ³

prob(Z(θ)|P (Q), I, α,m) =
exp

(−1
2χ

2 + αS
)

XLXS(α)
. (17)

µ ´

two limitting cases:

α → 0: usual maximum likelihood method

(MLM), or min{χ2} gives Z(θ)

α →∞: Z(θ) = m(θ)

– ill posed problem (α = 0)

# of data (discrete variable Q) ¿ # of pa-

rameters (continuous varable θ)

MLM yields degenerate solutions

⇒ MEM (α 6= 0) gives an unique solution

– For the information I, we impose the criterion

Z(θ) > 0 (18)

so that prob(Z(θ) ≤ 0|I, m) = 0.

8



MEM

maximizes the probability prob(Z(θ)|P (Q), I) for obtain-

ing the best image of Z(θ) ≡ Ẑ(θ)

Procedure for obtaining the best image Ẑ(θ)¶ ³

(1) Maximizing W for a fixed α to obtain Z(α)
n

(2) Averaging Z(α)
n

(3) Error estimation

µ ´

(1) Maximizing W for a fixed α to obtain Z(α)
n :

Find the image that maximizes W

W ≡ −1

2
χ2 + αS (19)

in functional space of Zn for a given α:

δ

δZ(θ)
(−1

2
χ2 + αS)

∣∣∣
Z=Z(α)

= 0. (20)

(2) Averaging Z(α)
n :

The α-independent final image Ẑn can be calcu-

lated according to the probability.

Ẑn =

∫
dα prob(α|P (Q), I,m)Z(α)

n , (21)

prob(α|P (Q), I,m) = exp

{
Λ(α) + W (Z(α))

}
, (22)

Λ(α) ≡ 1

2

∑

k

log
α

α + λk
,
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where λk are eigenvalues of the matrix in θ space;

1

2

√
Zm

∂2χ2

∂Zm∂Zn

√
Zn

∣∣∣
Z=Z(α)

. (23)

(3) Error estimation:

Error of the final output image Ẑn is calculated

based on the uncertainty of the image:

〈(δẐn)2〉 ≡
∫

dα〈(δZ(α)
n )2〉prob(α|P (Q), I,m), (24)

where

〈(δZ(α)
m )2〉 ≡

∫
[dZ ]

∫
Θ dθndθn′δZnδZn′prob(Zm|P (Q), I,m, α)∫

[dZ ]
∫

Θ dθndθn′prob(Zm|P (Q), I,m, α)

' − 1∫
Θ dθndθn′

∫

Θ

dθndθn′
( ∂2W

∂Zn∂Zn′

∣∣∣
Z=Z(α)

)−1

.(25)

4 Results

MEM analysis¶ ³

1. MEM analysis using mock data

(a) Gaussian P (Q)

(b) ‘True’ flattening

2. MEM analysis using MC data (CP3 model)
µ ´

4.1 preparation

• Mock data: Gaussian case

– P (Q) = A exp
(−c Q2/V

)
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– Add to P (Q) Gaussian noise generated with the

variance δ × P (Q) for each value of Q.

– δ is varied (from 1/10 to 1/600), and the results

are stable for δ > 1/300 for V = 50.

• Covariance matrix:

CQ,Q′ =
1

Nd(Nd − 1)

Nd∑

l=1

(P (l)(Q)− P̄ (Q))(P (l)(Q′)− P̄ (Q′)),

(26)

– Each set of data consists of P (Q) from Q = 0 to

Q = Nq − 1.

– Nd: the number of sets of the data

– P (l)(Q) : the l-th set of data for P (Q)

– P̄ (Q): the average

– Nd is varied, and the outcome is stable for 30 <∼ Nd.

• Techinical details

– Use of Singular Value Decomposition (SVD) and

the Newton method

– Inverting CQ,Q′ requires the quadruple precision.

Various Default models m(θ)

(i) constant default model:

m(θ) = 0.1, 0.3, 1.0.

(ii) strong coupling limit of the CPN−1 model:

m(θ) = (sin(θ/2)/(θ/2))V

(iii) Gaussian default :

m(θ) = exp(− ln 10
π2 γθ2)

( The parameter γ is varied in the analysis.)
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Figure 2: Gaussian topological charge distribution and correspond-
ing f(θ) obtained by using the Fourier method for various lattice
volumes. The parameter δ is chosen to be 1/400.

4.2 Analysis of the models

4.2.1 Gaussian P (Q) as a mock data

In order to check the MEM results, we choose

P (Q) = exp[− c

V
Q2], (27)

because Z(θ) is analytically known

Zpois(θ) =

√
πV

c

∞∑
n=−∞

exp

[
−V

4c
(θ − 2πn)2

]
. (28)

• Two types of data (c is fixed to 7.42):

1. no flattening case (V = 8,12, 20)

2. flattening case (V = 30,50)
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Figure 3: Z(α)(θ) for the data without flattening. Here, V = 12. The
default model m(θ) is chosen to be the constant 1.0 and the Gaus-
sian function with γ = 0.8.

Remember the three step-procedure¶ ³

(i) Calculate Z(α)
n by maximizing W for a fixed α.

(ii) Calculate Ẑn by averaging Z(α)
n with the weight

prob(α|P (Q), I,m) ≡ prob(α) according to

Ẑn =

∫
dα prob(α|P (Q), I,m)Z(α)

n . (29)

(iii) Error estimation
µ ´
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Figure 4: prob(α|P (Q), I,m) for the data without flattening. Here,
V = 12. The default model is chosen to be the constant m(θ) = 1.0
and the Gaussian function with γ = 0.6, 0.8 and 1.0.
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Figure 5: Z(α)(θ) for the data with flattening. Here, V = 50. The de-
fault model m(θ) is chosen to be the constant 1.0 and the Gaussian
function with γ = 6. Comparing with the result of the Fourier
transform (circles), the result of the MEM for certain values of
α (α ≈ 300 for m(θ) = 1.0 and α ≈ 2000 for the Gaussian) approx-
imately reproduces that of the exact partition function (filled
circles).
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Figure 6: prob(α|P (Q), I,m) for various m(θ). V is fixed to 50.
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Figure 7: Averaged partition function Ẑ(θ) for various m(θ).

Ẑn =
∫

dα prob(α|P (Q), I,m)Z(α)
n . V=50. The result of

the Fourier transform is also included. Those for the Gaussian
default models with γ = 5 and 6 agree reasonably with the ex-
act result, Zpois(θ). The result for mstrg(θ) shows a large deviation
from Zpois(θ).
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Figure 8: Ẑ(θ) (crosses) with the error bars for the Gaussian default
model with γ = 5.5. Here, V = 50. Compared to the result of the
Fourier transform (circles), a remarkable improvement is clearly
seen.
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Figure 9: Free energy density f(θ) calculated from Ẑ(θ) for various
volumes.
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Figure 10: f(θ) calculated by using the Fourier method. (The same
as Fig.1.)

Figure 11: f(θ) calculated from Ẑ(θ):MEM.
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Summary of this section¶ ³

We applied the MEM to two types of data for P (Q):

(1) the data without flattening:

The MEM reproduces f (θ), which agree with

those obtained by using the FTM.

(2) the data with flattening:

The best image with the least errors could re-

produce smooth behavior of f (θ) in contrary to

the FTM.
µ ´

4.2.2 MEM analysis using MC data (CP3 model)

• CPN−1 model exhibits common dynamical proper-

ties with QCD

• Application of the MEM to MC data

– Simulation of the 2-d CP3 model with the fixed

point action

– f (θ) for various values of volume L× L

Table 1: Parameter values used in the MC simulations of the CP3 model with the FP
action. For the MEM analysis, new MC simulations were performed for L = 38 and 50.

β L : Qmin–Qmax: total number of measurements (M/set)
3.0 12 : 0–30 : 10.0

24 : 0–18 : 10.0
32 : 0–24 : 3.0
38 : 0–27 : 5.0
46 : 0–33 : 1.0
50 : 0–15 : 30.0
56 : 0–18 : 5.0
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Figure 12: Topological charge distributions P (Q) (left panel) and free
energy densities f(θ) (right panel) of the CP3 model for β = 3.0
and various lattice sizes L.

– β = 3.0 (ξ ≈ 7)

– Concentrate on two values of L

1. L = 38 in the non flattening case

2. L = 50 in the flattening case

– default models

(i) Gaussian with various values of γ

mG(θ) = exp
[−γ ln 10

π2 θ2
]

(ii) m(θ) = Ẑ(θ) for smaller volumes

For the analysis of L0 = 50, Ẑ(θ) for L = 24, 32

and 38 are employed as the default models.≡
mL/L0(θ) = mL/50(θ).

Results

1. non-flattening (L=38)

the similar behavior to that in the Gaussian mock

data

2. flattening (L=50)
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Figure 13: Images Z(α)(θ) for a given α (left panel) and probabilities
P (α) in the non-flattening case (L = 38). In the left panel, mc(θ)
and mG(θ) with γ = 1.0 are used. In addition, mG(θ) with γ = 0.6
and 1.2 are used in the right panel.
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Figure 14: Partition function ZFour(θ) obtained using the FTM in
the case with flattening (L = 50). The number of measurements
is 30.0M/set. The arrow indicates the value of ε (= 3.610× 10−4).

• statistics dependence

varied the # of statistics 2.0− 30.0× 106/set.

23



1e-05

0.0001

0.001

0.01

0.1

1

0 0.5 1 1.5 2 2.5 3 3.5

Z(
θ)

 w
ith

 2
.0

M
/s

et

θ

Data A
Data B
Data C
Data D
Data E
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Figure 16: Values of Ẑ(θ) for θ=2.31 (left panel) and 3.14 (right
panel). L = 50 . The horizontal axis represents the number of
measurements. Here, the Gaussian default model with γ = 5.0
was used.

a qualitative difference between θ <∼ and >∼ 2.5.
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• prior dependence

– g(α):prior probability of α in

prob(α|P (Q), I,m) ≡ P (α) ∝ g(α)eW (α)+Λ(α), (30)

– g(α) is chosen according to prior information.

– two types of g(α), in general,

(i) Laplace’s rule, gLap(α) = const:

corresponding to no knowledge about the prior

information of α

(ii) Jeffrey’s rule, gJef(α) = 1/α:

P (α) be invariant with respect to a change in

scale

– investigate the sensitivity of Ẑ(θ) to the choice

of g(α) by studying

∆(θ) ≡ |ẐLap(θ)− ẐJef(θ)|
(ẐLap(θ) + ẐJef(θ))/2

, (31)

ẐLap(θ): the most probable images according

to Laplace’s rule

ẐJef(θ): the most probable images according

to Jeffrey’s rule
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Figure 17: PLap(α) and PJef(α). As the default models, Gaussian
functions with γ = 5.0 (left panel) and 13.0 (right panel) were
used.

• default model dependence

∆(θ) depends on the default models.

The Gaussian default with γ = 5.0 is the minimum

case. (See Table 2 and Figure 18.)
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Table 2: Values of ∆(θ) at θ = 2.31, 2.60, 2.83 and 3.14 for various
m(θ).

default model ∆(2.31) ∆(2.60) ∆(2.83) ∆(3.14)
mG(θ) with γ = 3.0 6.30×10−3 1.30×10−2 1.87×10−2 2.24×10−2

mG(θ) with γ = 5.0 5.35×10−3 1.41×10−3 1.12×10−2 1.84×10−2

mG(θ) with γ = 8.0 1.03×10−1 1.50×10−1 1.70×10−1 1.75×10−1

mG(θ) with γ = 10.0 1.01×10−1 4.67×10−1 8.21×10−1 9.60×10−1

mG(θ) with γ = 13.0 1.05×10−1 4.96×10−1 7.12×10−1 7.95×10−1

m24/50(θ) 3.44×10−3 7.67×10−3 1.13×10−2 1.36×10−2

m32/50(θ) 7.30×10−3 1.57×10−2 2.29×10−2 2.72×10−2

m38/50(θ) 1.30×10−2 2.60×10−2 3.65×10−2 4.26×10−2

Summary of this section¶ ³

We applied the MEM to two types of real data for

P (Q) (CP3 model ):

(1) the data without flattening (L = 32):

The MEM reproduces f (θ), which agree with

those obtained by using the FTM.

(2) the data with flattening (L = 50):

– studied the prior dependence

– studied the default model dependence

• The image with the least prior dependence ex-

hibits a smooth behavior of f (θ) with small er-

rors (γ = 5.0).

• At θ >∼ 2.5, the default model dependence is

large.
µ ´
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Figure 19: ẐLap(θ) and ẐJef(θ) for θ ∈ [2.0, π].
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5.Conclusions¶ ³

We studied the sign problem in terms of the MEM

by using the LFT with the θ term.

We analyzed the following models:

• using mock data

– Gaussian P (Q)

– ‘true’ flattening

• using MC data (CP(3) model)

– default model dependence

– prior dependence

Further study

• favorable prior ?

• application of the MEM to finite density QCD
µ ´

29


