A. Wipf

Theoretisch-Physikalisches Institut, FSU Jena

with Leander Dittmann, Tobias Kästner, Christian Wozar (Jena) Thomas Heinzl (Plymouth), Balázs Pozsgay (Budapest)

O'Raifeartaigh Symposium

Budapest 22.–24. June 2006 Phases of generalized Potts-Models and their Relevance for Gauge Theories

A. Wipf

Potts-Models

Polyakov-Loop Dynamics

Gluodynamics and Potts-Models

Modified mean field approximation

Results of MC-simulations

Conclusions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Polyakov-Loop Dynamics

Gluodynamics and Potts-Models

Modified mean field approximation

Results of MC-simulations

Conclusions

Phases of generalized Potts-Models and their Relevance for Gauge Theories

A. Wipf

Potts-Models

Polyakov-Loop Dynamics

Gluodynamics and Potts-Models

Modified mean field approximation

Results of MC-simulations

Conclusions

◆□ > ◆□ > ◆豆 > ◆豆 > ・豆 ・ �� ◆

generalized Ising models: $\theta_x \in \{2\pi k/q\}, \ 1 \le k \le q$ $H = -J \sum_{\langle xy \rangle} \cos(\theta_x - \theta_y)$ $\mathbb{Z}_q : \theta_x \to \theta_x + 2\pi n/q$ Phases of generalized Potts-Models and their Relevance for Gauge Theories

A. Wipf

Potts-Models

Polyakov-Loop Dynamics

Gluodynamics and Potts-Models

Modified mean field approximation

Results of MC-simulations

Conclusions

◆□▶ ◆□▶ ◆ ミト ◆ ミト ・ ミー ・ のへぐ

generalized Ising models: $\theta_x \in \{2\pi k/q\}, \quad 1 \le k \le q$ $H = -J \sum_{\langle xy \rangle} \cos(\theta_x - \theta_y)$ $\mathbb{Z}_q : \theta_x \to \theta_x + 2\pi n/q$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ●

Ferromagnetic phase: q ground states phase transition symmetric ↔ ferromagnetic d = 2 : second order q ≤ 4, first order q > 4 d = 3 : second order q ≤ 2, first order q > 2 Phases of generalized Potts-Models and their Relevance for Gauge Theories

A. Wipf

Potts-Models

Polyakov-Loop Dynamics

Gluodynamics and Potts-Models

Modified mean field approximation

Results of MC-simulations

generalized Ising models: $\theta_x \in \{2\pi k/q\}, \ 1 \le k \le q$ $H = -J \sum_{\langle xy \rangle} \cos(\theta_x - \theta_y)$ $\mathbb{Z}_q : \theta_x \to \theta_x + 2\pi n/q$

► ferromagnetic phase: q ground states phase transition symmetric ↔ ferromagnetic d = 2 : second order q ≤ 4, first order q > 4 d = 3 : second order q ≤ 2, first order q > 2

anti-ferromagnetic phase: rich vacuum structures symmetric \leftrightarrow antiferrom: d = 3, q = 3 : second order entropy of ground states? Phases of generalized Potts-Models and their Relevance for Gauge Theories

A. Wipf

Potts-Models

Polyakov-Loop Dynamics

Gluodynamics and Potts-Models

Modified mean field approximation

Results of MC-simulations

• entropy
$$S_B(p) = -\sum p(w) \log p(w) \Rightarrow$$
 free energy
 $\beta F = \inf_p (\beta \langle H \rangle_\rho - S_B) \Rightarrow p_{\text{Gibbs}} \sim e^{-\beta H}$

A. Wipf

Potts-Models

Polyakov-Loop Dynamics

Gluodynamics and Potts-Models

Modified mean field approximation

Results of MC-simulations

Conclusions

うしん 明 ふかとうかん モットロッ

► entropy
$$S_B(p) = -\sum p(w) \log p(w) \Rightarrow$$
 free energy
 $\beta F = \inf_p (\beta \langle H \rangle_\rho - S_B) \Rightarrow p_{\text{Gibbs}} \sim e^{-\beta H}$

variational characterization of (convex) effective action:

$$\Gamma[m] = \inf_{p} \left(\beta \langle H \rangle_{p} - S(p) \left| \langle e^{i\theta(x)} \rangle_{p} = m(x) \right) \right)$$

Phases of generalized Potts-Models and their Relevance for Gauge Theories

A. Wipf

Potts-Models

Polyakov-Loop Dynamics

Gluodynamics and Potts-Models

Modified mean field approximation

Results of MC-simulations

Conclusions

くして 前 ふかく ボット 一切 くう

► entropy
$$S_B(p) = -\sum p(w) \log p(w) \Rightarrow$$
 free energy
 $\beta F = \inf_p (\beta \langle H \rangle_\rho - S_B) \Rightarrow p_{\text{Gibbs}} \sim e^{-\beta H}$

variational characterization of (convex) effective action:

$$\Gamma[m] = \inf_{p} \left(\beta \langle H \rangle_{p} - S(p) \left| \langle e^{i\theta(x)} \rangle_{p} = m(x) \right) \right|$$

mean field approximation:

$$\rho(w) = \prod_{x} \rho_{x}(\theta_{x}) \Rightarrow \Gamma_{\mathrm{MF}}[m]$$

translational invariance: $p_x = p \Rightarrow m(x) = m$ effective potential: $\Gamma_{MF}[m] = V u_{MF}(m)$

$$u_{\rm MF}(m) = \inf_{p} \left(-Kmm^* + \sum_{\theta} p(\theta) \log p(\theta) \right)$$
$$m = \sum_{\theta} p(\theta) e^{i\theta}, \quad K = dJ.$$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - の Q (?)

Phases of generalized Potts-Models and their Relevance for Gauge Theories

A. Wipf

Potts-Models

Polyakov-Loop Dynamics

Gluodynamics and Potts-Models

Modified mean field approximation

Results of MC-simulations

antiferromagnetic phase:

translational invariance on sublattices $\Lambda = \Lambda_1 \cup \Lambda_2$ two neighbours in different sublattices $p(x) = p_i \Rightarrow m(x) = m_i$ for $x \in \Lambda_i$

$$u_{\mathrm{MF}}(m_1, m_2) = rac{1}{2} \left(K |m_1 - m_2|^2 + \sum_i u_{\mathrm{MF}}(m_i)
ight),$$

Phases of generalized Potts-Models and their Relevance for Gauge Theories

A. Wipf

Potts-Models

Polyakov-Loop Dynamics

Gluodynamics and Potts-Models

Modified mean Field approximation

Results of MC-simulations

Conclusions

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ●

antiferromagnetic phase:

translational invariance on sublattices $\Lambda = \Lambda_1 \cup \Lambda_2$ two neighbours in different sublattices $p(x) = p_i \Rightarrow m(x) = m_i$ for $x \in \Lambda_i$

$$u_{\mathrm{MF}}(m_1, m_2) = rac{1}{2} \left(K |m_1 - m_2|^2 + \sum_i u_{\mathrm{MF}}(m_i)
ight),$$

$$\mathsf{K} > \mathsf{K}_{f,c} > 0 \Rightarrow m_1 = m_2 \neq 0, \ \mathbb{Z}_q \text{-broken} \\ \mathsf{K} < \mathsf{K}_{a,c} < 0 \Rightarrow m_1 \neq m_2 \neq 0, \ \mathbb{Z}_{2q} \text{-broken}$$

Phases of generalized Potts-Models and their Relevance for Gauge Theories

A. Wipf

Potts-Models

Polyakov-Loop Dynamics

Gluodynamics and Potts-Models

Modified mean field approximation

Results of MC-simulations

Conclusions

Polyakov-Loop Dynamics

 finite temperature gluodynamics order parameter for confinement: Polyakov loop effective action:

$$e^{-S_{\text{eff}}[\mathcal{P}]} = \int \mathcal{D}U\delta\left(\mathcal{P}_{\boldsymbol{x}}, \prod_{t=0}^{N_t} U_{t,\boldsymbol{x};0}\right) e^{-S_{\text{w}}[U]}$$

Phases of generalized Potts-Models and their Relevance for Gauge Theories

A. Wipf

Potts-Models

Polyakov-Loop Dynamics

Gluodynamics and Potts-Models

Modified mean field approximation

Results of MC-simulations

Conclusions

Polyakov-Loop Dynamics

 finite temperature gluodynamics order parameter for confinement: Polyakov loop effective action:

$$e^{-S_{\text{eff}}[\mathcal{P}]} = \int \mathcal{D}U\delta\left(\mathcal{P}_{\boldsymbol{x}}, \prod_{t=0}^{N_t} U_{t,\boldsymbol{x};0}\right) e^{-S_{\text{w}}[U]}$$

gauge invariance:

$$S_{\text{eff}} = S_{\text{eff}}[L], \quad L_{\boldsymbol{x}} = \operatorname{Tr} \mathcal{P}_{\boldsymbol{x}}$$

global Z_3 center symmetry:

 $S_{\rm eff}[L] = S_{\rm eff}[z \cdot L]$

good ansatz for $S_{\rm eff}$?

Phases of generalized Potts-Models and their Relevance for Gauge Theories

A. Wipf

Potts-Models

Polyakov-Loop Dynamics

Gluodynamics and Potts-Models

Modified mean field approximation

Results of MC-simulations

Conclusions

・ロト ・日 ・ ・ ヨ ・ ・ 日 ・ ・ の へ ()・

 ▶ strong coupling expansion for S_{eff}[P]
 ⇒ Z₃-invariant character expansion nearest neighbour interaction

$$S_{\text{eff}} = \lambda_{10}S_{10} + \lambda_{21}S_{21} + \lambda_{20}S_{20} + \lambda_{11}S_{11} + \dots$$

$$S_{10} = \sum (\chi_{10}(\mathcal{P}_x)\chi_{01}(\mathcal{P}_y) + h.c), \ S_{21} = \dots$$

Phases of generalized Potts-Models and their Relevance for Gauge Theories

A. Wipf

Potts-Models

Polyakov-Loop Dynamics

Gluodynamics and Potts-Models

Modified mean field approximation

Results of MC-simulations

Conclusions

 ▶ strong coupling expansion for S_{eff}[P]
 ⇒ Z₃-invariant character expansion nearest neighbour interaction

$$S_{\text{eff}} = \lambda_{10}S_{10} + \lambda_{21}S_{21} + \lambda_{20}S_{20} + \lambda_{11}S_{11} + \dots$$

$$S_{10} = \sum (\chi_{10}(\mathcal{P}_x)\chi_{01}(\mathcal{P}_y) + h.c), \ S_{21} = \dots$$

center-transformation:

$$\chi_{pq}(z\mathcal{P}) = z^{p-q}\chi_{pq}(\mathcal{P}), \quad z^3 = z^*z = 1$$

With $L = \operatorname{Tr} \mathcal{P}$: leading terms

$$\begin{split} \mathcal{S}_{\mathrm{eff}} &= (\lambda_{10} - \lambda_{21}) \sum \left(\mathcal{L}_{\boldsymbol{x}} \mathcal{L}_{\boldsymbol{y}}^* + \mathrm{h.c.} \right) \\ &+ \lambda_{21} \sum \left(\mathcal{L}_{\boldsymbol{x}}^2 \mathcal{L}_{\boldsymbol{y}} + \mathcal{L}_{\boldsymbol{y}}^2 \mathcal{L}_{\boldsymbol{x}} + \mathrm{h.c.} \right) \end{split}$$

Phases of generalized Potts-Models and their Relevance for Gauge Theories

A. Wipf

Potts-Models

Polyakov-Loop Dynamics

Gluodynamics and Potts-Models

Modified mean field approximation

Results of MC-simulations

Conclusions

・ロト ・日 ・ ・ ヨ ・ ・ 日 ・ ・ の へ ()・

 ▶ strong coupling expansion for S_{eff}[P]
 ⇒ Z₃-invariant character expansion nearest neighbour interaction

$$S_{\text{eff}} = \lambda_{10}S_{10} + \lambda_{21}S_{21} + \lambda_{20}S_{20} + \lambda_{11}S_{11} + \dots$$

$$S_{10} = \sum (\chi_{10}(\mathcal{P}_x)\chi_{01}(\mathcal{P}_y) + h.c), \ S_{21} = \dots$$

center-transformation:

$$\chi_{pq}(z\mathcal{P}) = z^{p-q}\chi_{pq}(\mathcal{P}), \quad z^3 = z^*z = 1$$

With $L = \operatorname{Tr} \mathcal{P}$: leading terms

$$S_{\text{eff}} = (\lambda_{10} - \lambda_{21}) \sum (L_{\boldsymbol{x}} L_{\boldsymbol{y}}^* + \text{h.c.}) + \lambda_{21} \sum (L_{\boldsymbol{x}}^2 L_{\boldsymbol{y}} + L_{\boldsymbol{y}}^2 L_{\boldsymbol{x}} + \text{h.c.})$$

► complex field with compact target space, ∏(reduced Haar measures), close relation to 3-state Potts model

Phases of generalized Potts-Models and their Relevance for Gauge Theories

A. Wipf

Potts-Models

Polyakov-Loop Dynamics

Gluodynamics and Potts-Models

Modified mean field approximation

Results of MC-simulations

Gluodynamics and Pott-Models

▶ naive reduction to Potts: $\mathcal{P}_{\bm{x}} \to e^{i\theta_{\bm{x}}} \mathbb{1} \in \mathsf{centre}$

$$S_{\mathrm{eff}}
ightarrow H$$
 with $J = 18(\lambda_{01} + 4\lambda_{21})$

true for all $S_{\text{eff}} \Rightarrow S_{\text{eff}}$ is extension of \mathbb{Z}_3 model.

Phases of generalized Potts-Models and their Relevance for Gauge Theories

A. Wipf

Potts-Models

Polyakov-Loop Dynamics

Gluodynamics and Potts-Models

Modified mean field approximation

Results of MC-simulations

Conclusions

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ○○

Gluodynamics and Pott-Models

lacksim naive reduction to Potts: $\mathcal{P}_{m{x}} o e^{i heta_{m{x}}} \mathbb{1} \in$ centre

 $S_{
m eff}
ightarrow H$ with $J = 18(\lambda_{01} + 4\lambda_{21})$

true for all $S_{\text{eff}} \Rightarrow S_{\text{eff}}$ is extension of \mathbb{Z}_3 model. • Conjecture (Svetitsky, Yaffe):

effective finite-temperature SU(N)-gluodynamics in d dimensions $\cong \mathbb{Z}_N$ spin model in d-1 dimensions.

Phases of generalized Potts-Models and their Relevance for Gauge Theories

A. Wipf

Potts-Models

Polyakov-Loop Dynamics

Gluodynamics and Potts-Models

Modified mean field approximation

Results of MC-simulations

Conclusions

◆□ > ◆□ > ◆豆 > ◆豆 > 「豆 」 のへで

Gluodynamics and Pott-Models

lacksim naive reduction to Potts: $\mathcal{P}_{m{x}} o e^{i heta_{m{x}}} \mathbb{1} \in$ centre

 $S_{
m eff}
ightarrow H$ with $J = 18(\lambda_{01} + 4\lambda_{21})$

true for all $S_{\text{eff}} \Rightarrow S_{\text{eff}}$ is extension of \mathbb{Z}_3 model.

Conjecture (Svetitsky, Yaffe):

effective finite-temperature SU(N)-gluodynamics in d dimensions $\cong \mathbb{Z}_N$ spin model in d-1 dimensions.

same critical exponents SU(2) and Ising (Engels et.al) same universality class (symmetric ↔ ferrom.)

	β/ u	γ/ u	ν
4 <i>d</i> SU(2)	0.545	1.93	0.65
3d Ising	0.516	1.965	0.63

Phases of generalized Potts-Models and their Relevance for Gauge Theories

A. Wipf

Potts-Models

Polyakov-Loop Dynamics

Gluodynamics and Potts-Models

Modified mean field approximation

Results of MC-simulations

Conclusions

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ○○

relevance for finite temperature SU(N) with N > 2? transition first order! → phase diagrams

Phases of generalized Potts-Models and their Relevance for Gauge Theories

A. Wipf

Potts-Models

Polyakov-Loop Dynamics

Gluodynamics and Potts-Models

Modified mean field approximation

Results of MC-simulations

Conclusions

・ロト・「中・・川下・・日・ シック

relevance for finite temperature SU(N) with N > 2? transition first order! → phase diagrams

• classical analysis: minimize $S_{\rm eff}$

Phases of generalized Potts-Models and their Relevance for Gauge Theories

A. Wipf

Potts-Models

Polyakov-Loop Dynamics

Gluodynamics and Potts-Models

Modified mean field approximation

Results of MC-simulations

Conclusions

・日本・西本・山田を (日本)

relevance for finite temperature SU(N) with N > 2? transition first order! → phase diagrams

• classical analysis: minimize $S_{\rm eff}$

► quantum fluctuations ⇒ include symmetric phase new ferromagnetic anti-center phase qualitatively correct phase diagram Phases of generalized Potts-Models and their Relevance for Gauge Theories

A. Wipf

Potts-Models

Polyakov-Loop Dynamics

Gluodynamics and Potts-Models

Modified mean field approximation

Results of MC-simulations

Conclusions

 variational characterisation of Γ: fix (χ_j(P_x)) for all χ_j in S_{eff} Phases of generalized Potts-Models and their Relevance for Gauge Theories

A. Wipf

Potts-Models

Polyakov-Loop Dynamics

Gluodynamics and Potts-Models

Modified mean field approximation

Results of MC-simulations

Conclusions

・ロト ・四ト ・ヨト ・ヨー ・クタウ

- variational characterisation of Γ: fix (χ_j(P_x)) for all χ_j in S_{eff}
- mean field approximation \Rightarrow product measure

$$\mathcal{DP} \longrightarrow \prod_{\boldsymbol{x}} d\mu_{\mathrm{red}}(\mathcal{P}_{\boldsymbol{x}}) p_{\boldsymbol{x}}(\mathcal{P}_{\boldsymbol{x}})$$

Phases of generalized Potts-Models and their Relevance for Gauge Theories

A. Wipf

Potts-Models

Polyakov-Loop Dynamics

Gluodynamics and Potts-Models

Modified mean field approximation

Results of MC-simulations

Conclusions

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ●

 variational characterisation of Γ: fix (χ_j(P_x)) for all χ_j in S_{eff}

• mean field approximation \Rightarrow product measure

$$\mathcal{DP} \longrightarrow \prod_{\boldsymbol{x}} d\mu_{\mathrm{red}}(\mathcal{P}_{\boldsymbol{x}}) \, \boldsymbol{p}_{\boldsymbol{x}}\left(\mathcal{P}_{\boldsymbol{x}}\right)$$

► translational invariance on sublattices in $\Lambda = \Lambda_1 \cup \Lambda_2$ ⇒ nontrivial variational problem on two-sites Phases of generalized Potts-Models and their Relevance for Gauge Theories

A. Wipf

Potts-Models

Polyakov-Loop Dynamics

Gluodynamics and Potts-Models

Modified mean field approximation

Results of MC-simulations

Conclusions

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ⊙へ⊙

 variational characterisation of Γ: fix (χ_j(P_x)) for all χ_j in S_{eff}

• mean field approximation \Rightarrow product measure

$$\mathcal{DP} \longrightarrow \prod_{\boldsymbol{x}} d\mu_{\mathrm{red}}(\mathcal{P}_{\boldsymbol{x}}) \, \boldsymbol{\rho}_{\boldsymbol{x}}\left(\mathcal{P}_{\boldsymbol{x}}
ight)$$

► translational invariance on sublattices in $\Lambda = \Lambda_1 \cup \Lambda_2$ ⇒ nontrivial variational problem on two-sites

most simple effective model (Polonyi)

 $S_{\text{eff}} = \lambda S_{10} = \lambda \sum (L_{\boldsymbol{x}} L_{\boldsymbol{y}}^* + \text{h.c})$

Lagrangean multiplier for \overline{L}_i on Λ_i

Phases of generalized Potts-Models and their Relevance for Gauge Theories

A. Wipf

Potts-Models

Polyakov-Loop Dynamics

Gluodynamics and Potts-Models

Modified mean field approximation

Results of MC-simulations

mean field effective potential for minimal model

$$2u_{\mathrm{MF}}(L_1, L_1^*, L_2, L_2^*) = -d\lambda |L_1 - L_2|^2 + \sum v_{\mathrm{MF}}(L_i, L_i^*)$$

$$v_{\rm MF}(L,L^*) = d\lambda |L|^2 + \gamma_0(L,L^*)$$

 $\gamma_{\rm 0}$ Legendre-transform of

$$w_0(j,j^*) = \log \int d\mu_{\rm red} \exp\left(jL + j^*L^*\right)$$

Phases of generalized Potts-Models and their Relevance for Gauge Theories

A. Wipf

Potts-Models

Polyakov-Loop Dynamics

Gluodynamics and Potts-Models

Modified mean field approximation

Results of MC-simulations

Conclusions

▲□▶ ▲□▶ ▲□▶ ▲□▶ □□ - つへで

mean field effective potential for minimal model

$$2u_{\rm MF}(L_1,L_1^*,L_2,L_2^*) = -d\lambda |L_1 - L_2|^2 + \sum v_{\rm MF}(L_i,L_i^*)$$

$$v_{\rm MF}(L,L^*) = d\lambda |L|^2 + \gamma_0(L,L^*)$$

 $\gamma_{\rm 0}$ Legendre-transform of

$$w_0(j,j^*) = \log \int d\mu_{\rm red} \exp\left(jL + j^*L^*\right)$$

order parameters:

$$L = \frac{1}{2}(L_1 + L_2), \ M = \frac{1}{2}(L_1 - L_2), \ \ell = |L|, \ m = |M|.$$

Phases of generalized Potts-Models and their Relevance for Gauge Theories

A. Wipf

Potts-Models

Polyakov-Loop Dynamics

Gluodynamics and Potts-Models

Modified mean field approximation

Results of MC-simulations

Conclusions

▲□▶ ▲□▶ ▲□▶ ▲□▶ □□ - つへで

mean field effective potential for minimal model

$$2u_{\mathrm{MF}}(L_1, L_1^*, L_2, L_2^*) = -d\lambda |L_1 - L_2|^2 + \sum v_{\mathrm{MF}}(L_i, L_i^*)$$

$$v_{\rm MF}(L,L^*) = d\lambda |L|^2 + \gamma_0(L,L^*)$$

 $\gamma_{\rm 0}$ Legendre-transform of

$$w_0(j,j^*) = \log \int d\mu_{\rm red} \exp\left(jL + j^*L^*\right)$$

order parameters:

$$L = \frac{1}{2}(L_1 + L_2), \ \ M = \frac{1}{2}(L_1 - L_2), \ \ \ell = |L|, \ \ m = |M|.$$

• group integral in closed form not known for SU(3)!! $\int \exp(j \operatorname{Tr}(U)) =$ hypergeometric function Phases of generalized Potts-Models and their Relevance for Gauge Theories

A. Wipf

Potts-Models

Polyakov-Loop Dynamics

Gluodynamics and Potts-Models

Modified mean field approximation

Results of MC-simulations

A. Wipf

Potts-Models

Polyakov-Loop Dynamics

Gluodynamics and Potts-Models

Modified mean field approximation

Results of MC-simulations

A. Wipf

Potts-Models

Polyakov-Loop Dynamics

Gluodynamics and Potts-Models

Modified mean field approximation

Results of MC-simulations

Why is mean field so good? conjecture: 3 = upper crit. dimension for 3-state potts

Phases of generalized Potts-Models and their Relevance for Gauge Theories

A. Wipf

Potts-Models

Polyakov-Loop Dynamics

Gluodynamics and Potts-Models

Modified mean field approximation

Results of MC-simulations

Conclusions

・ロト・「聞ト・「思ト・「思ト」 しゃくの

- Why is mean field so good? conjecture: 3 = upper crit. dimension for 3-state potts
- critical exponents of $S \leftrightarrow AF$:

exponent	3-state Potts	minimal $S_{ m eff}$
ν	0.664(4)	0.68(2)
γ/ u	1.973(9)	1.96(2)

critical exponents in mean field?

Phases of generalized Potts-Models and their Relevance for Gauge Theories

A. Wipf

Potts-Models

Polyakov-Loop Dynamics

Gluodynamics and Potts-Models

Modified mean field approximation

Results of MC-simulations

Conclusions

▲□▶ ▲□▶ ▲□▶ ▲□▶ □□ - つへで

- Why is mean field so good? conjecture: 3 = upper crit. dimension for 3-state potts
- critical exponents of $S \leftrightarrow AF$:

exponent	3-state Potts	minimal $S_{ m eff}$
ν	0.664(4)	0.68(2)
γ/ u	1.973(9)	1.96(2)

critical exponents in mean field?

- finite temperature gluodynamics
 - \rightarrow effective \mathbb{Z}_3 models with compact target spaces
 - \rightarrow 3-state Potts-model

universality test in 'unphysical region' (for gluodynamics) Phases of generalized Potts-Models and their Relevance for Gauge Theories

A. Wipf

Potts-Models

Polyakov-Loop Dynamics

Gluodynamics and Potts-Models

Modified mean field approximation

Results of MC-simulations

▶ phase diagram and transitions → histograms large statistics, expensive → fast algorithms! standard Metropolis: 5% to 10% accuracy Phases of generalized Potts-Models and their Relevance for Gauge Theories

A. Wipf

Potts-Models

Polyakov-Loop Dynamics

Gluodynamics and Potts-Models

Modified mean field approximation

Results of MC-simulations

Conclusions

・ロト ・日 ・ ・ ヨ ・ ・ 日 ・ ・ の へ ()・

- ▶ phase diagram and transitions → histograms large statistics, expensive → fast algorithms! standard Metropolis: 5% to 10% accuracy
- multicanonical algorithm: up to 20³ lattices near first order transitions

Phases of generalized Potts-Models and their Relevance for Gauge Theories

A. Wipf

Potts-Models

Polyakov-Loop Dynamics

Gluodynamics and Potts-Models

Modified mean field approximation

Results of MC-simulations

Conclusions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- ▶ phase diagram and transitions → histograms large statistics, expensive → fast algorithms! standard Metropolis: 5% to 10% accuracy
- multicanonical algorithm: up to 20³ lattices near first order transitions
- new cluster algorithm near second order transitions: auto-correlation times down by two orders of magnitude on larger lattices

Phases of generalized Potts-Models and their Relevance for Gauge Theories

A. Wipf

Potts-Models

Polyakov-Loop Dynamics

Gluodynamics and Potts-Models

Modified mean field approximation

Results of MC-simulations

Conclusions

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ● 臣 ● のへで

- ▶ phase diagram and transitions → histograms large statistics, expensive → fast algorithms! standard Metropolis: 5% to 10% accuracy
- multicanonical algorithm: up to 20³ lattices near first order transitions
- new cluster algorithm near second order transitions: auto-correlation times down by two orders of magnitude on larger lattices
- comparison with mean field results for two-coupling (costy).

Phases of generalized Potts-Models and their Relevance for Gauge Theories

A. Wipf

Potts-Models

Polyakov-Loop Dynamics

Gluodynamics and Potts-Models

Modified mean ield approximation

Results of MC-simulations

Conclusions

- ▶ phase diagram and transitions → histograms large statistics, expensive → fast algorithms! standard Metropolis: 5% to 10% accuracy
- multicanonical algorithm: up to 20³ lattices near first order transitions
- new cluster algorithm near second order transitions: auto-correlation times down by two orders of magnitude on larger lattices
- comparison with mean field results for two-coupling (costy).
- rich phase structure: 4 different phases, second und first order transitions, tricritical points(?), mean field very good.

Phases of generalized Potts-Models and their Relevance for Gauge Theories

A. Wipf

Potts-Models

Polyakov-Loop Dynamics

Gluodynamics and Potts-Models

Modified mean Field approximation

Results of MC-simulations

A. Wipf

Potts-Models

Polyakov-Loop Dynamics

Gluodynamics and Potts-Models

Modified mean field approximation

Results of MC-simulations

Conclusions

◆□ > ◆□ > ◆豆 > ◆豆 > ・豆 ・ �� ◆

A. Wipf

Potts-Models

Polyakov-Loop Dynamics

Gluodynamics and Potts-Models

Modified mean field approximation

Results of MC-simulations

Conclusions

A. Wipf

Potts-Models

Polyakov-Loop Dynamics

Gluodynamics and Potts-Models

Modified mean field approximation

Results of MC-simulations

Conclusions

A. Wipf

Potts-Models

Polyakov-Loop Dynamics

Gluodynamics and Potts-Models

Modified mean field approximation

Results of MC-simulations

Conclusions

・ロト・日本・日本・日本・日本・日本・日本

A. Wipf

Potts-Models

Polyakov-Loop Dynamics

Gluodynamics and Potts-Models

Modified mean field approximation

Results of MC-simulations

Conclusions

・ロト・日本・日本・日本・日本・日本・日本

strong coupling for Polykaov-loops effective action

Phases of generalized Potts-Models and their Relevance for Gauge Theories

A. Wipf

Potts-Models

Polyakov-Loop Dynamics

Gluodynamics and Potts-Models

Modified mean field approximation

Results of MC-simulations

Conclusions

JHEP 06 (2004) 005, PRD 72 (2005) 065005, hep-lat/0605012

- strong coupling for Polykaov-loops effective action
- modified MF for non-translationally invariant states

Phases of generalized Potts-Models and their Relevance for Gauge Theories

A. Wipf

Potts-Models

Polyakov-Loop Dynamics

Gluodynamics and Potts-Models

Modified mean field approximation

Results of MC-simulations

Conclusions

JHEP 06 (2004) 005, PRD 72 (2005) 065005, hep-lat/0605012

▲ロ > ▲母 > ▲目 > ▲目 > ▲目 > ④ < ⊙

- strong coupling for Polykaov-loops effective action
- modified MF for non-translationally invariant states
- new efficient cluster algorithm!

Phases of generalized Potts-Models and their Relevance for Gauge Theories

A. Wipf

Potts-Models

Polyakov-Loop Dynamics

Gluodynamics and Potts-Models

Modified mean field approximation

Results of MC-simulations

Conclusions

JHEP 06 (2004) 005, PRD 72 (2005) 065005, hep-lat/0605012

▲ロ > ▲母 > ▲目 > ▲目 > ▲目 > ④ < ⊙

- strong coupling for Polykaov-loops effective action
- modified MF for non-translationally invariant states
- new efficient cluster algorithm!
- ▶ rich phase structure for simple Z₃-models

JHEP 06 (2004) 005, PRD 72 (2005) 065005, hep-lat/0605012

Phases of generalized Potts-Models and their Relevance for Gauge Theories

A. Wipf

Potts-Models

Polyakov-Loop Dynamics

Gluodynamics and Potts-Models

Modified mean field approximation

Results of MC-simulations

Conclusions

・ロト・日本・山田・ 山田・ 山田・ うらぐ

- strong coupling for Polykaov-loops effective action
- modified MF for non-translationally invariant states
- new efficient cluster algorithm!
- rich phase structure for simple \mathbb{Z}_3 -models
- mean field unexpectedly accurate $(d_c = 3?)$

Phases of generalized Potts-Models and their Relevance for Gauge Theories

A. Wipf

Potts-Models

Polyakov-Loop Dynamics

Gluodynamics and Potts-Models

Modified mean field approximation

Results of MC-simulations

Conclusions

JHEP 06 (2004) 005, PRD 72 (2005) 065005, hep-lat/0605012

▲ロ > ▲母 > ▲目 > ▲目 > ▲目 > ④ < ⊙

- strong coupling for Polykaov-loops effective action
- modified MF for non-translationally invariant states
- new efficient cluster algorithm!
- ► rich phase structure for simple Z₃-models
- mean field unexpectedly accurate $(d_c = 3?)$
- calculate $\lambda_j(\beta)$ via IMC (cp. SU(2))

JHEP 06 (2004) 005, PRD 72 (2005) 065005, hep-lat/0605012 $\,$

Phases of generalized Potts-Models and their Relevance for Gauge Theories

A. Wipf

Potts-Models

Polyakov-Loop Dynamics

Gluodynamics and Potts-Models

Modified mean field approximation

Results of MC-simulations

Conclusions

▲□▶ ▲□▶ ▲□▶ ▲□▶ □□ - つへで

- strong coupling for Polykaov-loops effective action
- modified MF for non-translationally invariant states
- new efficient cluster algorithm!
- ► rich phase structure for simple Z₃-models
- mean field unexpectedly accurate $(d_c = 3?)$
- calculate $\lambda_j(\beta)$ via IMC (cp. SU(2))
- efficient 'group-theoretic' Schwinger-Dyson equations!

JHEP 06 (2004) 005, PRD 72 (2005) 065005, hep-lat/0605012

Phases of generalized Potts-Models and their Relevance for Gauge Theories

A. Wipf

Potts-Models

Polyakov-Loop Dynamics

Gluodynamics and Potts-Models

Modified mean Field approximation

Results of MC-simulations

- strong coupling for Polykaov-loops effective action
- modified MF for non-translationally invariant states
- new efficient cluster algorithm!
- rich phase structure for simple \mathbb{Z}_3 -models
- mean field unexpectedly accurate $(d_c = 3?)$
- calculate $\lambda_j(\beta)$ via IMC (cp. SU(2))
- efficient 'group-theoretic' Schwinger-Dyson equations!
- ▶ vacuum-sector of AF phase? *SU*(*N*) group integrals?
- is AC-phase relevant for gluodynamics?

JHEP 06 (2004) 005, PRD 72 (2005) 065005, hep-lat/0605012

Phases of generalized Potts-Models and their Relevance for Gauge Theories

A. Wipf

Potts-Models

Polyakov-Loop Dynamics

Gluodynamics and Potts-Models

Modified mean field approximation

Results of MC-simulations

Conclusions

・ロト・日本・日本・日本・日本・日本

- strong coupling for Polykaov-loops effective action
- modified MF for non-translationally invariant states
- new efficient cluster algorithm!
- rich phase structure for simple \mathbb{Z}_3 -models
- mean field unexpectedly accurate $(d_c = 3?)$
- calculate $\lambda_j(\beta)$ via IMC (cp. SU(2))
- efficient 'group-theoretic' Schwinger-Dyson equations!
- ▶ vacuum-sector of AF phase? *SU*(*N*) group integrals?
- is AC-phase relevant for gluodynamics?
- include fermions in effective Polyakov-loop dynamics.

JHEP 06 (2004) 005, PRD 72 (2005) 065005, hep-lat/0605012

Phases of generalized Potts-Models and their Relevance for Gauge Theories

A. Wipf

Potts-Models

Polyakov-Loop Dynamics

Gluodynamics and Potts-Models

Modified mean field approximation

Results of MC-simulations