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Potts-Models

◮

2π/q

b

b

b

generalized Ising models:

θx ∈ {2πk/q} , 1 ≤ k ≤ q

H = −J
∑

〈xy〉
cos (θx − θy)

Zq : θx → θx + 2πn/q
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Potts-Models

◮

2π/q

b

b

b

generalized Ising models:

θx ∈ {2πk/q} , 1 ≤ k ≤ q

H = −J
∑

〈xy〉
cos (θx − θy)

Zq : θx → θx + 2πn/q

◮ ferromagnetic phase: q ground states
phase transition symmetric ↔ ferromagnetic
d = 2 : second order q ≤ 4, first order q > 4
d = 3 : second order q ≤ 2, first order q > 2
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generalized Ising models:

θx ∈ {2πk/q} , 1 ≤ k ≤ q

H = −J
∑

〈xy〉
cos (θx − θy)

Zq : θx → θx + 2πn/q

◮ ferromagnetic phase: q ground states
phase transition symmetric ↔ ferromagnetic
d = 2 : second order q ≤ 4, first order q > 4
d = 3 : second order q ≤ 2, first order q > 2
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anti-ferromagnetic phase:
rich vacuum structures
symmetric ↔ antiferrom:
d = 3, q = 3 : second order
entropy of ground states?
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◮ entropy SB(p) = −
∑

p(w) log p(w) ⇒ free energy

βF = inf
p

(β〈H〉ρ − SB) ⇒ pGibbs ∼ e−βH
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◮ entropy SB(p) = −
∑

p(w) log p(w) ⇒ free energy

βF = inf
p

(β〈H〉ρ − SB) ⇒ pGibbs ∼ e−βH

◮ variational characterization of (convex) effective action:

Γ[m] = inf
p

(

β〈H〉p − S(p)
∣

∣〈e iθ(x)〉p = m(x)
)
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◮ entropy SB(p) = −
∑

p(w) log p(w) ⇒ free energy

βF = inf
p

(β〈H〉ρ − SB) ⇒ pGibbs ∼ e−βH

◮ variational characterization of (convex) effective action:

Γ[m] = inf
p

(

β〈H〉p − S(p)
∣

∣〈e iθ(x)〉p = m(x)
)

◮ mean field approximation:

ρ(w) =
∏

x

ρx(θx) ⇒ ΓMF[m]

translational invariance: px = p ⇒ m(x) = m

effective potential: ΓMF[m] = V uMF(m)

uMF(m) = inf
p

(

− Kmm∗ +
∑

θ

p(θ) log p(θ)
)

m =
∑

θ

p(θ) e iθ, K = dJ.



Phases of
generalized

Potts-Models and
their Relevance for
Gauge Theories

A. Wipf

Potts-Models

Polyakov-Loop
Dynamics

Gluodynamics and
Potts-Models

Modified mean
field approximation

Results of
MC-simulations

Conclusions

◮ antiferromagnetic phase:
translational invariance on sublattices Λ = Λ1 ∪ Λ2

two neighbours in different sublattices
p(x) = pi ⇒ m(x) = mi for x ∈ Λi

uMF (m1,m2) =
1

2

(

K |m1 − m2|
2 +

∑

i

uMF(mi )

)

,



Phases of
generalized

Potts-Models and
their Relevance for
Gauge Theories

A. Wipf

Potts-Models

Polyakov-Loop
Dynamics

Gluodynamics and
Potts-Models

Modified mean
field approximation

Results of
MC-simulations

Conclusions

◮ antiferromagnetic phase:
translational invariance on sublattices Λ = Λ1 ∪ Λ2

two neighbours in different sublattices
p(x) = pi ⇒ m(x) = mi for x ∈ Λi

uMF (m1,m2) =
1

2

(

K |m1 − m2|
2 +

∑

i

uMF(mi )

)

,

◮ K > Kf ,c > 0 ⇒ m1 = m2 6= 0, Zq-broken
K < Ka,c < 0 ⇒ m1 6= m2 6= 0, Z2q-broken

Λ

symmetric

Λ

ferromagn.

Λ1 Λ2

antiferromagnetic
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Polyakov-Loop Dynamics

◮ finite temperature gluodynamics
order parameter for confinement: Polyakov loop
effective action:

e−Seff [P] =

∫

DUδ

(

Px ,
Nt
∏

t=0

Ut,x ;0

)

e−Sw[U]
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Polyakov-Loop Dynamics

◮ finite temperature gluodynamics
order parameter for confinement: Polyakov loop
effective action:

e−Seff [P] =

∫

DUδ

(

Px ,
Nt
∏

t=0

Ut,x ;0

)

e−Sw[U]

◮

b
3z3

b3z

b3z2

◦

◦

◦
L

gauge invariance:

Seff = Seff [L], Lx = TrPx
global Z3 center symmetry:

Seff [L] = Seff [z · L]

good ansatz for Seff?
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◮ strong coupling expansion for Seff [P]
⇒ Z3-invariant character expansion
nearest neighbour interaction

Seff = λ10S10 + λ21S21 + λ20S20 + λ11S11 + . . .

S10 =
∑

(χ10(Px )χ01(Py ) + h.c) , S21 = . . .
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◮ strong coupling expansion for Seff [P]
⇒ Z3-invariant character expansion
nearest neighbour interaction

Seff = λ10S10 + λ21S21 + λ20S20 + λ11S11 + . . .

S10 =
∑

(χ10(Px )χ01(Py ) + h.c) , S21 = . . .

◮ center-transformation:

χpq(zP) = zp−qχpq(P), z3 = z∗z = 1

With L = TrP: leading terms

Seff = (λ10 − λ21)
∑

(

LxL∗y + h.c.
)

+ λ21

∑

(

L2xLy + L2yLx + h.c.
)
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◮ strong coupling expansion for Seff [P]
⇒ Z3-invariant character expansion
nearest neighbour interaction

Seff = λ10S10 + λ21S21 + λ20S20 + λ11S11 + . . .

S10 =
∑

(χ10(Px )χ01(Py ) + h.c) , S21 = . . .

◮ center-transformation:

χpq(zP) = zp−qχpq(P), z3 = z∗z = 1

With L = TrP: leading terms

Seff = (λ10 − λ21)
∑

(

LxL∗y + h.c.
)

+ λ21

∑

(

L2xLy + L2yLx + h.c.
)

◮ complex field with compact target space,
∏

(reduced
Haar measures), close relation to 3-state Potts model
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Gluodynamics and Pott-Models

◮ naive reduction to Potts: Px → e iθx1 ∈ centre

Seff → H with J = 18(λ01 + 4λ21)

true for all Seff ⇒ Seff is extension of Z3 model.
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Gluodynamics and Pott-Models

◮ naive reduction to Potts: Px → e iθx1 ∈ centre

Seff → H with J = 18(λ01 + 4λ21)

true for all Seff ⇒ Seff is extension of Z3 model.

◮ Conjecture (Svetitsky, Yaffe):

effective finite-temperature SU(N)-gluodynamics in
d dimensions ∼= ZN spin model in d − 1 dimensions.
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Gluodynamics and Pott-Models

◮ naive reduction to Potts: Px → e iθx1 ∈ centre

Seff → H with J = 18(λ01 + 4λ21)

true for all Seff ⇒ Seff is extension of Z3 model.

◮ Conjecture (Svetitsky, Yaffe):

effective finite-temperature SU(N)-gluodynamics in
d dimensions ∼= ZN spin model in d − 1 dimensions.

◮ same critical exponents SU(2) and Ising (Engels et.al)
same universality class (symmetric ↔ ferrom.)

β/ν γ/ν ν

4d SU(2) 0.545 1.93 0.65
3d Ising 0.516 1.965 0.63
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◮ relevance for finite temperature SU(N) with N > 2?
transition first order! → phase diagrams
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◮ relevance for finite temperature SU(N) with N > 2?
transition first order! → phase diagrams

◮ classical analysis: minimize Seff

symmetricferromagnetic

antiferromagnetic

anticenter

λ10

λ21

−4 −3 −2 −1 0 1

1.0

0.6

0.2
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◮ relevance for finite temperature SU(N) with N > 2?
transition first order! → phase diagrams

◮ classical analysis: minimize Seff

symmetricferromagnetic

antiferromagnetic

anticenter

λ10

λ21

−4 −3 −2 −1 0 1

1.0

0.6

0.2

−0.2

◮ quantum fluctuations ⇒ include symmetric phase
new ferromagnetic anti-center phase
qualitatively correct phase diagram
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Modified mean field approximation

◮ variational characterisation of Γ:
fix 〈χj(Px )〉 for all χj in Seff
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Modified mean field approximation

◮ variational characterisation of Γ:
fix 〈χj(Px )〉 for all χj in Seff

◮ mean field approximation ⇒ product measure

DP −→
∏x dµred(Px ) px (Px )
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Modified mean field approximation

◮ variational characterisation of Γ:
fix 〈χj(Px )〉 for all χj in Seff

◮ mean field approximation ⇒ product measure

DP −→
∏x dµred(Px ) px (Px )

◮ translational invariance on sublattices in Λ = Λ1 ∪ Λ2

⇒ nontrivial variational problem on two-sites
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Modified mean field approximation

◮ variational characterisation of Γ:
fix 〈χj(Px )〉 for all χj in Seff

◮ mean field approximation ⇒ product measure

DP −→
∏x dµred(Px ) px (Px )

◮ translational invariance on sublattices in Λ = Λ1 ∪ Λ2

⇒ nontrivial variational problem on two-sites

◮ most simple effective model (Polonyi)

Seff = λS10 = λ
∑

(

LxL∗y + h.c
)

Lagrangean multiplier for L̄i on Λi
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◮ mean field effective potential for minimal model

2uMF(L1,L
∗
1,L2,L

∗
2) = −dλ|L1 − L2|

2 +
∑

vMF(Li ,L
∗
i )

vMF(L,L∗) = dλ|L|2 + γ0(L,L∗)

γ0 Legendre-transform of

w0(j , j
∗) = log

∫

dµred exp (jL + j∗L∗)
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◮ mean field effective potential for minimal model

2uMF(L1,L
∗
1,L2,L

∗
2) = −dλ|L1 − L2|

2 +
∑

vMF(Li ,L
∗
i )

vMF(L,L∗) = dλ|L|2 + γ0(L,L∗)

γ0 Legendre-transform of

w0(j , j
∗) = log

∫

dµred exp (jL + j∗L∗)

◮ order parameters:

L =
1

2
(L1 + L2), M =

1

2
(L1 − L2), ℓ = |L|, m = |M|.
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◮ mean field effective potential for minimal model

2uMF(L1,L
∗
1,L2,L

∗
2) = −dλ|L1 − L2|

2 +
∑

vMF(Li ,L
∗
i )

vMF(L,L∗) = dλ|L|2 + γ0(L,L∗)

γ0 Legendre-transform of

w0(j , j
∗) = log

∫

dµred exp (jL + j∗L∗)

◮ order parameters:

L =
1

2
(L1 + L2), M =

1

2
(L1 − L2), ℓ = |L|, m = |M|.

◮ group integral in closed form not known for SU(3)!!
∫

exp (j Tr(U)) =hypergeometric function
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MF

MCmulticanonical
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283, 5 × 105
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◮ Why is mean field so good?
conjecture: 3 = upper crit. dimension for 3-state potts
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◮ Why is mean field so good?
conjecture: 3 = upper crit. dimension for 3-state potts

◮ critical exponents of S ↔ AF :

exponent 3-state Potts minimal Seff

ν 0.664(4) 0.68(2)
γ/ν 1.973(9) 1.96(2)

critical exponents in mean field?
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◮ Why is mean field so good?
conjecture: 3 = upper crit. dimension for 3-state potts

◮ critical exponents of S ↔ AF :

exponent 3-state Potts minimal Seff

ν 0.664(4) 0.68(2)
γ/ν 1.973(9) 1.96(2)

critical exponents in mean field?

◮ finite temperature gluodynamics
→ effective Z3 models with compact target spaces
→ 3-state Potts-model

universality test in ’unphysical region’
(for gluodynamics)
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Results of MC-Simulations

◮ phase diagram and transitions → histograms
large statistics, expensive → fast algorithms!
standard Metropolis: 5% to 10% accuracy
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Results of MC-Simulations

◮ phase diagram and transitions → histograms
large statistics, expensive → fast algorithms!
standard Metropolis: 5% to 10% accuracy

◮ multicanonical algorithm: up to 203 lattices near first
order transitions
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Results of MC-Simulations

◮ phase diagram and transitions → histograms
large statistics, expensive → fast algorithms!
standard Metropolis: 5% to 10% accuracy

◮ multicanonical algorithm: up to 203 lattices near first
order transitions

◮ new cluster algorithm near second order transitions:
auto-correlation times down by two orders of magnitude
on larger lattices
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Results of MC-Simulations

◮ phase diagram and transitions → histograms
large statistics, expensive → fast algorithms!
standard Metropolis: 5% to 10% accuracy

◮ multicanonical algorithm: up to 203 lattices near first
order transitions

◮ new cluster algorithm near second order transitions:
auto-correlation times down by two orders of magnitude
on larger lattices

◮ comparison with mean field results for two-coupling
(costy).
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Results of MC-Simulations

◮ phase diagram and transitions → histograms
large statistics, expensive → fast algorithms!
standard Metropolis: 5% to 10% accuracy

◮ multicanonical algorithm: up to 203 lattices near first
order transitions

◮ new cluster algorithm near second order transitions:
auto-correlation times down by two orders of magnitude
on larger lattices

◮ comparison with mean field results for two-coupling
(costy).

◮ rich phase structure: 4 different phases, second und first
order transitions, tricritical points(?), mean field very
good.
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◮ include fermions in effective Polyakov-loop dynamics.
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