```
LOR2006
Budapest, June 20-24, 2006
```


Fermions on curved spaces,

 symmetries, and quantum anomaliesMihai Visinescu
Department of Theoretical Physics
National Institute of Physics and Nuclear Engineering
Bucharest, Romania

Fermions on curved spaces

1. Pseudo-classical approach
2. Dirac equation on curved spaces
3. Gravitational anomalies
4. Axial anomalies

Geometrical objects

1. Symmetric Stäckel-Killing (S-K) tensors

$$
K_{(\mu \cdots \nu ; \lambda)}=0 .
$$

2. Antisymmetric Killing-Yano (K-Y) tensors

$$
f_{\mu_{1} \ldots \mu_{r-1}\left(\mu_{r} ; \lambda\right)}=0
$$

Pseudoclassical approach

Action:

$$
S=\int_{a}^{b} d \tau\left(\frac{1}{2} g_{\mu \nu}(x) \dot{x}^{\mu} \dot{x}^{\nu}+\frac{i}{2} g_{\mu \nu}(x) \psi^{\mu} \frac{D \psi^{\nu}}{D \tau}\right)
$$

Covariant derivative of ψ^{μ}

$$
\frac{D \psi^{\mu}}{D \tau}=\dot{\psi}^{\mu}+\dot{x}^{\lambda} \Gamma_{\lambda \nu}^{\mu} \psi^{\nu}
$$

World-line Hamiltonian

$$
H=\frac{1}{2} g^{\mu \nu} \Pi_{\mu} \Pi_{\nu}
$$

covariant momentum

$$
\Pi_{\mu}=g_{\mu \nu} \dot{x}^{\nu}
$$

Constant of motion $\mathcal{J}(x, \Pi, \psi)$, the bracket with H vanishes

$$
\{H, \mathcal{J}\}=0
$$

Expand $\mathcal{J}(x, \Pi, \psi)$ in a power series in the covariant momentum

$$
\mathcal{J}=\sum_{n=0}^{\infty} \frac{1}{n!} \mathcal{I}^{(n) \mu_{1} \ldots \mu_{n}}(x, \psi) \Pi_{\mu_{1}} \ldots \Pi_{\mu_{n}}
$$

Generalized Killing equations:

$$
\mathcal{g}_{\left(\mu_{1} \ldots \mu_{n} ; \mu_{n+1}\right)}^{(n)}+\frac{\partial \mathcal{J}_{\left(\mu_{1} \ldots \mu_{n}\right.}^{(n)}}{\partial \psi^{\sigma}} \Gamma_{\left.\mu_{n+1}\right) \lambda}^{\sigma} \psi^{\lambda}=\frac{i}{2} \psi^{\rho} \psi^{\sigma} R_{\rho \sigma \nu\left(\mu_{n+1}\right.} \mathcal{g}^{(n+1) \nu}{ }_{\left.\mu_{1} \ldots \mu_{n}\right)}
$$

For a Killing vector $R_{\mu}\left(R_{(\mu ; \nu)}=0\right)$ there is a conserved quantity in the spinning case:

$$
\mathcal{J}=\frac{i}{2} R_{[\mu ; \nu]} \psi^{\mu} \psi^{\nu}+R_{\mu} \dot{x}^{\mu}
$$

Assume that a $\mathrm{S}-\mathrm{K}$ tensor can be written as a symmetrized product of two K-Y tensors

$$
K_{i j}^{\mu \nu}=\frac{1}{2}\left(f_{i \lambda}^{\mu} f_{j}^{\nu \lambda}+f_{i \lambda}^{\nu} f_{j}^{\mu \lambda}\right)
$$

The conserved quantity for the spinning space is

$$
\mathcal{J}_{i j}=\frac{1}{2!} K_{i j}^{\mu \nu} \dot{x}_{\mu} \dot{x}_{\nu}+\mathcal{J}_{i j}^{(1) \mu} \dot{x}_{\mu}+\mathcal{J}_{i j}^{(0)}
$$

where

$$
\begin{gathered}
\mathcal{J}_{i j}^{(0)}=-\frac{1}{4} \psi^{\lambda} \psi^{\sigma} \psi^{\rho} \psi^{\tau}\left(R_{\mu \nu \lambda \sigma} f_{i \rho}^{\mu} f_{j \tau}^{\nu}+\frac{1}{2} c_{i \lambda \sigma}{ }^{\pi} c_{j \rho \tau \pi}\right) \\
\mathcal{J}_{i j}^{(1) \mu}=\frac{i}{2} \psi^{\lambda} \psi^{\sigma}\left(f_{i \sigma}^{\nu} D_{\nu} f_{j \lambda}^{\mu}+f_{j \sigma}^{\nu} D_{\nu} f_{i \lambda}^{\mu}+\frac{1}{2} f_{i}^{\mu \rho} c_{j \lambda \sigma \rho}+\frac{1}{2} f_{j}^{\mu \rho} c_{i \lambda \sigma \rho}\right)
\end{gathered}
$$

with

$$
c_{i \mu \nu \lambda}=-2 f_{i[\nu \lambda ; \mu]}
$$

Conserved supercharge

$$
\begin{aligned}
Q_{f}= & f_{\mu_{1} \ldots \mu_{r}} \Pi^{\mu_{1}} \psi^{\mu_{2}} \ldots \psi^{\mu_{r}} \\
& +\frac{i}{r+1}(-1)^{r+1} f_{\left[\mu_{1} \ldots \mu_{r} ; \mu_{r+1}\right]} \cdot \psi^{\mu_{1}} \ldots \psi^{\mu_{r+1}}
\end{aligned}
$$

This quantity is a superinvariant (supercharge $Q_{0}=\Pi_{\mu} \psi^{\mu}$)

$$
\left\{Q_{f}, Q_{0}\right\}=0
$$

Dirac equation on a curved background

Dirac operator on a curved background $\left(\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 g^{\mu \nu} I\right)$

$$
D_{s}=\gamma^{\mu} \hat{\nabla}_{\mu}
$$

Canonical covariant derivative for spinors

$$
\begin{aligned}
& \hat{\nabla}_{\mu} \gamma^{\mu}=0, \\
& \hat{\nabla}_{[\rho} \hat{\nabla}_{\mu]}=\frac{1}{4} R_{\alpha \beta \rho \mu} \gamma^{\alpha} \gamma^{\beta}
\end{aligned}
$$

For any isometry with Killing vector R_{μ} there is an operator

$$
X_{k}=-i\left(R^{\mu} \hat{\nabla}_{\mu}-\frac{1}{4} \gamma^{\mu} \gamma^{\nu} R_{\mu ; \nu}\right)
$$

which commutes with the standard Dirac operator. A K-Y tensor produces a non-standard Dirac operator

$$
D_{f}=-i \gamma^{\mu}\left(f_{\mu}^{\nu} \hat{\nabla}_{\nu}-\frac{1}{6} \gamma^{\nu} \gamma^{\rho} f_{\mu \nu ; \rho}\right)
$$

which anticommutes with the standard Dirac operator D_{s}.

Euclidean Taub-NUT space

Metric

$$
d s^{2}=g_{\mu \nu} d x^{\mu} d x^{\nu}=f(r)(d \vec{x})^{2}+\frac{g(r)}{16 m^{2}}\left(d x^{4}+A_{i} d x^{i}\right)^{2}
$$

\vec{A} is the gauge field of a monopole

$$
\begin{aligned}
& \operatorname{div} \vec{A}=0, \quad \vec{B}=\operatorname{rot} \vec{A}=4 m \frac{\vec{x}}{r^{3}} \\
& f(r)=g^{-1}(r)=V^{-1}(r)=\frac{4 m+r}{r}
\end{aligned}
$$

Four Killing vectors

$$
D_{A}=R_{A}^{\mu} \partial_{\mu}, \quad A=1,2,3,4 .
$$

Conservation of angular momentum and "relative electric charge" ($\vec{p}=V^{-1} \dot{\vec{r}}$ is the mechanical momentum):

$$
\vec{j}=\vec{r} \times \vec{p}+q \frac{\vec{r}}{r} \quad, \quad q=g(r)(\dot{\theta}+\cos \theta \dot{\varphi})
$$

Four K-Y tensors of valence 2.

- Three are covariantly constant

$$
\begin{aligned}
f_{i} & =8 m(d \chi+\cos \theta d \varphi) \wedge d x_{i}-\epsilon_{i j k}\left(1+\frac{4 m}{r}\right) d x_{j} \wedge d x_{k} \\
D_{\mu} f_{i \lambda}^{\nu} & =0, \quad i, j, k=1,2,3
\end{aligned}
$$

- The fourth K-Y tensor is

$$
f_{Y}=8 m(d \chi+\cos \theta d \varphi) \wedge d r+4 r(r+2 m)\left(1+\frac{r}{4 m}\right) \sin \theta d \theta \wedge d \varphi
$$

having a non-vanishing covariant derivative

Runge-Lenz vector

$$
\vec{K}=\frac{1}{2} \vec{K}_{\mu \nu} \dot{x}^{\mu} \dot{x}^{\nu}=\vec{p} \times \vec{j}+\left(\frac{q^{2}}{4 m}-4 m E\right) \frac{\vec{r}}{r}
$$

where

$$
E=\frac{1}{2} g_{\mu \nu} \dot{x}^{\mu} \dot{x}^{\nu}
$$

is the energy.
The components $K_{i \mu \nu}$ are Stäckel-Killing tensors

$$
K_{i \mu \nu}-\frac{1}{8 m}\left(R_{4 \mu} R_{i \nu}+R_{4 \nu} R_{i \mu}\right)=m\left(f_{Y \mu \lambda} f_{i}^{\lambda}{ }_{\nu}+f_{Y \nu \lambda} f_{i}{ }_{\mu}{ }_{\mu}\right) .
$$

Spinning Taub-NUT space

Angular momentum, "relative electric charge"

$$
\vec{J}=\vec{B}+\vec{j}, \quad J_{4}=B_{4}+q
$$

where $\vec{J}=\left(J_{1}, J_{2}, J_{3}\right), \vec{B}=\left(B_{1}, B_{2}, B_{3}\right)$ and the spin corrections are

$$
B_{A}=\frac{i}{2} R_{A[\mu ; \nu]} \psi^{\mu} \psi^{\nu}
$$

Supercharges from covariantly constant K-Y and Q_{0} realize the $N=4$ supersymmetry algebra:

$$
\left\{Q_{A}, Q_{B}\right\}=-2 i \delta_{A B} H \quad, \quad A, B=0, \ldots, 3
$$

Hyper-Kähler geometry of the Taub-NUT manifold ! Runge-Lenz vector in the spinning case

$$
\mathcal{K}_{i}=2 m\left(-i\left\{Q_{Y}, Q_{i}\right\}+\frac{1}{8 m^{2}} J_{i} J_{4}\right) .
$$

Dirac equation in the Taub-NUT space

Dirac matrices $\left\{\hat{\gamma}^{\hat{\alpha}}, \hat{\gamma}^{\hat{\beta}}\right\}=2 \delta^{\hat{\alpha} \hat{\beta}}$
Standard Dirac operator

$$
D_{s}=\hat{\gamma}^{\hat{\alpha}} \hat{\nabla}_{\hat{\alpha}}=i \sqrt{V} \overrightarrow{\hat{\gamma}} \cdot \vec{P}+\frac{i}{\sqrt{V}} \hat{\gamma}^{4} P_{4}+\frac{i}{2} V \sqrt{V} \hat{\gamma}^{4} \vec{\Sigma}^{*} \cdot \vec{B}
$$

where

$$
\hat{\nabla}_{i}=i \sqrt{V} P_{i}+\frac{i}{2} V \sqrt{V} \varepsilon_{i j k} \Sigma_{j}^{*} B_{k}, \quad \hat{\nabla}_{4}=\frac{i}{\sqrt{V}} P_{4}-\frac{i}{2} V \sqrt{V} \vec{\Sigma}^{*} \cdot \vec{B}
$$

momentum operators

$$
P_{i}=-i\left(\partial_{i}-A_{i} \partial_{4}\right) \quad, \quad P_{4}=-i \partial_{4}
$$

spin connection $\left(S^{\hat{\alpha} \hat{\beta}}=-i\left[\hat{\gamma}^{\hat{\alpha}}, \hat{\gamma}^{\hat{\beta}}\right] / 4\right.$.)

$$
\Sigma_{i}^{*}=S_{i}+\frac{i}{2} \hat{\gamma}^{4} \hat{\gamma}^{i}, \quad S_{i}=\frac{1}{2} \varepsilon_{i j k} S^{j k}
$$

Hamiltonian operator of the massless Dirac field

$$
H=\hat{\gamma}^{5} D_{s}=\left(\begin{array}{cc}
0 & V \pi^{*} \frac{1}{\sqrt{V}} \\
\sqrt{V} \pi & 0
\end{array}\right)
$$

where

$$
\pi=\sigma_{P}-\frac{i P_{4}}{V}, \quad \pi^{*}=\sigma_{P}+\frac{i P_{4}}{V}, \quad \sigma_{P}=\vec{\sigma} \cdot \vec{P}
$$

Klein-Gordon operator

$$
\Delta=-\nabla_{\mu} g^{\mu \nu} \nabla_{\nu}=V \pi^{*} \pi=V \vec{P}^{2}+\frac{1}{V} P_{4}^{2}
$$

Total angular momentum $\vec{J}=\vec{L}+\vec{S}$ where the orbital angular momentum is

$$
\vec{L}=\vec{x} \times \vec{P}-4 m \frac{\vec{x}}{r} P_{4}
$$

Dirac-type operators are constructed from K-Y tensors $f_{i}(i=1,2,3)$ and f_{Y}.

- Q_{i} from covariantly constant K-Y f_{i}

$$
Q_{i}=-i f_{i \hat{\alpha} \hat{\beta}} \hat{\gamma}^{\hat{\alpha}} \hat{\nabla}^{\hat{\beta}}
$$

$N=4$ superalgebra, including $Q_{0}=i D_{s}=i \hat{\gamma}^{5} H:$

$$
\left\{Q_{A}, Q_{B}\right\}=2 \delta_{A B} H^{2}, \quad A, B, \ldots=0,1,2,3
$$

linked to the hyper-Kähler geometry of the Taub-NUT space.

- Q_{Y} constructed from f_{Y}

Runge-Lenz operator

$$
N_{i}=m\left\{Q_{Y}, Q_{i}\right\}-J_{i} P_{4} .
$$

Commutation relations

$$
\begin{aligned}
{\left[N_{i}, P_{4}\right] } & =0, \quad\left[N_{i}, J_{j}\right]=i \varepsilon_{i j k} N_{k}, \\
{\left[N_{i}, Q_{0}\right] } & =0, \quad\left[N_{i}, Q_{j}\right]=i \varepsilon_{i j k} Q_{k} P_{4}, \\
{\left[N_{i}, N_{j}\right] } & =i \varepsilon_{i j k} J_{k} F^{2}+\frac{i}{2} \varepsilon_{i j k} Q_{i} H
\end{aligned}
$$

where $F^{2}=P_{4}{ }^{2}-H^{2}$.
Redefine the components of the Runge-Lenz operator

$$
\mathcal{K}_{i}=N_{i}+\frac{1}{2} H^{-1}\left(F-P_{4}\right) Q_{i}
$$

having the desired commutation relation

$$
\left[\mathcal{K}_{i}, \mathcal{K}_{j}\right]=i \varepsilon_{i j k} J_{k} F^{2} .
$$

Gravitational anomalies

Classical motions a S-K tensor $K_{\mu \nu}$ generate a quadratic constant of motion

$$
K=K_{\mu \nu} \dot{x}^{\mu} \dot{x}^{\nu}
$$

Quantum operator

$$
\mathcal{K}=D_{\mu} K^{\mu \nu} D_{\nu}
$$

Scalar Laplacian

$$
\mathcal{H}=D_{\mu} D^{\mu}
$$

Evaluate the commutator

$$
\begin{aligned}
{\left[D_{\mu} D^{\mu}, \mathcal{K}\right]=} & 2 K^{\mu \nu ; \lambda} D_{(\mu} D_{\nu} D_{\lambda)}+3 K_{; \lambda}^{(\mu \nu ; \lambda)} D_{(\mu} D_{\nu)} \\
& +\left\{\frac{1}{2} g_{\lambda \sigma}\left(K_{(\lambda \sigma ; \mu) ; \nu}-K_{(\lambda \sigma ; \nu) ; \mu}\right)-\frac{4}{3} K_{\lambda}{ }^{[\mu} R^{\nu] \lambda}\right\}_{; \nu} D_{\mu}
\end{aligned}
$$

Hidden symmetry of the quantized system

$$
[\mathcal{H}, \mathcal{K}]=-\frac{4}{3}\left\{K_{\lambda}^{[\mu} R^{\nu] \lambda}\right\}_{; \nu} D_{\mu}
$$

On a generic curved spacetime there appears a gravitational quantum anomaly proportional to a contraction of the S-K tensor $K_{\mu \nu}$ with the Ricci tensor $R_{\mu \nu}$.
Integrability condition for K-Y tensors of valence $r=2$

$$
R_{\mu \nu[\sigma}^{\tau} f_{\rho] \tau}+R_{\sigma \rho[\mu}^{\tau} f_{\nu] \tau}=0
$$

Contracting this integrability condition on the Riemann tensor

$$
f_{(\mu}^{\rho} R_{\nu) \rho}=0
$$

Suppose

$$
K_{\mu \nu}=f_{\mu \rho} f_{\nu}^{\rho}
$$

Integrability condition becomes

$$
K_{[\mu}^{\rho} R_{\nu] \rho}=0
$$

The operators constructed from symmetric S-K tensors are in general a source of gravitational anomalies for scalar fields. However, when the S-K tensor admits a decomposition in terms of K-Y tensors the anomaly disappears. owing to the existence of the K-Y tensors.

Extended Taub-NUT spaces

Extended Taub-NUT metric defined on $\mathbb{R}^{4}-\{0\}$

$$
d s_{K}^{2}=f(r)\left(d r^{2}+r^{2} d \theta^{2}+r^{2} \sin ^{2} \theta d \varphi^{2}\right)+g(r)(d \chi+\cos \theta d \varphi)^{2}
$$

$f(r)$ and $g(r)$ are functions given, with constants a, b, c, d, by

$$
f(r)=\frac{a+b r}{r}, g(r)=\frac{a r+b r^{2}}{1+c r+d r^{2}} .
$$

If one takes the constants

$$
c=\frac{2 b}{a}, d=\frac{b^{2}}{a^{2}}
$$

the extended Taub-NUT metric becomes the original Euclidean TaubNUT metric up to a constant factor.

Extended Taub-NUT space still admits a Runge-Lenz vector

$$
\vec{K}=\vec{p} \times \vec{j}+\kappa \frac{\vec{r}}{r}
$$

with

$$
\kappa=-a E+\frac{1}{2} c q^{2}
$$

where the conserved energy E is

$$
E=\frac{\vec{p}^{2}}{2 f(r)}+\frac{q^{2}}{2 g(r)}
$$

A direct evaluation shows that the commutator $[\mathcal{H}, \mathcal{K}]$ does not vanish implying the presence of the gravitational anomaly.

To illustrate for the third S-K $K_{3}^{\mu \nu}$ tensor in spherical coordinates

$$
\begin{aligned}
& K_{3}^{r r}=-\frac{a r \cos \theta}{2(a+b r)} \\
& K_{3}^{r \theta}=K_{3}^{\theta r}=\frac{\sin \theta}{2} \\
& K_{3}^{\theta \theta}=\frac{(a+2 b r) \cos \theta}{2 r(a+b r)} \\
& K_{3}^{\varphi \varphi}=\frac{(a+2 b r) \cot \theta \csc \theta}{2 r(a+b r)} \\
& K_{3}^{\varphi \chi}=K_{3}^{\chi \varphi}=-\frac{\left(2 a+3 b r+b r \cos (2 \theta) \csc ^{2} \theta\right.}{4 r(a+b r)} \\
& K_{3}^{\chi \chi}=\frac{\left.\left(a-a d r^{2}+b r(2+c r)+(a+2 b r)\right) \cot ^{2} \theta\right) \cos \theta}{2 r(a+b r)} .
\end{aligned}
$$

Just to exemplify, we write down from the commutator $[\mathcal{H}, \mathcal{K}]$ the function which multiplies the covariant derivative D_{r}

$$
\begin{aligned}
& \frac{3 r \cos \theta}{4(a+b r)^{3}\left(1+c r+d r^{2}\right)^{2}} \\
& \left\{-2 b d(2 a d-b c) r^{3}+\right. \\
& {[3 b d(2 b-a c)-(a d+b c)(2 a d-b c)] r^{2}+} \\
& 2(a d+b c)(2 b-a c) r+a(2 a d-b c)+(b+a c)(2 b-a c)\}
\end{aligned}
$$

As it is expected there is no gravitational anomaly for the standard Euclidean Taub-NUT metric $\left(c=\frac{2 b}{a}, d=\frac{b^{2}}{a^{2}}\right)$.

Index formulas and axial anomalies

Let (M, g) be a closed Riemannian spin manifold of odd dimension, Σ the spinor bundle and D the (self-adjoint) Dirac operator on M. Let

$$
\Pi^{ \pm}: \mathcal{C}^{\infty}(M, \Sigma) \rightarrow \mathcal{C}^{\infty}(M, \Sigma)
$$

be the spectral projections associated to D and the intervals $[0, \infty)$, respectively $(-\infty, 0]$. If ϕ_{T} is an eigenspinor of D of eigenvalue T, then

$$
\Pi^{+}\left(\phi_{T}\right)=\left\{\begin{array}{ll}
\phi_{T} & \text { if } T \geq 0 ; \\
0 & \text { otherwise; }
\end{array} \quad \Pi^{-}\left(\phi_{T}\right)= \begin{cases}\phi_{T} & \text { if } T \leq 0 \\
0 & \text { otherwise }\end{cases}\right.
$$

Let now g^{X} be a Riemannian metric on the cylinder $X:=\left[l_{1}, l_{2}\right] \times M$. Endow X with the product orientation, so that $\left\{l_{1}\right\} \times M$ is negatively oriented and $\left\{l_{2}\right\} \times M$ is positively oriented inside X. Let D^{+}be the chiral Dirac operator on X. For each $t \in\left[l_{1}, l_{2}\right]$ let g_{t} be the metric on M obtained by restricting g^{X} to $\{t\} \times M$. We denote by Σ_{t} the spinor bundle over $\left(M, g_{t}\right)$ and by $D_{t}, \Pi_{t}^{ \pm}$the Dirac operator and the spectral projections with respect to the metric g_{t}.

There exist canonical identifications of the spinor bundle $\quad \Sigma_{t}$ with $\Sigma^{ \pm}(X)_{\mid\{t\} \times M}$. Denote by ϕ_{t} the restriction of a positive spinor from X to $\{t\} \times M$.

Theorem 1 Let $X=\left[l_{1}, l_{2}\right] \times M$ be a product spin manifold with a smooth metric g^{X} as above. Set

$$
\mathbb{C}^{\infty}\left(X, \Sigma^{+}, \Pi^{+}\right):=\left\{\phi \in \mathcal{C}^{\infty}\left(X, \Sigma^{+}\right) ; \Pi_{l_{1}}^{-} \phi_{l_{1}}=0, \Pi_{l_{2}}^{+} \phi_{l_{2}}=0\right\} .
$$

Then the operator

$$
D^{+}: \mathfrak{C}^{\infty}\left(X, \Sigma^{+}, \Pi^{+}\right) \rightarrow \mathfrak{C}^{\infty}\left(X, \Sigma^{-}\right)
$$

is Fredholm, of index equal to the spectral flow of the pair $\left(D_{l_{1}}, D_{l_{2}}\right)$.

Berger introduced a family of Riemannian metrics on the 3 -sphere as follows: The Hopf fibration $h: S^{3} \rightarrow S^{2}$ defines a vertical subbundle V in $T S^{3}$. Let $H \subset T S^{3}$ be the orthogonal complement with respect to the standard metric $g_{S^{3}}$. Then h becomes a Riemannian submersion when we endow S^{3} with its standard metric, and S^{2} with 4 times its standard metric. Let g_{H}, g_{V} denote the restriction of $g_{S^{3}}$ to the horizontal, respectively the vertical bundle.
For each constant $\lambda>0$ the Berger metric g_{λ} on S^{3} is defined by the formula

$$
g_{\lambda}:=g_{H}+\lambda^{2} g_{V}
$$

Lemma 2 For $\lambda<2, D_{\lambda}$ has no harmonic spinors.
Proof: It is easy to compute the scalar curvature of g_{λ}. Namely, $\kappa\left(g_{\lambda}\right)$ is constant on $S^{3}, \kappa\left(g_{\lambda}\right)=\left(4-\lambda^{2}\right) / 12$. In particular $\kappa\left(g_{\lambda}\right)$ is positive for $\lambda<2$. Lichnerowicz's formula proves then that $\operatorname{ker} D_{\lambda}=0$.

Theorem 3 Let

$$
\Lambda(\lambda):=\left\{(p, q) \in \mathbb{N}^{* 2} ; \lambda^{2}=2 \sqrt{(p-q)^{2}+4 \lambda^{2} p q}\right\}
$$

Then

$$
\operatorname{dim} \operatorname{ker}\left(D_{\lambda}\right)=N(\lambda):=\sum_{(p, q) \in \Lambda(\lambda)} p+q
$$

If $N(\lambda)>0$ there exists $\epsilon>0$ such that for $|t-\lambda|<\epsilon$, the "small" eigenvalues of D_{t} are given by families

$$
T(t, p, q):=\frac{t}{2}-\sqrt{\frac{(p-q)^{2}}{t^{2}}+4 p q}, \quad(p, q) \in \Lambda(\lambda)
$$

with multiplicity $p+q$.
In particular, the first harmonic spinors appear for $\lambda=4$ where the kernel of D_{4} is two-dimensional. Moreover, the set of those $\lambda \in(0, \infty)$ for which $N(\lambda) \neq 0$ is discrete. For $l>0$ set

$$
S(l):=\sum_{\lambda \leq l} N(\lambda) .
$$

Corollary 4 The spectral flow of the family $\left\{D_{t}\right\}_{t \in\left[l_{1}, l_{2}\right]}$ of Berger Dirac operators equals $S\left(l_{2}\right)-S\left(l_{1}\right)$.

Proof: By differentiating $T(t, p, q)$ we see that the function $t \rightarrow T(t, p, q)$ is strictly increasing, so the spectral flow of the family $\left\{D_{t}\right\}$ across λ is precisely $N(\lambda)$.
For the extended Taub-NUT metric $d s_{K}^{2}$ on $\mathbb{R}^{4} \backslash\{0\} \simeq(0, \infty) \times S^{3}$ in terms of the Berger metrics

$$
d s_{K}^{2}=\left(a r+b r^{2}\right)\left(\frac{d r^{2}}{r^{2}}+4 g_{\lambda(r)}\right),
$$

where

$$
\lambda(r):=\frac{1}{\sqrt{1+c r+d r^{2}}}
$$

Axial anomalies translate to Dirac operators with non-vanishing index. We are interested in the chiral Dirac operator on a annular piece of $\mathbb{R}^{4} \backslash\{0\}$. First set $X_{l_{1}, l_{2}}:=\left[l_{1}, l_{2}\right] \times S^{3} \subset \mathbb{R}^{4} \backslash\{0\}$ with the induced extended Taub-NUT metric.

Theorem 5 The index of D^{+}over $\left(X_{l_{1}, l_{2}}, d s_{K}^{2}\right)$ with the APS boundary condition is

$$
\operatorname{index}\left(D^{+}\right)=S\left(\lambda\left(l_{2}\right)\right)-S\left(\lambda\left(l_{1}\right)\right)
$$

Proof: By Theorem 1 the index is equal to the spectral flow of the pair of boundary Dirac operators. Now the metrics on the boundary spheres are constant multiples of the Berger metrics $g_{\lambda\left(l_{1}\right)}$, respectively $g_{\lambda\left(l_{2}\right)}$. The spectral flow of a path of conformal metrics (even with nonconstant conformal factor) vanishes by the conformal invariance of the space of harmonic spinors. Thus the spectral flow can be computed using the pair of metrics $g_{\lambda\left(l_{1}\right)}$ and $g_{\lambda\left(l_{2}\right)}$. The conclusion follows from Corollary 4.

Corollary 6 If $c>-\frac{\sqrt{15 d}}{2}$ then the extended Taub-NUT metric does not contribute to the axial anomaly on any annular domain (i.e., the index of the Dirac operator with APS boundary condition vanishes).

Proof: The hypothesis implies that $\lambda(r)<4$ for all $r>0$. From the remark following Theorem 3 we see that $S\left(\lambda\left(l_{1}\right)\right)=S\left(\lambda\left(l_{2}\right)\right)=0$.

References

Pseudo-classical models

- F. A. Berezin and M. S. Marinov, Ann. Phys. 104, 336 (1977).
- G.W.Gibbons, R.H.Rietdijk and J.W.van Holten, Nucl. Phys. B404, 42 (1993).
- D. Vaman and M. Visinescu, Phys. Rev. D54, 1398 (1996).
- D. Vaman and M. Visinescu, Fortschr. Phys. 47, 493 (1999).
- M. Visinescu, Phys. Lett. B339, 28 (1994).
- M. Visinescu, Fortschr. Phys. B48, 229 (2000).

Euclidean Taub-NUT space

- G. W. Gibbons and P. J. Ruback, Commun. Math. Phys. 115, 267 (1988).
- G. W. Gibbons and N. S. Manton, Nucl. Phys. B274, 183 (1986).

Extended Euclidean Taub-NUT metrics

- T. Iwai and N. Katayama, J. Geom. Phys. 12, 55 (1993).
- T. Iwai and N. Katayama, J. Math. Phys. 35, 2914 (1994).
- T. Iwai and N. Katayama, J. Phys. A: Math. Gen. 27, 3179 (1994).
- Y. Miyake, Osaka J. Math. 32, 659 (1995).

Dirac-type operators

- B. Carter and R. G. McLenaghan, Phys. Rev. D19, 1093 (1979).
- B. Carter, Phys. Rev. D16, 3395 (1977).
- R. G. McLenaghan and Ph. Spindel, Phys. Rev. D20, 409 (1979).
- M. Cariglia, Class. Quantum Grav. 21, 1051 (2004).
- I. I. Cotăescu and M. Visinescu, Mod. Phys. Lett. A 15, 145 (2000).
- I. I. Cotăescu and M. Visinescu, Int. J. Mod. Phys. A 16, 1743 (2001).
- I. I. Cotăescu and M. Visinescu, Phys. Lett. B502, 229 (2001).
- I. I. Cotăescu and M. Visinescu, Class. Quantum Grav. 18, 3383 (2001).
- I. I. Cotăescu and M. Visinescu, Class. Quantum Grav. 21, 11 (2004).

APS - axial anomalies

- M. F. Atiyah, V. K. Patodi and I. M. Singer, Math. Proc. Cambridge Philos. Soc. 77, 43 (1975).
- M. F. Atiyah, V. K. Patodi and I. M. Singer, Math. Proc. Cambridge Philos. Soc. 79, 71 (1976). H. Römer B. Schroer, Phys. Lett. 71B, 182 (1977).
- C. N. Pope, Nucl. Phys. B141, 432 (1978).
- T. Eguchi, P. B. Gilkey and A. J. Hanson, Phys. Rev. D17, 423 (1978).
- K. Peeters and A. Waldron, J. H. E. P. 992, 024 (1999).
- I. I. Cotăescu, S. Moroianu and M. Visinescu, J. Phys. A: Math. Gen. 38, 7005 (2005) ; arXiv: math-ph/0411047.
- S. Moroianu and M. Visinescu, J. Phys. A: Math. Gen. 39, 6575 (2006) ; arXiv: math-ph/0511025.

