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Overview
Aim of Talk: To explain an interesting connection between properties of the Virasoro
algebra and a number of exceptional Lie and finite groups.
 The Virasoro algebra and the vacuum Verma module.
 The Kac determinant and its relationship to certain exceptional Lie and finite groups.
 Vertex Operator Algebras (VOAs) and the Li-Zamalodchikov metric
 VOA automorphism group invariant quadratic Casimirs.
 Expansions of rational matrix elements.
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The Virasoro Algebra and Verma Modules
Virasoro Algebra Vir of Central Charge C

Lm,Ln  m − nLmn  m3 − m C
12 m,−n, Lm,C  0.

The Vacuum Verma Module VC, 0. Let 1 denote the vacuum vector where
L01  0, L−11  0, L11  0

Consider the Virasoro descendents of the vacuum
VC, 0  L−n1L−n2…L−nk1|n1 ≥ n2 ≥…≥ nk ≥ 2

VC, 0 is a module for Vir graded by L0 where
L0L−n1…L−nk1 n1 …nkL−n1…L−nk1

n  n1 …nk ≥ 0 is the Virasoro level.
Then

VC, 0 
n≥0

VnC, 0

where VnC, 0 denotes the vectors of level n.
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General Verma Module VC,h. Let v denote a vector such that
Lnv  hn,0v for all n ≥ 0

v is called a Primary Vector of level h. Then for each primary vector we obtain a module
VC,h for Vir generated by the Virasoro descendents of v

L−n1L−n2…L−nkv|n1 ≥ n2 ≥…≥ nk ≥ 1

The Kac Determinant
We consider V  VC, 0 only here. V is irreducible provided no descendent vector is
itself a primary vector.
Define a symmetric bilinear form 〈,  on V with 〈1,1  1 where

〈L−nu,v  〈u,Lnv.
for arbitrary vectors u,v. Note 〈u,v  0 for u,v of different Virasoro level.
Consider the Gram matrix 〈u,v for all vacuum descendents u,v. Then V is irreducible
iff the Gram matrix is invertible i.e. The level n Kac determinant

det
Vn
〈u,v

is non-vanishing (Kac, Feigen and Fuchs).
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Level 2: V2    L−21.  is called the conformal vector. The Gram matrix is
〈,  〈1,L2L−21  〈1, 4L0  C

12 8 − 21  C
2

Level 4: V4  L−2L−21,L−41 with Gram matrix

C4  1
2 C 3C

3C 5C

and Kac determinant C25C  22.
Level 6: dimV6  4 with Kac determinant 3

4 C45C  2222C − 17C  68.
Level 8: dimV8  7 with Kac determinant

3C75C  2242C − 127C  6823C  465C  3

Level 10: dimV10  12 with Kac determinant
225
2 C

12
5C  2282C − 157C  6843C  4625C  3211C  232
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Some Exceptional Group Numerology
Consider the prime factors of the Kac determinant for level ≤ 10 for particular values of
C. We observe some coincidences with properties of a number of exceptional Lie and
finite groups.
Deligne’s Exceptional Lie groups: A1,A2,G2,D4,F4,E6,E7,E8. The dimension of the
adjoint representation of each of these groups for dual Coxeter no h∨ is (Vogel)

d  25h∨ − 6h∨  1
h∨  6

Compare d to the level 4 Kac det factors C and 5C  22 for certain values of C:
A1 A2 G2 D4 F4 E6 E7 E8

h∨ 2 3 4 6 9 12 18 30
d 3 23 2.7 22. 7 22. 13 2.3. 13 7.19 23. 31
C 1 2 2.7

5 22 2.13
5 2. 3 7 23

5C  22 33 25 22. 32 2. 3. 7 24. 3 22. 13 3.19 2.31
Every prime divisor of d is a prime divisor of the numerator of the Kac det.
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Some Exceptional Finite Groups. The prime divisors of the order of a number of
exceptional finite groups are also related to the Kac determinant factors. We highlight
three examples.
The Monster Simple Group M. The classification theorem of finite simple groups states
that a finite simple group is either one of several infinite families of simple groups (e.g.
the alternating groups An for n ≥ 5) or else is one of 26 sporadic finite simple groups. The
largest sporadic group is the Monster group M of order

|M| 246. 320. 59. 76. 112. 133. 17.19.23.29.31.41.47.59.71 ≃ 8  1053

The two lowest dimensional irreducible representations are of dimension
d1  196883  47.59.71
d2  21296876  22. 31.41.59.71

Consider the level 10 Kac determinant factors for C  24
C 5C  22 2C − 1 7C  68 3C  46 5C  3 11C  232

23. 3 2.71 47 22. 59 2.59 3.41 24. 31
All of the prime divisors 2,31,41,47,59,71 of d1 and d2 are divisors of the Kac det!
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The Baby Monster Simple Group B. The second largest sporadic group is the Baby
Monster group B of order

|B| 241. 313. 56. 72. 11.13.17.19.23.31.47

Consider the level 6 Kac determinant factors for C  23 1
2

C 5C  22 2C − 1 7C  68
47
2

32.31
2 2. 23 3.5.31

2

The prime divisors 2,3, 5, 23,31,47 are divisors of the numerator of the Kac det.
The Simple Group O10

 2. This group has order
|O10

 2| 220. 35. 52. 7. 17.31

Consider the level 6 Kac determinant factors for C  8
C 5C  22 2C − 1 7C  68
23 2.31 3.5 22. 31

The prime divisors 2,3, 5, 31 are divisors of the Kac det.
What is going on?
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Vertex Operator Algebras
These observations can be understood in the context of Vertex Operator Algebras
(Borcherds, Frenkel, Lepowsky, Meurmann, Goddard,...). The basic idea is that the
groups appearing above arise as symmetry groups of particular VOAs. The relationship
with the Kac determinant (and many other properties) follows from the existence of
particular group invariant vectors which are Virasoro descendents of the vacuum.
A Vertex Operator Algebra (VOA) consists of a Z-graded vector space V  k≥0 Vk

with dimVk   and with the following properties:
Vacuum. V0  1 for vacuum vector 1.
Vertex Operators (State-Field Correspondence). For each a ∈ Vk we have a vertex
operator

Ya, z ∑
n∈Z

anz−n−k,

with component operators (modes) an ∈ EndV such that
Ya, z.1|z0  a−k.1  a

Here z is a formal variable (taken as a complex number in physics).
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Virasoro Structure. For the conformal vector  ∈ V2 we have

Y, z ∑
n∈Z

Lnz−n−2

where Ln forms a Virasoro algebra of central charge C.
The Z −grading is determined by L0 i.e. Vk  a ∈ V|L0a  ka.
L−1 acts as translation operator with

YL−1a, z  ∂zYa, z i.e. L−1an  −n  kan for a ∈ Vk

Locality. For any pair of vertex operators we have for integer N  0.
x − yNYa,x,Yb,y  0

These axioms easily lead to the following basic VOA properties:
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Translation. For any a ∈ V then for |y|  |x| (formally expanding in y/x)
eyL−1Ya,xe−yL−1  Ya,x  y

Skew-symmetry. For a,b ∈ V then
Ya, zb  ezL−1Yb,−za.

Associativity. For a,b ∈ V then for |x − y|  |y|  |x|.
Ya,xYb,y  YYa,x − yb,y

Borcherd’s Commutator Formula. For a ∈ Vk and b ∈ V then

am,bn ∑
j≥0

m  k − 1
j aj−k1bmn.

Example. For a   ∈ V2 and m  0 and any b
L0,bn  L−1bn  L0bn  −nbn

i.e. bn : Vm → Vm−n. In particular, the zero mode b0 is a linear operator on Vm.
Similarly for all m and any primary vector b ∈ Vh

Lm,bn  h − 1m − nbmn.
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Invariant Bilinear Form - Li-Zamalodchikov metric. Assume that V0  1 and
L1v  0 for all v ∈ V1. Then there exists a unique invariant bilinear form 〈, , which we
call the Li-Z metric, with 〈1,1  1 where (Li)

〈Lna,b  〈a,L−nb for all a,b ∈ V
〈cna,b  −1k〈a,c−nb for all a,b ∈ V, and primary c ∈ Vk

〈,  symmetric (Frenkel Huang Lepowsky). 〈,  non-degenerate iff V is semisimple (Li).
Lie and Kac-Moody Algebras. Consider a,b ∈ V1. Define a,b  adab  a0b
( −b0a by skew-symmetry) and which satisfies the Jacobi identity. Then V1 is a Lie
algebra. Furthermore 〈a,b is an invariant invertible symmetric bilinear form

〈a,b,c  〈−b0a,c  〈a,b0c  〈a, b,c

The full commutator formula gives a Kac-Moody algebra.
am,bn  a0bmn  a1bmn  a,bmn − m〈a,bmn,0

Griess Algebras. Suppose dimV1  0. Consider a,b ∈ V2. Then a2b  〈a,b1.
Skew-symmetry implies a0b  b0a.Thus we define a ∙ b  a0b to form a commutative
non-associative Griess algebra on V2 with invariant bilinear form

〈a ∙ b,c  〈b,a ∙ c for all a,b,c ∈ V2
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The Automorphism Group of a VOA
g ∈ GLV is an element of the VOA automorphism group AutV iff

gYa, zg−1  Yga, z for all a ∈ V
with g   the conformal vector. Thus the grading is preserved by AutV. Furthermore,
every Virasoro descendent of the vacuum is invariant under AutV.
The Li-Z metric is automorphism group invariant

〈ga,gb  〈a,b for all a,b ∈ V

For VOAs with dimV1  0 then AutV contains continuous symmetries generated by
the Lie algebra V1.
VOAs for which dimV1  0 are of particular interest. Examples include the Moonshine
Module V of central charge C  24 where AutV  M, the Monster group. In this case,
V2 is the original Griess algebra of dimension 196884  1  196883 where  is M
invariant. (Frenkel, Lepowsky and Meurman)
Other examples include VOAs with C  23 1

2 with AutV  B, the Baby Monster where
dimV2  1  96255 (Hoen) and C  8 with AutV  O10

 2 and dimV2  1  155
(Griess).
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Quadratic Casimirs
Consider a VOA with an invertible Li-Z metric and with d  dimV1  0. Let V1 have
a basis a|  1. .d and dual basis a|  1. .d i.e. 〈a,a   . We define the
AutV invariant quadratic Casimir vectors ( summed)

n  a1−na ∈ Vn

In general 0  −d1 and 1  0. Furthermore, using Lm,an
  −namn

 it follows that

Lmn  n − 1n−m for all m  0

Suppose n is a Virasoro descendent of the vacuum (Matsuo). Then n can be
determined exactly via the invertible Li-Z metric.
Example. Suppose 2 is a Virasoro descendent i.e. 2   for some . Hence

〈,2  〈, i.e. 〈1,L22   C
2

But L22  0  −d1 implies 2  − 2d
C  i.e.

  − C
2d a−1 a "Sugawara Construction"

Note that the zero mode is then 0
2  − 2d

C L0.
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Rational Matrix Elements and the V1 Killing Form
Consider the following matrix element for a,a,b,c ∈ V1

Fx,y  〈b,Ya,xYa,yc
Locality implies Fx,y must be a rational function of x,y of the form

Fx,y  gx,y
x2y2x − y2 , g  Ax4  y4  Bx3y  xy3  Cx2y2

g is a homogeneous, symmetric polynomial of degree 4. Associativity implies
Fx,y  〈b,YYa,x − ya,yc

∑
n≥0
〈b,Yn,ycx − yn−2

 x − y−2∑
n≥0
〈b,0

nc x − y
y n

Assuming 2 is a Virasoro descendent then 0
2  − 2d

C L0. Thus expanding in
|x − y|  |y| the leading terms are

Fx,y  −dx − y−21  0  2
C  x − y

y 2 . . . 〈b,c

Comparing to g leads to two conditions on A,B,C.
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We may alternatively expand Fx,y as follows
Fx,y  〈b,Ya,xeyL−1Yc,−ya Skew-symmetry

 〈b,eyL−1Ya,x − yYc,−ya Translation
 〈eyL1b,Ya,x − yYc,−ya Invariant LiZ metric
 〈b,Ya,x − yYc,−ya Primary b

Expanding in |y|  |x − y| the leading terms are
〈b,a−1 c1a−y−2  〈b,a0

c0a−y1x − y1 …

 −〈b,cy−2 − 〈a,b0c0ay−1x − y−1 …
 −〈b,cy−2 − TrV1 b0c0y−1x − y−1 …

using c1a  −〈c,a1 and a0
b  −b0a etc.

The leading term determines g completely. The subleading term is the Killing form of the
Lie algebra V1

Kb,c  TrV1 adbadc  −2 d − C
C 〈b,c

For d ≠ C, K is invertible and V1 is semi-simple. (Schellekens, Dong and Mason, T)
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Deligne’s Exceptional Lie Groups
Suppose furthermore that 4 is a vacuum Virasoro descendent. Then

4  3d
C22  5C 4L−2L−21  2  CL−41

Expanding Fx,y in |x − y|  |y| to the next leading terms we obtain

dC  C22  5C
10 − C

Ka,b  12 2  C
C − 10 〈a,b  −2h∨〈a,b

Note the necessary appearance of the Kac factors C22  5C. This is precisely the
original Vogel formula for Deligne’s exceptional Lie groups for dual Coxeter number

h∨  6 2  C
10 − C

The only semi-simple Lie algebras solutions are the Deligne series. (Maruoka, Matsuo
and Shimakura - with many more assumptions, T)
If 6 is a vacuum descendent then only C  1 or C  8 possible i.e. A1 and E8. (T)
If n a vacuum descendent for n  8 then A1 lattice VOA. (T)
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Griess Algebras
Consider a VOA with an invertible Li-Z metric with dimV1  0. Let V̂2  V2 − 
be the level 2 primary states with basis a and dual basis a with d  dim V̂2  0.
We again define AutV invariant quadratic Casimir vectors

n  a2−n
 a ∈ Vn

with
0  d1, 1  0

Lmn  m  n − 2n−m for m  0

Consider the matrix element for a,a,b,c ∈ V2

Fx,y  〈b,Ya,xYa,yc
In this case Fx,y is a rational function

Fx,y  gx,y
x4y4x − y4

where gx,y is a homogeneous, symmetric polynomial of degree 8 determined by 5
independent parameters.
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Associativity implies expanding in |x − y|  |y| that
Fx,y  x − y−4∑

n≥0
〈b,0

nc x − y
y n

Similarly, we may expand in |x − y|  |y| to obtain

Fx,y  〈b,cy−4  0  TrV̂2 b0c0y−2x − y−2 …

In this case it is necessary to assume that 2…4 are vacuum descendents in order to
determine gx,y.
Find V2 is a simple Griess algebra via the invertible trace form on V2 (T)

TrV2 b ∙ c0 
8d  1

C 〈b,c

If furthermore, 6 is a vacuum descendent then d is determined (Matsuo,T)

dC  1
2
68  7C2C − 122  5C

748 − 55C  C2

and V̂2 is an irreducible representation of AutV (if finite) (T)
Examples. Reproduce dimensions of irred reps of M with d24  196883, for B with
d23 1

2   96255 and O10
 2 with d8  155.
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Other results and goals
 If furthermore 8 (or 8 and 10) are vacuum descendents then C  24. (Matsuo,
T).
 12 cannot be a vacuum descendent. There must exist a primary AutV invariant
vector of level 12. This is related to existence of an SL2,Z modular cusp form of
weight 12. (T)
 Can also consider the Casimirs n for the primary vectors of level 3
V̂3  V3 − L−1V2 with d  dim V̂3  0. Then if 2… 10 are vacuum
descendents then V̂3 is an irreducible representation of AutV (if finite) and
d  pC/qC with (T)

pC  5C5C  223C  462C − 15C  311C  2327C  68
qC  75C6 − 9945C5  472404C4 − 9055068C3

 39649632C2  438468672C  2976768
Since C  24 we thus find d  21296876  22. 31.41.59.71 as obtains for the

Moonshine module V.
 Can considerable weaken the vacuum descendent condition on n.
 Prove M simple?.
 Prove Moonshine Module unique?-Frenkel, Lepowsky, Meurmann conjecture.
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