Singularity in Quantum Mechanics

and

the Calogero Model

Laszlo Feher (KFKI, Budapest)
Tamas Fulop, I. T. (KEK, Tsukuba)

I. Singularity in quantum mechanics

Hamiltonian

$$
H=-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}+V(x)
$$

singular
demand: H be self-adjoint = probability conservation
\longrightarrow connection condition at the singularity

to find connection conditions ...

total probability (norm)

$$
\|\psi(x, t)\|^{2}=\langle\psi, \psi\rangle=1 \quad\langle\phi, \psi\rangle=\int_{\mathbb{R} \backslash\{0\}} d x \phi^{*}(x) \psi(x)
$$

Schrödinger equation

$$
i \hbar \frac{\partial}{\partial t} \psi=H \psi
$$

$$
\begin{aligned}
& \frac{\partial}{\partial t}\|\psi\|^{2}=-\frac{1}{i \hbar}(\langle H \psi, \psi\rangle-\langle\psi, H \psi\rangle) \\
&=-\int_{\mathbb{R} \backslash\{0\}} d x \frac{d}{d x} j(x)=j(+0)-j(-0)=0 \quad \text { probability } \\
& \text { conservation }
\end{aligned}
$$

probability current

$$
j(x)=-\frac{i \hbar}{2 m}\left(\left(\psi^{*}\right)^{\prime} \psi-\psi^{*} \psi^{\prime}\right)(x)
$$

$$
V(x) \text { divergent } \Rightarrow \psi(x), \psi^{\prime}(x) \text { divergent at } x=0
$$

Wronskian is well-defined

$$
W[\phi, \psi](x)=\phi(x) \psi^{\prime}(x)-\psi(x) \phi^{\prime}(x)
$$

if $\psi, \phi, H \psi, H \phi$ are square integrable near $x=0$
inner-product is finite $\langle\psi, \phi\rangle \quad<+\infty$
$\Rightarrow\langle\phi, H \psi\rangle-\langle H \phi, \psi\rangle=\frac{\hbar^{2}}{2 m}\left(W\left[\phi^{*}, \psi\right]_{+0}-W\left[\phi^{*}, \psi\right]_{-0}\right)<+\infty$

Wronskians are finite separately

probability current

$$
\begin{aligned}
j(x) & \propto\left(\psi^{*}\right)^{\prime} \psi-\psi^{*} \psi^{\prime}=W\left[\psi^{*}, \psi\right] \\
& =\left|\begin{array}{cc}
\psi^{*} & \psi^{* \prime} \\
\psi & \psi^{\prime}
\end{array}\right|=\left|\begin{array}{cc}
\psi^{*} & \psi^{* \prime} \\
\psi & \psi^{\prime}
\end{array}\right|\left|\begin{array}{cc}
\varphi_{1}^{\prime} & \varphi_{2}{ }^{\prime} \\
-\varphi_{1} & -\varphi_{2}
\end{array}\right| \\
& =\left|\begin{array}{cc}
\psi^{*} \varphi_{1}^{\prime}-\psi^{* \prime} \varphi_{1} & \psi^{*} \varphi_{2}^{\prime}-\psi^{* \prime} \varphi_{2} \\
\psi \varphi_{1}^{\prime}-\psi^{\prime} \varphi_{1} & \psi \varphi_{2}^{\prime}-\psi^{\prime} \varphi_{2}
\end{array}\right| \\
& =W\left[\psi^{*}, \varphi_{1}\right] W\left[\psi, \varphi_{2}\right]-W\left[\psi^{*}, \varphi_{2}\right] W\left[\psi, \varphi_{1}\right]
\end{aligned}
$$

with the help of
reference modes
square integrable near $x=0$

$$
H \varphi_{i}(x)=E \varphi_{i}(x), \quad W\left[\varphi_{1}, \varphi_{2}\right](x)=1
$$

arbitrary

probability current

$$
\begin{aligned}
j(x) & \propto\left(\psi^{*}\right)^{\prime} \psi-\psi^{*} \psi^{\prime}=W\left[\psi^{*}, \psi\right] \\
& =\left|\begin{array}{cc}
\psi^{*} & \psi^{* \prime} \\
\psi & \psi^{\prime}
\end{array}\right|=\left|\begin{array}{cc}
\psi^{*} & \psi^{* \prime} \\
\psi & \psi^{\prime}
\end{array}\right|\left|\begin{array}{cc}
\varphi_{1}{ }^{\prime} & \varphi_{2}{ }^{\prime} \\
-\varphi_{1} & -\varphi_{2}
\end{array}\right| \\
& =\left|\begin{array}{cc}
\psi^{*} \varphi_{1}^{\prime}-\psi^{* \prime} \varphi_{1} & \psi^{*} \varphi_{2}^{\prime}-\psi^{* \prime} \varphi_{2} \\
\psi \varphi_{1}^{\prime}-\psi^{\prime} \varphi_{1} & \psi \varphi_{2}^{\prime}-\psi^{\prime} \varphi_{2}
\end{array}\right| \\
& =W\left[\psi^{*}, \varphi_{1}\right] W\left[\psi, \varphi_{2}\right]-W\left[\psi^{*}, \varphi_{2}\right] W\left[\psi, \varphi_{1}\right]
\end{aligned}
$$

with the help of
reference modes
square integrable near $x=0$

$$
H \varphi_{i}(x)=E \varphi_{i}(x), \quad W\left[\varphi_{1}, \varphi_{2}\right](x)=1
$$

arbitrary

probability current

$$
\begin{aligned}
j(x) & \propto\left(\psi^{*}\right)^{\prime} \psi-\psi^{*} \psi^{\prime}=W\left[\psi^{*}, \psi\right] \\
& =\left|\begin{array}{cc}
\psi^{*} & \psi^{* \prime} \\
\psi & \psi^{\prime}
\end{array}\right|=\left|\begin{array}{cc}
\psi^{*} & \psi^{* \prime} \\
\psi & \psi^{\prime}
\end{array}\right|\left|\begin{array}{cc}
\varphi_{1}{ }^{\prime} & \varphi_{2}{ }^{\prime} \\
-\varphi_{1} & -\varphi_{2}
\end{array}\right| \\
& =\left|\begin{array}{cc}
\psi^{*} \varphi_{1}^{\prime}-\psi^{* \prime} \varphi_{1} & \psi^{*} \varphi_{2}^{\prime}-\psi^{* \prime} \varphi_{2} \\
\psi \varphi_{1}^{\prime}-\psi^{\prime} \varphi_{1} & \psi \varphi_{2}^{\prime}-\psi^{\prime} \varphi_{2}
\end{array}\right| \\
& =W\left[\psi^{*}, \varphi_{1}\right] W\left[\psi, \varphi_{2}\right]-W\left[\psi^{*}, \varphi_{2}\right] W\left[\psi, \varphi_{1}\right]
\end{aligned}
$$

with the help of
reference modes
square integrable near $x=0$

$$
H \varphi_{i}(x)=E \varphi_{i}(x), \quad W\left[\varphi_{1}, \varphi_{2}\right](x)=1
$$

arbitrary

probability current

$$
\begin{gathered}
\text { ill-defined } \\
\begin{aligned}
& \downarrow(x) \propto\left(\psi^{*}\right)^{\prime} \psi-\psi^{*} \psi^{\prime}=W\left[\psi^{*}, \psi\right] \\
&=\left|\begin{array}{cc}
\psi^{*} & \psi^{* \prime} \\
\psi & \psi^{\prime}
\end{array}\right|=\left|\begin{array}{cc}
\psi^{*} & \psi^{* \prime} \\
\psi & \psi^{\prime}
\end{array}\right|\left|\begin{array}{cc}
\varphi_{1}^{\prime} & \varphi_{2}{ }^{\prime} \\
-\varphi_{1} & -\varphi_{2}
\end{array}\right| \\
&=\left|\begin{array}{cc}
\psi^{*} \varphi_{1}^{\prime}-\psi^{* \prime} \\
\psi \varphi_{1}^{\prime}-\psi_{1}^{\prime} & \psi^{*} \varphi_{1}^{\prime} \\
& \psi \varphi_{2}^{\prime}-\psi^{\prime \prime}-\psi^{\prime} \varphi_{2}
\end{array}\right| \\
&=W\left[\psi^{*}, \varphi_{1}\right] W\left[\psi, \varphi_{2}\right]-W\left[\psi^{*}, \varphi_{2}\right] W\left[\psi, \varphi_{1}\right]
\end{aligned}
\end{gathered}
$$

with the help of reference modes
square integrable near $x=0$

$$
H \varphi_{i}(x)=E \varphi_{i}(x), \quad W\left[\varphi_{1}, \varphi_{2}\right](x)=1
$$

arbitrary

probability conservation

$$
j(-0)=j(+0) \Longleftrightarrow \Psi^{\prime \dagger} \Psi=\Psi^{\dagger} \Psi^{\prime} \Longleftrightarrow\left|\Psi-i L_{0} \Psi^{\prime}\right|=\left|\Psi+i L_{0} \Psi^{\prime}\right|
$$

boundary vectors $\quad \Psi=\binom{W\left[\psi, \varphi_{1}\right]_{+0}}{W\left[\psi, \varphi_{1}\right]_{-0}}, \quad \Psi^{\prime}=\binom{W\left[\psi, \varphi_{2}\right]_{+0}}{-W\left[\psi, \varphi_{2}\right]_{-0}}$

connection condition

$$
(U-I) \Psi+i L_{0}(U+I) \Psi^{\prime}=0
$$

scale constant
characteristic matrix

$$
U=e^{i \xi}\left(\begin{array}{cc}
\alpha & \beta \\
-\beta^{*} & \alpha^{*}
\end{array}\right)=e^{i \xi}\left(\begin{array}{cc}
\alpha_{R}+i \alpha_{I} & \beta_{R}+i \beta_{I} \\
-\beta_{R}+i \beta_{I} & \alpha_{R}-i \alpha_{I}
\end{array}\right) \in U(2)
$$

there exists a $U(2)$ family of 'distinct' singularities

cf. theory of self-adjoint extension (inequivalent quantizations)
self-adjoint domains $\mathcal{D}_{U}(H) \subset \mathcal{H}$ of H
form a $U(2)$ family (from deficiency indices)

remark: self-adjoint extensions depend on how $V(x)$ diverges

boundary vectors

$$
\Psi=\binom{W\left[\psi, \varphi_{1}\right]_{+0}}{W\left[\psi, \varphi_{1}\right]_{-0}}, \quad \Psi^{\prime}=\binom{W\left[\psi, \varphi_{2}\right]_{+0}}{-W\left[\psi, \varphi_{2}\right]_{-0}}
$$

for regular $V(x)$ for $x \neq 0$
we may choose the reference modes s.t.

$$
\begin{gathered}
\varphi_{1}(\pm 0)=0, \quad \varphi_{1}^{\prime}(\pm 0)=1, \quad \varphi_{2}(\pm 0)=-1, \quad \varphi_{2}^{\prime}(\pm 0)=0 \\
\Psi \Rightarrow\binom{\psi(+0)}{\psi(-0)}, \quad \Psi^{\prime} \Rightarrow\binom{\psi^{\prime}(+0)}{-\psi^{\prime}(-0)}
\end{gathered}
$$

connection condition expressed by linear combinations of $\quad \psi(\pm 0)$ and $\psi^{\prime}(\pm 0)$
characteristic matrix
connection
condition
free

$$
\begin{aligned}
& \psi(+0)=\psi(-0) \\
& \psi^{\prime}(+0)=\psi^{\prime}(-0)
\end{aligned}
$$

$$
U=-I
$$

$$
\psi(+0)=\psi(-0)=0
$$

Neumann

$$
U=I
$$

$$
\psi^{\prime}(+0)=\psi^{\prime}(-0)=0
$$

characteristic matrix
 connection
 condition

chiral

$$
U=\sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \quad \begin{aligned}
& \psi^{\prime}(+0)=0 \\
& \psi(-0)=0
\end{aligned}
$$

anti-chiral

$$
\begin{aligned}
& \psi(+0)=0 \\
& \psi^{\prime}(-0)=0
\end{aligned}
$$

Hadamard

$$
U=\frac{1}{\sqrt{2}}\left(\sigma_{1}+\sigma_{3}\right)=\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \quad \begin{aligned}
& \psi(+0)-(1+\sqrt{2}) \psi(-0)=0 \\
& \\
& \psi^{\prime}(+0)+(1-\sqrt{2}) \psi^{\prime}(-0)=0
\end{aligned}
$$

δ-potential

$$
V(x)=c \delta(x)
$$

connection condition

characteristic matrix

$$
\begin{gathered}
-\frac{\hbar^{2}}{2 m}\left[\psi^{\prime}(+0)-\psi^{\prime}(-0)\right]+c \psi(+0)=0 \\
\psi(+0)=\psi(-0) \\
U= \pm i e^{i \phi}\left(\begin{array}{cc}
\cos \phi & i \sin \phi \\
i \sin \phi & \cos \phi
\end{array}\right) \\
\phi=-\arctan \left(\frac{m L_{0}}{\hbar^{2}} c\right)
\end{gathered}
$$

has scale constant L_{0}

$\epsilon-$ potential
 (δ '-potential)

connection

 conditioncharacteristic matrix
'opposite’ to δ with discontinuity in ψ

$$
\psi(+0)-\psi(-0)+c \psi^{\prime}(+0)=0
$$

$$
\psi^{\prime}(+0)=\psi^{\prime}(-0)
$$

$$
U=e^{i \phi}\left(\begin{array}{cc}
\cos \phi & -i \sin \phi \\
-i \sin \phi & \cos \phi
\end{array}\right)
$$

$$
\phi=\operatorname{arccot}\left(\frac{c}{2 L_{0}}\right)
$$

has scale constant L_{0}
control of the property of quantum singularities yields a variety of phenomena/applications such as

- spectral anholonomy (Berry phase)
- strong-weak coupling duality
- $\mathrm{N}=2$ or 4 supersymmetry
- qubit (q-abacus)
- emergence of pressure

- inequivalent quantizations

$$
N=3 \text { Calogero model }
$$

2. Quantum pressure and statistics

chiral connection

boundary conditions $\quad \psi(-0)=0, \quad \psi^{\prime}(+0)=0, \quad \psi(\pm l)=0$
energy levels $\quad E_{n}^{+}=\left(n-\frac{1}{2}\right)^{2} \mathcal{E}, \quad E_{n}^{-}=n^{2} \mathcal{E}, \quad \mathcal{E}=\frac{\hbar^{2}}{2 m}\left(\frac{\pi}{l}\right)^{2}$
bosons

fermions

particle number

- at level n
net pressure

$$
\Delta F=F^{-}-F^{+}, \quad F^{ \pm}=-\sum_{n} \frac{\partial E_{n}^{ \pm}}{\partial l} N_{n}^{ \pm} \quad N=\sum_{n} N_{n}^{ \pm}
$$

$$
t=2.3 \times T \quad \text { for }
$$

dimensionless force/temp.

$$
f=\frac{l}{2 \mathcal{E}} F . \quad t=\frac{k}{\mathcal{E}} T
$$

$$
m=m_{e}=9.1 \times 10^{-31} \mathrm{~kg}
$$

$$
l=100 \mathrm{~nm}
$$

(i) bosonic case

$$
N_{n}^{ \pm}=\frac{1}{e^{\alpha \pm}+\beta E_{n}^{ \pm}}-1 \quad \beta=\frac{1}{k T}=\frac{1}{\mathcal{E} t}
$$

low temp. $1<t<N / 3$:

$$
\Delta f(t) \approx \frac{3}{4} N-\frac{t}{(e-1)^{2}}
$$

high temp. $\quad t \gg 1$:

$$
\Delta f(t) \approx \frac{N}{2}\left(\frac{t}{\pi}\right)^{1 / 2}-\frac{N}{\pi}\left[(\sqrt{2}-1) N-\frac{1}{2}\right]
$$

(ii) fermionic case

$$
N_{n}^{ \pm}=\frac{1}{e^{\alpha^{ \pm}+\beta E_{n}^{ \pm}}+1}
$$

extreme low temp.

$$
\Delta f(t) \approx \frac{N}{2}\left(N+\frac{1}{2}\right)+2 N e^{-N / t}\left(e^{-1 /(2 t)}-1\right)
$$

high temp. $t \gg 1$:

$$
\Delta f(t) \approx \frac{N}{2}\left(\frac{t}{\pi}\right)^{1 / 2}+\frac{N}{\pi}\left[(\sqrt{2}-1) N+\frac{1}{2}\right]
$$

characteristic temperature/statistics dependence

I) unique minimum $t_{\text {min }}$

2) zero temp. limit

$$
\begin{aligned}
\Delta f_{\text {boson }}(0) & =\mathcal{O}(N) \quad \text { scales } \\
\Delta f_{\text {fermion }}(0) & =\mathcal{O}\left(N^{2}\right)
\end{aligned}
$$

3) high temp. behaviour

$$
\Delta f(t) \approx \frac{N}{2}\left(\frac{t}{\pi}\right)^{1 / 2}
$$

for both bosons and fermions

measurement of pressure by partition shift

condition

$$
0=\Delta F(t)=\left(\frac{\hbar \pi}{m}\right)^{2} \frac{1}{l^{3}}\left[\frac{f^{-}(t)}{(1+\eta)^{3}}-\frac{f^{+}(t)}{(1-\eta)^{3}}\right]
$$

$$
\begin{aligned}
& \eta(t)=\frac{r-1}{r+1} \\
& r=\left(\frac{f^{-}}{f^{+}}\right)^{1 / 3}
\end{aligned}
$$

at zero temp.

$$
\eta_{\text {boson }}(0) \simeq 0.227 . \quad \eta_{\text {fermion }}(0) \simeq \frac{1}{4} \frac{1}{N}=\frac{1}{2} \frac{1}{N_{\text {tot }}}
$$

bosons vs fermions

- temp. dep. is similar
- order is I/N for fermions
- scaling law for N

bosons vs fermions
- temp. dep. is similar
- order is I/N for fermions
- scaling law for N

3. $\mathrm{N}=3$ Calogero Model

N particle Calogero

$$
H=-\frac{\hbar^{2}}{2 m} \sum_{i=1}^{N} \frac{\partial^{2}}{\partial x_{i}^{2}}+\sum_{i=2}^{N} \sum_{j=1}^{i-1}\left\{\frac{1}{4} m \omega^{2}\left(x_{i}-x_{j}\right)^{2}+g\left(x_{i}-x_{j}\right)^{-2}\right\}
$$

separation of variables

$$
H_{r e l}=H_{r}+r^{-2} H_{\Omega}
$$

$$
\text { radial } \quad H_{r}=-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d r^{2}}-\frac{\hbar^{2}}{2 m} \frac{N-2}{r} \frac{d}{d r}+\frac{1}{4} N m \omega^{2} r^{2}
$$

$$
\text { angular } \quad H_{\Omega}=-\frac{\hbar^{2}}{2 m} \Delta_{\Omega}+g \sum_{i=2}^{N} \sum_{j=1}^{i-1}\left[r /\left(x_{i}-x_{j}\right)\right]^{2}
$$

solution for the relative part

$$
\begin{aligned}
& H_{\Omega} \eta_{\lambda}=\lambda \eta_{\lambda} \\
& H_{r, \lambda} R_{E, \lambda}=E R_{E, \lambda} \quad \text { with } \quad H_{r, \lambda}=H_{r}+\lambda r^{-2}
\end{aligned}
$$

$\mathrm{N}=3:$ polar coordinates (r, ϕ)

$$
\begin{aligned}
& x_{1}-x_{2}=r \sqrt{2} \sin \phi \\
& x_{2}-x_{3}=r \sqrt{2} \sin \left(\phi+\frac{2}{3} \pi\right) \\
& x_{3}-x_{1}=r \sqrt{2} \sin \left(\phi+\frac{4}{3} \pi\right) .
\end{aligned}
$$

angular

$$
\begin{aligned}
& M:=H_{\Omega}=-\frac{d^{2}}{d \phi^{2}}+\frac{g}{2} \frac{9}{\sin ^{2} 3 \phi}<\cdots \cdots \cdots \cdot \text { singular } \\
& H_{r, \lambda}=-\frac{d^{2}}{d r^{2}}-\frac{1}{r} \frac{d}{d r}+\frac{3}{8} \omega^{2} r^{2}+\frac{\lambda}{r^{2}}, \quad \hbar=2 m=1
\end{aligned}
$$

radial
our strategy

$$
\begin{array}{ll}
M:=H_{\Omega} & \longrightarrow \text { find self-adjoint extensions } \\
H_{r, \lambda} & \longrightarrow \text { find self-adjoint extensions }
\end{array}
$$

range of coupling constant

$$
-\frac{1}{2}<g<\frac{3}{2} \longrightarrow \begin{gathered}
\text { admits nontrivial self-adjoint } \\
\text { extensions }
\end{gathered}
$$

parametrize:

$$
g=2 \nu(\nu-1) \quad \text { with } \quad \frac{1}{2}<\nu<\frac{3}{2}, \quad(\nu \neq 1)
$$

angular part

$$
M:=H_{\Omega}=-\frac{d^{2}}{d \phi^{2}}+\frac{g}{2} \frac{9}{\sin ^{2} 3 \phi}
$$

reflections generate symmetry group D_{6}

'exchange- S_{3} ' $\quad P_{n}=\left(\mathcal{R}_{\frac{\pi}{3}}\right)^{n} \circ P_{3} \circ\left(\mathcal{R}_{\frac{\pi}{3}}\right)^{-n}$ 'mirror- S_{3} ' $\quad R_{n}=\left(\mathcal{R}_{\frac{\pi}{3}}\right)^{n} \circ R_{3} \circ\left(\mathcal{R}_{\frac{\pi}{3}}\right)^{-n}$ for $n=1,2$.
require: D_{6} symmetry for connection connections
$\longrightarrow D_{6}$ invariant quantizations
reference modes

$$
\begin{aligned}
& \varphi_{i}^{0} \text { for } i=1,2 \quad W\left[\varphi_{1}^{0}, \varphi_{2}^{0}\right]:=\varphi_{1}^{0} \frac{d \varphi_{2}^{0}}{d \phi}-\frac{d \varphi_{1}^{0}}{d \phi} \varphi_{2}^{0}=1 \\
& \varphi_{k}^{R_{i} \theta}(\phi)=(-1)^{k} \varphi_{k}^{\theta}\left(R_{i} \phi\right) \quad \forall k=1,2, \quad i=1,2,3, \quad \theta \in \mathcal{S}
\end{aligned}
$$

boundary vectors

$$
\begin{aligned}
& B_{\theta}(\psi):=\left[\begin{array}{l}
W\left[\psi, \varphi_{1}^{\theta}\right]_{\theta+} \\
W\left[\psi, \varphi_{1}^{1}\right] \theta_{-}
\end{array}\right], \quad B_{\theta}^{\prime}(\psi):=\left[\begin{array}{c}
W\left[\psi, \varphi_{2}^{\theta}\right]_{\theta+} \\
-W\left[\psi, \varphi_{2}^{\theta}\right] \theta_{-}
\end{array}\right] \quad \text { for } \quad \theta=0, \frac{2 \pi}{3}, \frac{4 \pi}{3}, \\
& B_{\theta}(\psi):=\left[\begin{array}{l}
W\left[\psi, \varphi_{1}^{\theta}\right]_{\theta-} \\
W\left[\psi, \varphi_{1}^{1}\right]_{\theta+}
\end{array}\right], \quad B_{\theta}^{\prime}(\psi):=\left[\begin{array}{c}
-W\left[\psi, \varphi_{2}^{\theta}\right] \theta_{-} \\
W\left[\psi, \varphi_{2}^{\theta}\right]_{\theta-}
\end{array}\right] \quad \text { for } \quad \theta=\frac{\pi}{3}, \pi, \frac{5 \pi}{3} .
\end{aligned}
$$

connection connections

$$
\left(U_{\theta}-1_{2}\right) B_{\theta}(\psi)+\mathrm{i}\left(U_{\theta}+1_{2}\right) B_{\theta}^{\prime}(\psi)=0 \quad \forall \theta \in \mathcal{S}:
$$

$$
U_{\theta}=U \text { for all } \theta \in \mathcal{S} \text { and } U=\sigma_{1} U \sigma_{1} \quad \longrightarrow D_{6}
$$

$$
\longrightarrow \quad U=e^{\mathrm{i} \alpha I} e^{\mathrm{i} \beta \sigma_{1}}=e^{\mathrm{i} \alpha}\left(\begin{array}{cc}
\cos \beta & \mathrm{i} \sin \beta \\
\mathrm{i} \sin \beta & \cos \beta
\end{array}\right)
$$

angular eigenstates
basic solutions

$$
\begin{array}{cc}
M \eta_{ \pm, \mu}^{k}=9 \mu^{2} \eta_{ \pm, \mu}^{k} & \hat{R}_{3} \eta_{ \pm, \mu}^{1}= \pm \eta_{ \pm, \mu}^{1} \\
\text { \} } &{\backslash}
\end{array}
$$

basic solutions for sector I

$$
\begin{aligned}
& \eta_{+, \mu}^{1}(\phi)= \begin{cases}b_{2}(\mu) v_{1, \mu}(\phi)-b_{1}(\mu) v_{2, \mu}(\phi) & \text { if } 0<\phi \leq \frac{\pi}{6} \bmod 2 \pi \\
b_{2}(\mu) v_{1, \mu}\left(\frac{\pi}{3}-\phi\right)-b_{1}(\mu) v_{2, \mu}\left(\frac{\pi}{3}-\phi\right) & \text { if } \frac{\pi}{6} \leq \phi<\frac{\pi}{3} \bmod 2 \pi \\
0 & \text { otherwise }\end{cases} \\
& \eta_{-, \mu}^{1}(\phi)= \begin{cases}a_{2}(\mu) v_{1, \mu}(\phi)-a_{1}(\mu) v_{2, \mu}(\phi) & \text { if } 0<\phi \leq \frac{\pi}{6} \bmod 2 \pi \\
-a_{2}(\mu) v_{1, \mu}\left(\frac{\pi}{3}-\phi\right)+a_{1}(\mu) v_{2, \mu}\left(\frac{\pi}{3}-\phi\right) & \text { if } \frac{\pi}{6} \leq \phi<\frac{\pi}{3} \bmod 2 \pi \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

where
hypergeometric

$$
\begin{array}{cc}
v_{1, \mu}(\phi):=|\sin 3 \phi|^{\nu} F\left(\frac{\nu-\mu}{2}, \frac{\nu+\mu}{2}, \nu+\frac{1}{2} ; \sin ^{2} 3 \phi\right) \quad \text { function } \\
v_{2, \mu}(\phi):=|\sin 3 \phi|^{1-\nu} F\left(\frac{1-\nu-\mu}{2}, \frac{1-\nu+\mu}{2},-\nu+\frac{3}{2} ; \sin ^{2} 3 \phi\right) \\
a_{1}(\mu)=\frac{\Gamma\left(\nu+\frac{1}{2}\right) \Gamma\left(\frac{1}{2}\right)}{\Gamma\left(\frac{\nu+1+\mu}{2}\right) \Gamma\left(\frac{\nu+1-\mu}{2}\right)}, & a_{2}(\mu)=\frac{\Gamma\left(-\nu+\frac{3}{2}\right) \Gamma\left(\frac{1}{2}\right)}{\Gamma\left(\frac{-\nu+2+\mu}{2}\right) \Gamma\left(\frac{-\nu+2-\mu}{2}\right)}, \\
b_{1}(\mu)=\frac{6 \Gamma\left(\nu+\frac{1}{2}\right) \Gamma\left(\frac{1}{2}\right)}{\Gamma\left(\frac{\nu+\mu}{2}\right) \Gamma\left(\frac{\nu-\mu}{2}\right)}, & b_{2}(\mu)=\frac{6 \Gamma\left(-\nu+\frac{3}{2}\right) \Gamma\left(\frac{1}{2}\right)}{\Gamma\left(\frac{-\nu+1+\mu}{2}\right) \Gamma\left(\frac{-\nu+1-\mu}{2}\right)} .
\end{array}
$$

other sectors

$$
\eta_{ \pm, \mu}^{k}(\phi)=\eta_{ \pm, \mu}^{1}\left(\phi-(k-1) \frac{\pi}{3}\right), \quad \text { for } \quad k=2, \ldots, 6 .
$$

general solutions

$$
\eta_{\mu}(\phi)=\sum_{k=1}^{6}\left(C_{+}^{k} \eta_{+, \mu}^{k}(\phi)+C_{-}^{k} \eta_{-, \mu}^{k}(\phi)\right)
$$

coefficients $C_{ \pm}^{k}$. to be determined from connection conditions with boundary vectors

$$
\begin{aligned}
& B_{0}\left(\eta_{\mu}\right)=(3(2 \nu-1))^{\frac{1}{2}}\left[\begin{array}{l}
-C_{+}^{1} b_{1}(\mu)-C_{1}^{1} a_{1}(\mu) \\
-C_{+}^{6} b_{1}(\mu)+C_{-}^{6} a_{1}(\mu)
\end{array}\right], \\
& B_{0}^{\prime}\left(\eta_{\mu}\right)=(3(2 \nu-1))^{\frac{1}{2}}\left[\begin{array}{l}
C_{1}^{1} b_{2}(\mu)+C_{-}^{1} a_{2}(\mu) \\
C_{+}^{6} b_{2}(\mu)-C_{-}^{6} a_{2}(\mu)
\end{array}\right] .
\end{aligned}
$$

representations of D_{6}

character table of D_{6}

conjugacy class	$\{e\}$	$\left\{R_{i}\right\}$	$\left\{P_{i}\right\}$	$\left\{\mathcal{R}_{\pi / 3}^{ \pm 1}\right\}$	$\left\{\mathcal{R}_{\pi / 3}^{ \pm 2}\right\}$	$\left\{\mathcal{R}_{\pi / 3}^{3}\right\}$
χ^{++}	1	1	1	1	1	1
χ^{-+}	1	-1	1	-1	1	-1
χ^{+-}	1	1	-1	-1	1	-1
χ^{--}	1	-1	-1	1	1	1
$\chi^{(2)}$	2	0	0	1	-1	-2
$\tilde{\chi}^{(2)}$	2	0	0	-1	-1	2

radial part

$$
\lambda=(3 \mu)^{2}
$$

$$
\begin{gathered}
\mathcal{H}_{r, \lambda}:=\sqrt{r} \circ H_{r, \lambda} \circ \frac{1}{\sqrt{r}}=-\frac{d^{2}}{d r^{2}}+\frac{3}{8} \omega^{2} r^{2}+\frac{\lambda-\frac{1}{4}}{r^{2}} \quad \begin{array}{c}
\text { angular } \\
\text { eigenvalue }
\end{array} \\
\mathcal{H}_{r, \lambda \rho}=E \rho \quad \begin{array}{lll}
\lambda \geq 1 & \cdots \cdots \cdots \cdots \cdots & \text { unique self-adjoint extension } \\
& \lambda<1 & \cdots \cdots \cdots \cdots \cdots
\end{array} \\
\end{gathered}
$$

boundary condition $\quad \frac{W\left[\rho, \varphi_{1}\right]_{0+}}{W\left[\rho, \varphi_{2}\right]_{0+}}=\kappa(\lambda) \quad$ at $\quad r=0$ basic solution

U(I) parameter

$$
\begin{array}{rlr}
\rho_{E}= & \frac{\Gamma(1-\sqrt{\lambda})}{\Gamma(-\xi-\sqrt{\lambda})} \rho_{E, 1}-\frac{\Gamma(1+\sqrt{\lambda})}{\Gamma(-\xi)} \rho_{E, 2} & \\
& \rho_{E, 1}(r)=\sigma^{\frac{1}{2}\left(\frac{1}{2}+\sqrt{\lambda}\right)} e^{-\frac{1}{2} \sigma} \Phi(-\xi, \sqrt{\lambda}+1, \sigma), & \text { confluent } \\
& \rho_{E, 2}(r)=\sigma^{\frac{1}{2}\left(\frac{1}{2}-\sqrt{\lambda}\right)} e^{-\frac{1}{2} \sigma} \Phi(-\xi-\sqrt{\lambda}, 1-\sqrt{\lambda}, \sigma): & \begin{array}{c}
\text { hypergeometric } \\
\text { function }
\end{array}
\end{array}
$$

spectral condition

$$
\begin{aligned}
F_{\lambda}(\epsilon) & :=\frac{\Gamma\left(-\epsilon+\frac{1-\sqrt{\lambda}}{2}\right)}{\Gamma\left(-\epsilon+\frac{1+\sqrt{\lambda}}{2}\right)}=-\frac{\Gamma(-\sqrt{\lambda})}{\Gamma(\sqrt{\lambda})} \kappa(\lambda) \\
\epsilon & :=\frac{E}{4 c} . \quad c:=\sqrt{\frac{3}{8}} \omega .
\end{aligned}
$$

if $\kappa(\lambda)=0 \longrightarrow$ Calogero's choice

$$
\begin{array}{ll}
\rho_{m, \lambda}(r)=r^{\frac{1}{2}+\sqrt{\lambda}} e^{-\frac{1}{2} c r^{2}} L_{m}^{\sqrt{\lambda}}\left(c r^{2}\right), & \text { generalized Laguerre polynomial } \\
E_{m, \lambda}=2 c(2 m+1+\sqrt{\lambda}), & m=0,1,2, \ldots,
\end{array}
$$

explicitly solvable cases

I) Dirichlet case $U=-1_{2}$

$$
\begin{aligned}
\eta_{\mu}^{A}(\phi)=\sum_{k=1}^{6} C_{-}^{k} \eta_{-, \mu}^{k}(\phi), & \mu=2 n+1+\nu, \\
\eta_{\mu}^{B}(\phi)=\sum_{k=1}^{6} C_{+}^{k} \eta_{+, \mu}^{k}(\phi), & \mu=2 n+\nu,
\end{aligned}
$$

total eigenstates

$$
\begin{aligned}
\Psi_{m n}^{A}(r, \phi) & =R_{m, \lambda}(r) \eta_{\mu}^{A}(\phi), & E_{m n}^{A}=2 c(2 m+1+3(2 n+1+\nu)) \\
\Psi_{m n}^{B}(r, \phi) & =R_{m, \lambda}(r) \eta_{\mu}^{B}(\phi), & E_{m n}^{B}=2 c(2 m+1+3(2 n+\nu)) \\
R_{m, \lambda}(r) & =r^{-\frac{1}{2}} \rho_{m, \lambda}(r) &
\end{aligned}
$$

Calogero's solution

2) free case $U=\sigma_{1}$

I dim. irrep. angular states

$$
\begin{array}{ll}
\eta_{\mu}^{A_{+}}(\phi)=-c(\phi) a_{1}(\mu) v_{2, \mu}(\phi), & \mu=2 n+1+(1-\nu), \\
\eta_{\mu}^{A_{-}}(\phi)=t(\phi) a_{2}(\mu) v_{1, \mu}(\phi), & \mu=2 n+1+\nu \\
\eta_{\mu}^{B_{+}}(\phi)=-b_{1}(\mu) v_{2, \mu}(\phi), & \mu=|2 n+(1-\nu)|, \\
\eta_{\mu}^{B_{-}}(\phi)=s(\phi) b_{2}(\mu) v_{1, \mu}(\phi) . & \mu=2 n+\nu .
\end{array}
$$

total eigenstates

$$
\begin{array}{ll}
\Psi_{m n}^{++}(r, \phi)=R_{m, \lambda}(r) \eta_{\mu}^{B_{+}}(\phi), & E_{m n}^{++}=2 c(2 m+1+3|2 n+(1-\nu)|), \\
\Psi_{m n}^{-+}(r, \phi)=R_{m, \lambda}(r) \eta_{\mu}^{A_{+}}(\phi), & E_{m n}^{-+}=2 c(2 m+1+3(2 n+1+(1-\nu))), \\
\Psi_{m n}^{+-}(r, \phi)=R_{m, \lambda}(r) \eta_{\mu}^{B-}(\phi), & E_{m n}^{+-}=2 c(2 m+1+3(2 n+\nu)), \\
\Psi_{m n}^{--}(r, \phi)=R_{m, \lambda}(r) \eta_{\mu}^{A-}(\phi), & E_{m n}^{--}=2 c(2 m+1+3(2 n+1+\nu)),
\end{array}
$$

2 dim. irrep. angular states

$$
\begin{aligned}
\eta_{\mu, \tau}(\phi)= & -\frac{\mathrm{i} q(\mu)}{\Im(\tau)} v_{1, \mu}(\phi)+v_{2, \mu}(\phi) \\
& q(\mu)=\frac{3 \cos ^{2} \pi \nu}{2 \pi^{2}} 2^{-2 \nu} \Gamma\left(-\nu+\frac{1}{2}\right) \Gamma\left(-\nu+\frac{3}{2}\right) \Gamma(\nu+\mu) \Gamma(\nu-\mu)
\end{aligned}
$$

total eigenstates

$$
\begin{array}{ll}
\Psi_{m n, \tau}^{(2)+}(r, \phi)=R_{m, \lambda}(r) \eta_{\mu, \tau}^{(2)+}(\phi), & E_{m n}^{(2)+}=2 c(2 m+1+3(2 n+(1-\Delta(\nu)))), \\
\tilde{\Psi}_{m n, \tau}^{(2)+}(r, \phi)=R_{m, \lambda}(r) \tilde{\eta}_{\mu, \tau}^{(2)+}(\phi), & \tilde{E}_{m n}^{(2)+}=2 c(2 m+1+3(2 n+1+(1-\Delta(\nu))), \\
\tilde{\Psi}_{m n, \tau}^{(2)-}(r, \phi)=R_{m, \lambda}(r) \tilde{\eta}_{\mu, \tau}^{(2)-}(\phi), & \tilde{E}_{m n}^{(2)-}=2 c(2 m+1+3(2 n+\Delta(\nu))), \\
\Psi_{m n, \tau}^{(2)-}(r, \phi)=R_{m, \lambda}(r) \eta_{\mu, \tau}^{(2)-}(\phi), & E_{m n}^{(2)-}=2 c(2 m+1+3(2 n+1+\Delta(\nu))) .
\end{array}
$$

$$
\Delta(\nu):=\frac{1}{\pi} \arccos \left(\frac{1}{2} \cos \pi \nu\right)
$$

harmonic oscillator limit $\nu \rightarrow 1$

$$
\begin{aligned}
& \eta_{k}^{ \pm}(\phi):=e^{ \pm i k \phi}, \quad k=0,1,2, \ldots \\
& R_{m, \lambda}(r)=r^{k} e^{-\frac{1}{2} c r^{2}} L_{m}^{k}\left(c r^{2}\right)
\end{aligned}
$$

$$
\Psi_{m k}^{ \pm}(r, \phi)=R_{m, \lambda}(r) \eta_{k}^{ \pm}(\phi), \quad E_{m k}^{ \pm}=2 c(2 m+1+k)
$$

reduces to the standard 2 dim. harmonic oscillator
smooth limit (unlike other cases)
distingiuished quantization

cf.) Mirror- S_{3} and scale invariant quantizations

Summary

- $U(2)$ family of different singularities (self-adjoint extensions) for each singularity on a line
- Resultant quantum systems exhibit distinct physical properties (e.g., energy spectra or pressure) depending on the characteristics of the singularity
- These properties may also depend on the statistics and the number of the particles in a particular manner (scaling laws in quantum well)
- Calogero model admits a variety of inequivalent quantizations with distinct spectra including Calogero's original one as a special case

