Non-local finite size effects in the dimer model

Philippe Ruelle

Budapest, LÓR 2006

Basics

>Basics

$>$ History
$>$ General
$>$ Finite size corr.
$>$ Paradox
$>$ Boundary cond. $>\mathrm{N}$ odd
$>N$ even
$>$ Change of b.c.
$>$ B.c. changing field
-Cylinder
\Rightarrow CFT is OK
Take a grid with N sites and consider all arrangements of $N / 2$ dimers $=$ dominoes so that all sites are covered.

9×18

Basics

>Basics

$>$ History
$>$ General
$>$ Finite size corr.
$>$ Paradox
$>$ Boundary cond.
$>\mathrm{N}$ odd
$>N$ even
$>$ Change of b.c.
$>$ B.c. changing field
-Cylinder
\Rightarrow CFT is OK

More generally, we may introduce vacancies = monomers, i.e. sites which cannot be covered.

Basics

$>$ Basics

>History
$>$ General
$>$ Finite size corr.
$>$ Paradox
$>$ Boundary cond
$>N$ odd
$>\mathrm{N}$ even
$>$ Change of b.c.
$>$ B.c. changing field
$>$ Cylinder
$\Rightarrow \mathrm{CFT}$ is OK

Corresponding to these arrangements of monomers-dimers, we introduce a partition function (for square lattice)

$$
Z\left(x, y \mid z_{1}, \ldots, z_{m}\right)=\sum_{\text {cover. }} x^{n_{h}} y^{n_{v}}
$$

Counts the number of dimer coverings in presence of m vacancies located at positions z_{1}, \ldots, z_{m} in bulk or on boundaries.
Weights x and y assigned to horizontal and vertical dimers.

Case $m=0$ fairly well-understood for many lattices $m>0$ more difficult ($m=2$ vacancies in bulk \checkmark)

Basics

$>$ Basics

>History
$>$ General
$>$ Finite size corr.
$>$ Paradox
$>$ Boundary cond
$>N$ odd
$>\mathrm{N}$ even
$>$ Change of b.c.
$>$ B.c. changing field
$>$ Cylinder
$\Rightarrow \mathrm{CFT}$ is OK

Questions include:

- phase transitions?
- correlations of vacancies/monomers? of bond occupation?
- finite size corrections ?
- CFT description?

Here : finite size corrections for infinite strip and cylinder, on square lattice with $x=y=1$ (critical but no phase transition), and no vacancies
\longrightarrow central charge c, boundary conditions of underlying CFT

History

```
>Basics
>History
\General
Finite size corr.
Paradox
Boundary cond.
N odd
>N even
Change of b.c.
B.c. changing field
Cylinder
CFT is OK
```

Pioneers: Kasteleyn, Fisher, Temperley, Ferdinand, Wu
Two vacancies: Fisher \& Stephenson, correlation $\sim \frac{1}{\sqrt{r}}$
Finite size: Fisher, Ferdinand, Hartwig, Brankov, Wu, Kong
Spanning trees: Temperley, Priezzhev, Kenyon, Propp, Wilson

General

$>$ Basics
$>$ History
$>$ General
$>$ Finite size corr.
$>$ Paradox
$>$ Boundary cond $>\mathrm{N}$ odd $>\mathrm{N}$ even
$>$ Change of b.c
$>$ B.c. changing field
\Rightarrow Cylinder
$\Rightarrow \mathrm{CFT}$ is OK

On a rectangular grid $M \times N$ and free boundary conditions, partition function is simply

$$
Z(M, N)=\# \text { dimer coverings }
$$

It grows exponentially fast with volume:
$2 \times 2: Z=2$
$4 \times 4: Z=36$
$8 \times 8: Z=12988816$
$10 \times 10: Z=258584046368$
$9 \times 18: Z=4.6528 \times 10^{18}$

General

Dimer model is in the class of free fermion theories, giving rise to exact determinantal formula

$$
Z(M, N)=\prod_{k=1}^{M} \prod_{\ell=1}^{N}\left|2 \cos \frac{\pi k}{M+1}+2 i \cos \frac{\pi \ell}{N+1}\right|^{1 / 2}
$$

It follows that

$$
Z(M, N) \sim\left(e^{\mathrm{G} / \pi}\right)^{M N}=(1.79162)^{M N / 2}
$$

and the free energy per unit vertical length (portion $1 \times N$) is

$$
F(N)=-\lim _{M \rightarrow \infty} \frac{1}{M} \log Z(M, N)=-\frac{\mathrm{G}}{\pi} N+\ldots
$$

(Fisher, '61)

Finite size corrections

The full expression for the free energy contains subdominant terms, in this case odd powers of N^{-1} (plus constant). One finds

$$
\begin{aligned}
& N \text { odd }: F(N)=-\frac{\mathrm{G}}{\pi} N-\frac{\mathrm{G}}{\pi}+\frac{1}{2} \log (1+\sqrt{2})+\frac{\pi}{12 N}+\ldots \\
& N \text { even }: F(N)=-\frac{\mathrm{G}}{\pi} N-\frac{\mathrm{G}}{\pi}+\frac{1}{2} \log (1+\sqrt{2})-\frac{\pi}{24 N}+\ldots
\end{aligned}
$$

(Fisher '61, Ferdinand '67, Ivashkevich, Izmailian \& Hu '02)

The interesting term is the third one, proportional to $1 / N \ldots$

Finite size corrections

The general form of the free energy is

$$
F(N)=f_{\text {bulk }} N+2 f_{\text {surf }}+\frac{A}{N}+\ldots
$$

with $f_{\text {bulk }}=$ bulk free energy per site

$$
f_{\text {surf }}=\text { excess of free energy per boundary site }
$$

The constant A is universal, b.c. dependent and related to effective central charge (Blöte, Cardy, Nightingale + Affleck)

$$
A=-\frac{\pi}{24} c_{\mathrm{eff}}=\pi\left(h_{\min }-\frac{c}{24}\right)
$$

$h_{\text {min }}=$ smallest conformal weight in Hilbert space with prescribed b.c.'s.

Finite size corrections

$>$ Basics
 >History
 $>$ General
 $>$ Finite size corr.
 $>$ Paradox
 $>$ Boundary cond.
 $>N$ odd
 $>\mathrm{N}$ even
 $>$ Change of b.c.
 $>$ B.c. changing field
 $>$ Cylinder
 $\Rightarrow \mathrm{CFT}$ is OK

This follows from universal part of partition function (bulk and surface contributions subtracted off)

$$
\begin{aligned}
& Z_{a \mid b}(M, N)=\operatorname{Tr} e^{-M H_{a \mid b}}=\operatorname{Tr} e^{-\frac{\pi N}{N}\left(L_{0}-\frac{c}{24}\right)} \\
& \sim e^{-\frac{\pi M}{N}\left(h_{\min }-\frac{c}{24}\right)} \\
&-\lim _{M \rightarrow \infty} \frac{1}{M} \log Z_{a \mid b}=\frac{\pi}{N}\left(h_{\min }-\frac{c}{24}\right)
\end{aligned}
$$

Paradox

$>$ Boundary cond.

Compare now $A=\pi\left(h_{\min }-\frac{c}{24}\right)$ with dimer model data

$$
N \text { odd : } A=\frac{\pi}{12}
$$

$$
N \text { even : } A=-\frac{\pi}{24}
$$

Looks paradoxical: either same $h_{\min }$ but then c depends on parity of N, or same central charge but then $h_{\text {min }}$ is different in both cases, even though the b.c. are the same ... !!!

Number of authors take $h_{\min }=0$ (reasonable) and claim that $c=-2$ for N odd and $c=1$ for N even.

Similar situation on cylinder: same argument leads to $c=-\frac{1}{2}$ for N odd and $c=1$ for N even.

Boundary conditions

$>$ History
$>$ General
$>$ Finite size corr.
$>$ Paradox
>Boundary cond
$>\mathrm{N}$ odd
$>N$ even
$>$ Change of b.c.
$>$ B.c. changing field
$>$ Cylinder
$\Rightarrow \mathrm{CFT}$ is OK

In trying to understand the paradox, looks more reasonable to keep c fixed (minimal amount of locality ...), but then explain why the value of $h_{\min }$ changes ...

In fact, $h_{\min }$ changes because the boundary conditions are modified by a change of parity of N.

To best see it, go from dimer configurations to another description, in terms of spanning trees.
(First discovered for odd-odd lattices by Temperley '74)

N odd

$>$ Basics
$>$ History
$>$ General
$>$ Finite size corr.
\rightarrow Paradox
$>$ Boundary cond.
zisem
$>\mathrm{N}$ even
$>$ Change of b.c.
$>$ B.c. changing field
$>$ Cylinder
$\Rightarrow \mathrm{CFT}$ is OK

N odd

$>$ Basics
$>$ History
$>$ General
$>$ Finite size corr.
>Paradox
$>$ Boundary cond.
$>$ Change of b.c.
$>$ B.c. changing field
$>$ Cylinder
$\Rightarrow \mathrm{CFT}$ is OK

Red dimers touch odd-odd sublattice

N odd

\rightarrow Basics
$>$ History
$>$ General
$>$ Finite size corr.
$>$ Paradox
$>$ Boundary cond. zise
$>\mathrm{N}$ even
$>$ Change of b.c.
$>$ B.c. changing field
$>$ Cylinder
$\Rightarrow \mathrm{CFT}$ is OK

N odd

$>$ Basics
 $>$ History
 $>$ General
 $>$ Finite size corr.
 \rightarrow Paradox
 $>$ Boundary cond.
 $>$ Change of b.c.

$>$ B.c. changing field
$>$ Cylinder
$\Rightarrow \mathrm{CFT}$ is OK

Nodd

$>$ Basics

$>$ History
$>$ General
$>$ Finite size corr.
$>$ Paradox
$>$ Boundary cond. $>N$ odd
$>\mathrm{N}$ even
$>$ Change of b.c.
$>$ B.c. changing field
$>$ Cylinder
\Rightarrow CFT is OK

N odd

$>$ History
$>$ General
$>$ Finite size corr.
$>$ Paradox
$>$ Boundary cond.
$>$ Cylinder
$>\mathrm{CFT}$ is OK

Spanning tree (covering graph with no loop) rooted at one site \rightarrow boundary condition is closed on all four sides.
$>$ General
$>$ Finite size corr.
$>$ Paradox
$>$ Boundary cond
$>$ B.c. changing field
$>$ Cylinder
$\Rightarrow \mathrm{CFT}$ is OK

9×18
$>$ Finite size corr.
$>$ Paradox
$>$ Boundary cond.
$>$ Cylinder
$\Rightarrow \mathrm{CFT}$ is OK

9×18
Red dimers touch odd-odd sublattice

N even

$>$ Basics
$>$ History
$>$ General
$>$ Finite size corr.
$>$ Paradox
$>$ Boundary cond
$>\mathrm{N}$ odd
$>\mathrm{N}$ even
$>$ Change of b.c
$>$ B.c. changing field
$>$ Cylinder
$\Rightarrow \mathrm{CFT}$ is OK

9×18

N even

$>$ Basics
$>$ History
$>$ General
$>$ Finite size corr.
$>$ Paradox
$>$ Boundary cond. $>N$ odd
$>\mathrm{N}$ even
$>$ Change of b.c.
$>$ B.c. changing field
$>$ Cylinder
\Rightarrow CFT is OK

N even

N even

$>$ Basics
$>$ History
$>$ General
$>$ Finite size corr.
$>$ Paradox
$>$ Boundary cond.
$>N$ odd
$>N$ even
$>$ Change of b.c.
$>$ B.c. changing field
$>$ Cylinder
$\Rightarrow \mathrm{CFT}$ is OK

$$
5 \times 9
$$

Spanning tree rooted at possibly every site of right side \rightarrow boundary condition is closed on three sides and open on right side.

Change of b.c.

Width N odd

closed (Neu) on left and right sides

$$
\longrightarrow h_{\min }^{\mathrm{N}, \mathrm{~N}}=0
$$

$$
\longrightarrow h_{\min }^{N, D}=-\frac{1}{8}
$$

$$
A=\frac{\pi}{12}=\pi\left(h_{\min }-\frac{c}{24}\right)
$$

$$
A=-\frac{\pi}{24}=\pi\left(h_{\min }-\frac{c}{24}\right)
$$

$$
c=-2
$$

$$
c=-2
$$

B.c. changing field

Value $h_{\min }=-\frac{1}{8}$ confirmed by studying effect of change of parity:

Removal of one layer of sites on distance x is implemented by the insertion of b.c.c.f. $\mu(0)$ and $\mu(x)$, with μ is boundary primary of weight $-1 / 8$.

Cylinder

Similar, slightly more complex, situation on cylinder with perimeter N.
N odd: $A=\frac{\pi}{12}$, same value as for strip.
Correspondence with spanning trees holds, but a (defect) line of roots is to be inserted longitudinally \rightarrow unwraps the cylinder to a strip (cfr Ferdinand).
N even: $A=-\frac{\pi}{6}$, four times the value on strip.
Spanning trees now grow on loops wrapped around the cylinder \rightarrow proper boundary condition is antiperiodic \rightarrow
$h_{\text {min }}=-\frac{1}{8}$. Agrees with

$$
A=4 \pi\left(h_{\min }-\frac{c}{24}\right), \quad \text { and } \quad c=-2 .
$$

CFT is OK

We get a consistent picture for finite size corrections in dimer model, leading to
$c=-2 \quad$ (well-known value for spanning trees/sandpile model)
provided proper attention is paid to boundary conditions, better analyzed in terms of spanning trees.

Based on:
N. Izmailian, V. Priezzhev, P.R. \& C.K. Hu

Logarithmic CFT and Boundary Effects in the Dimer Model Phys. Rev. Lett. 95, 260602 (Dec. 05)

