Non-local finite size effects in the dimer model

Philippe Ruelle

Budapest, LÓR 2006

slide 1

≻Basics

- ≻History
- ≻General
- ≻Finite size corr.
- ≻Paradox
- ≻Boundary cond.
- ≻N odd
- ≻N even
- ≻Change of b.c.
- ≻B.c. changing field
- ≻Cylinder
- ≻CFT is OK

Corresponding to these arrangements of monomers-dimers, we introduce a partition function (for square lattice)

 $Z(x, y|z_1, \dots, z_m) = \sum x^{n_h} y^{n_v}.$

cover.

Counts the number of dimer coverings in presence of m vacancies located at positions z_1, \ldots, z_m in bulk or on boundaries.

Weights x and y assigned to horizontal and vertical dimers.

Case m = 0 fairly well-understood for many lattices m > 0 more difficult (m = 2 vacancies in bulk \checkmark)

≻Basics

- ≻History
- ≻General
- ≻Finite size corr.
- ≻Paradox
- ≻Boundary cond.
- ≻N odd
- ≻N even
- \succ Change of b.c.
- ≻B.c. changing field
- ≻Cylinder
- ≻CFT is OK

Questions include:

phase transitions ?

correlations of vacancies/monomers ? of bond occupation ?

finite size corrections ?

CFT description ?

Here : finite size corrections for infinite strip and cylinder, on square lattice with x = y = 1 (critical but no phase transition), and no vacancies

 \longrightarrow central charge c, boundary conditions of underlying CFT

History

≻Basics	Pioneers: Kasteleyn, Fisher, Temperley, Ferdinand, Wu
 ≻History >General >Finite size corr. >Paradox >Boundary cond. >N odd 	Two vacancies: Fisher & Stephenson, correlation $\sim \frac{1}{\sqrt{r}}$ Finite size: Fisher, Ferdinand, Hartwig, Brankov, Wu, Kong
 >N even >Change of b.c. >B.c. changing field >Cylinder >CFT is OK 	<mark>Spanning trees</mark> : Temperley, Priezzhev, Kenyon, Propp, Wilson

General

≻Basics	On a
≻History	nartiti
≻General	partiti
≻Finite size corr.	
≻Paradox	
≻Boundary cond.	
≻N odd	
≻N even	
≻Change of b.c.	
≻B.c. changing field	It grou
≻Cylinder	it gio
≻CFT is OK	
	2×2
	4×4
	8×8
	10×10

On a rectangular grid $M \times N$ and free boundary conditions, partition function is simply

Z(M,N) = # dimer coverings

It grows exponentially fast with volume:

```
2 \times 2 \ : \ Z = 2
```

```
4 \times 4 : Z = 36
```

```
8 \times 8 : Z = 12\,988\,816
```

 10×10 : Z = 258584046368

```
9 \times 18 : Z = 4.6528 \times 10^{18}
```


General

Finite size corrections

≻History

≻General

- ≻Finite size corr.
- ≻Paradox
- ≻Boundary cond.
- ≻N odd
- ≻N even
- \succ Change of b.c.
- ≻B.c. changing field
- ≻Cylinder
- ≻CFT is OK

The full expression for the free energy contains subdominant terms, in this case odd powers of N^{-1} (plus constant). One finds

$$N \text{ odd}: F(N) = -\frac{G}{\pi}N - \frac{G}{\pi} + \frac{1}{2}\log(1+\sqrt{2}) + \frac{\pi}{12N} + \dots$$
$$N \text{ even}: F(N) = -\frac{G}{\pi}N - \frac{G}{\pi} + \frac{1}{2}\log(1+\sqrt{2}) - \frac{\pi}{24N} + \dots$$

(Fisher '61, Ferdinand '67, Ivashkevich, Izmailian & Hu '02)

The interesting term is the third one, proportional to 1/N ...

Finite size corrections

Finite size corrections

Paradox

- ≻Basics
- ≻History
- ≻General
- ≻Finite size corr.

≻Paradox

- ≻Boundary cond.
- ≻N odd
- ≻N even
- \succ Change of b.c.
- ≻B.c. changing field
- ≻Cylinder
- ≻CFT is OK

Compare now $A = \pi (h_{\min} - \frac{c}{24})$ with dimer model data $N \text{ odd} : A = \frac{\pi}{12}$ $N \text{ even} : A = -\frac{\pi}{24}$

Looks paradoxical : either same h_{\min} but then c depends on parity of N, or same central charge but then h_{\min} is different in both cases, even though the b.c. are the same ... !!!

Number of authors take $h_{\min} = 0$ (reasonable) and claim that c = -2 for N odd and c = 1 for N even.

Similar situation on cylinder: same argument leads to $c = -\frac{1}{2}$ for N odd and c = 1 for N even.

Boundary conditions

≻General

≻Finite size corr.

 \succ Paradox

≻Boundary cond.

≻N odd

≻N even

≻Change of b.c.

≻B.c. changing field

≻Cylinder

≻CFT is OK

In trying to understand the paradox, looks more reasonable to keep c fixed (minimal amount of locality ...), but then explain why the value of h_{\min} changes ...

In fact, h_{\min} changes because the boundary conditions are modified by a change of parity of N.

To best see it, go from dimer configurations to another description, in terms of spanning trees.

(First discovered for odd-odd lattices by Temperley '74)

LÓR 2006

slide 14

 >Basics >History >General >Finite size corr. >Paradox >Boundary cond. >N odd >N even >Change of b.c. >B.c. changing field >Cylinder >CFT is OK 									
	Spanning tree (covering graph with no loop) rooted at one site \rightarrow boundary condition is closed on all four sides.								

 Basics History General Finite size corr. Paradox Boundary cond. N odd N odd N even Change of b.c. B.c. changing field Cylinder CFT is OK 									
	5 x 9								
	Spanning tree rooted at possibly every site of right side \rightarrow boundary condition is closed on three sides and open on right side.								

Change of b.c.

closed (Neu) on left and right sides closed on left, open (Dir) on right

$$\longrightarrow h_{\min}^{N,N} = 0 \longrightarrow h_{\min}^{N,D} = -\frac{1}{8}$$

$$A = \frac{\pi}{12} = \pi (h_{\min} - \frac{c}{24}) \qquad \qquad A = -\frac{\pi}{24} = \pi (h_{\min} - \frac{c}{24})$$

$$c = -2 \qquad \qquad c = -2$$

B.c. changing field

Cylinder

- ≻Basics
- ≻History
- ≻General
- ≻Finite size corr.
- ≻Paradox
- ≻Boundary cond.
- ≻N odd
- ≻N even
- \succ Change of b.c.
- ≻B.c. changing field
- ≻Cylinder
- ≻CFT is OK

Similar, slightly more complex, situation on cylinder with perimeter N.

N odd: $A = \frac{\pi}{12}$, same value as for strip.

Correspondence with spanning trees holds, but a (defect) line of roots is to be inserted longitudinally \rightarrow unwraps the cylinder to a strip (cfr Ferdinand).

N even: $A = -\frac{\pi}{6}$, four times the value on strip.

Spanning trees now grow on loops wrapped around the cylinder \rightarrow proper boundary condition is antiperiodic $\rightarrow h_{\min} = -\frac{1}{8}$. Agrees with

$$A = 4\pi (h_{\min} - \frac{c}{24}),$$
 and $c = -2.$

CFT is OK

- ≻Basics
- ≻History
- ≻General
- ≻Finite size corr.
- ≻Paradox
- ≻Boundary cond.
- >N odd
- ≻N even
- \succ Change of b.c.
- ≻B.c. changing field
- ≻Cylinder
- ≻CFT is OK

We get a consistent picture for finite size corrections in dimer model, leading to

c = -2 (well-known value for spanning trees/sandpile model)

provided proper attention is paid to boundary conditions, better analyzed in terms of spanning trees.

Based on:

N. Izmailian, V. Priezzhev, P.R. & C.K. Hu

Logarithmic CFT and Boundary Effects in the Dimer Model

Phys. Rev. Lett. 95, 260602 (Dec. 05)