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• AIM : to show the intimate relation between algebraic notions and quantities (namely
q−Poisson coalgebras ) and geometric ones (integrable motions on 2D manifolds with
constant and non-constant curvature)

• TOOLS: Hopf-algebra structure of Non− Standard q−deformations



PLAN OF THE LECTURE

1. Hamiltonians with co-algebra symmetry

2. Non-Standard deformations

3. Integrable Hamiltonians and non-constant curvature

4. Super-integrable Hamiltonians and constant curvature

5. More degrees of freedom. Separation of variables

6. From Classical to Quantum
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I. Poisson Coalgebra (sl(2,C),∆)

sl(2,C) := {J3, J+, J−}

{J3, J±} = ±2J±

{J+, J−} = 4J3

• ∆ : co-associative Poisson Homomorphism:

∆ : (sl(2,C) → (sl(2,C)⊕ (sl(2,C))

∆(Jk) = Jk ⊕ I + I ⊕ Jk
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• One particle symplectic realization:

J
(1)
− = q2

1 J
(1)
+ = p2

1 + b1/q
2
1 J

(1)
3 = q1p1

• Casimir function

C(1) = J−J+ + J2
3 = b1

• From 1- to 2- (and to many-) particle symplectic realization through ∆

J
(2)
− = q2

1 + q2
2 J

(2)
+ = p2

1 + p2
2 + b1/q

2
1 + b2/q

2
2

J
(2)
3 = q1p1 + q2p2
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• Fundamental property:

Any smooth function H(2) = H(J
(2)
− , J

(2)
+ , J

(2)
3 ) (*) defines a completely inte-

grable two-particle system, as it is equipped with the extra-integral of motion

C(2),reading:

C(2) = ∆(C) =

(q1p2 − q2p1)
2 + (

b1
q2
1

+
b2
q2
2

)(q2
1 + q2

2)

• Hence, integrability of any Hamiltonian (*) is merely a consequence of co-

algebra symmetry
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It is worth to notice that, moreover, there are exceptional hamiltonians of type (*)

which are Superintegrable (SI), namely, a further integral of motion exists:

{H(2), I(2)} = 0

Example: if we consider a generic hamiltonian of the form:

H =
1

2
J+F(J−)

for linear F we get a super-integrable system.
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II. Integrable Systems through Non-Standard
Deformations of (sl(2,C),∆)

• Deformed PB:

{J3, J+} = 2J+ cosh zJ− {J3, J−} = −2
sinh zJ−

z
{J−, J+} = 4J3

• Casimir function

Cz =
sinh zJ−

z
J+ − J2

3

• Deformed Coproduct

∆z(J−) = J− ⊗ 1 + 1⊗ J− ∆z(Ji) = Ji ⊗ ezJ− + e−zJ− ⊗ Ji i = +, 3

z: real deformation parameter
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• One and two particle symplectic realization

One-particle:

J− = q2
1 J3 =

sinh zq2
1

zq2
1

q1p1

J+ =
sinh zq2

1

zq2
1

p2
1

Two-particle:

J− = q2
1 + q2

2 J3 =
sinh zq2

1

zq2
1

q1p1 ezq
2
2 +

sinh zq2
2

zq2
2

q2p2 e−zq
2
1

J+ =

(
sinh zq2

1

zq2
1

p2
1 +

zb1
sinh zq2

1

)
ezq

2
2 +

(
sinh zq2

2

zq2
2

p2
2 +

zb2
sinh zq2

2

)
e−zq

2
1

Two-particle Casimir:

Cz =
sinh zq2

1

zq2
1

sinh zq2
2

zq2
2

(q1p2 − q2p1)
2 e−zq

2
1ezq

2
2 + (b1e

2zq22 + b2e
−2zq21)

+

(
b1

sinh zq2
2

sinh zq2
1

+ b2
sinh zq2

1

sinh zq2
2

)
e−zq

2
1ezq

2
2 .
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Most general integrable deformation of the free motion in E2 ( H = 1
2(p

2
1 + p2

2)) :

H =
1

2
J+f (zJ−)

Simplest choice: f (x) = 1: however, not superintegrable!

Superintegrable hamiltonian:

HS
z =

1

2
J+ exp(zJ−)

i.e : f (x) = exp(x)

Extra-integral:

Iz =
sinh zq2

1

zq2
1

p2
1 exp(q2

1) = J
(1)
+ exp(zJ

(1)
− )

HS
z , Iz, Cz : functionally independent
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Natural interpretation:

Hamiltonians of the form J+f (zJ−) are deformed kinetic energies:

Hz = Tz(qi, pi)

We will show:

1. HI
z : geodesic motion in 2D Riemannian space or 1+1 rel. space-time, with

curvature depending both on z and on the point (q,p);

2. HS
z : geodesic motion . . . with curvature depending just on z
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III. Integrable Deformations and Non-Constant
Curvature

Let HI
z(qi, pi) → T I

z (qi, q̇i) (Legendre Transformation):

T I
z (qi, q̇i) =

1

2
(
(q̇1)

2 exp(−z(q2)2

sz(q2
1)

+
(q̇2)

2 exp(z(q1)
2

sz(q2
2)

)

sz(x) :=
sin(zx)

zx
yields a geodesic flow on a 2D space.

• Metric:

ds2 ≡ exp(−z(q2)2

sz(q2
1)

dq2
1 +

exp(z(q1)
2

sz(q2
2)

dq2
2 :=

g11(q)dq
2
1 + g22(q)dq

2
2
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• Gaussian curvature:

K = − 1

(g11g22)
1
2
{ ∂

∂q1
(g
−1

2
11

∂

∂q1
g

1
2
22) +

∂

∂q2
(g
−1

2
22

∂

∂q2
g

1
2
11)} = −z sinh[z(q2

1 + q2
2)]

K: negative and nonconstant!

Notice: To give a nonconstant curvature, the exponentials appearing in the de-

formed coproducts are essential
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Geometry is better seen through a change of variables.

cosh(λ1ρ) = exp z(q2
1 + q2

2) (ρ > 0)

sin2(λ2θ) =
exp(2zq2

1)− 1

exp z(q2
1 + q2

2)− 1

Remarks

• We have set z = λ2
1 and we have introduced a new real parameter λ2, related

with the signature of the metric.

• The new variable cosh(λ1ρ) is a collective variable, function of ∆(J−); its role

will be further specified later.

• The zero-deformation limit (improperly called the “classical limit”) z → 0 is

in fact the flat limit K → 0. In this limit ρ→ 2(q2
1 + q2

2), sin2(λ2θ) →
q21

q21+q22
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Metric in the new variables:

ds2 =
1

cosh(ρ)
(dρ2 +

λ2
2

λ2
1

sinh2(λ1ρ)dθ
2) =

1

cosh(ρ)
ds2

0

ds2
0 : so− called CK (Cayley − Klein) metric.

K = K(ρ) = −1

2
λ2

1

sinh2(λ1ρ)

cosh(λ1ρ)

z ∈ R+ : K < 0; z ∈ R− : Kperiodic

Kinetic energy and Hamiltonian:

T I
z (q, q̇) =

1

2

1

cosh(λ1ρ)
((ρ̇)2 +

λ2
2

λ2
1

sinh2(λ1ρ)(θ̇)
2))

HI
z(q, p) =

1

2
cosh(λ1ρ)(p

2
ρ +

λ2
1

λ2
2

sinh−2(λ1ρ)(pθ)
2)
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Moreover, as (pθ)
2 = CIz , the usual reduction to the radial coordinate can be per-

formed.

Specializations:

• λ2 ∈ R: z ∈ R+ : def. Hyperbolic− space; z ∈ R− : def. sphere

• λ2 ∈ iR: z ∈ R+ : def. DS− space; z ∈ R− : def. ADS− space

15



IV. Super-Integrable Deformations and Constant
Curvature

• We start from the Superintegrable Hamiltonian:

HS
z =

1

2
J+ exp(zJ−)

• Legendre Transform → the two-body “free” Lagrangian (Kinetic energy):

T S
z (q, q̇) =

1

2
(
exp(−z(q2

1 + 2q2
2))

sz(q2
1)

(q̇1)
2 +

exp(−zq2
2)

sz(q2
2)

(q̇2)
2)

• Associated metric:

ds2 = (
exp(−z(q2

1 + 2q2
2))

sz(q2
1)

(q̇1)
2 +

exp(−zq2
2)

sz(q2
2)

(q̇2)
2)

• Gaussian curvature:

K(q, z) = z = const.
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• Change of variables (as before):

ds2 =
1

cosh2(λ1ρ)
(dρ2 +

λ2
2

λ2
1

sinh2(λ1ρ)dθ
2) =

=
1

cosh2(λ1ρ)
ds2

0

• New radial variable:

r =

∫ ρ

0

dx

cosh(λ1x)

whence:

tan(λ1r) = sinh(λ1ρ)

cos(λ1r) =
1

cosh(λ1ρ)
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Finally:

T S
z =

1

2
(ṙ)2 +

λ2
2

λ2
1

sin2(λ1r)(θ̇)
2)

HS
z =

1

2
(pr)

2 +
λ2

1

λ2
2 sin2(λ1r)

(pθ)
2)

Integrals of motion:

CSz = p2
θ; ISz = (sin(λ2θ)pr +

λ1

λ2

cos(λ2θ)

tan(λ1r)
pθ)

2

Comment:

The change of variable ρ→ r through dr = dρ(cosh(λ1ρ))
−1

2 is of course admissible

even in the non-superintegrable case; however, with negligible advantage.

18



• Question : Are there other choices for the Hamiltonian yielding constant

curvature?

• Answer: Yes, there are ! However, I cannot say at the moment whether they

all yield superintegrable systems.

In fact, let:

HS
z =

1

2
J+f (zJ−)

and ask for K(ρ, z) be costant. It turns out:

K(x, z)/z = f ′ cosh x + (f ′′ − f − (f ′)2/f) sinhx =

= f [g cosh x + (g′ − 1) sinh x]; g := f ′/f

K ′ = 0 ≡ 2y cosh x + y′ sinhx = 0 : y := 2g′ + g2 − 1

yielding: y = A
sinh2(x)

;

Solving for g, we get for F := f
1
2 :

F ′′ =
1

4
(1 +

A

sinh2 x
)F

whose general solution is (A := λ(λ− 1)):

F = (sinhx)λ[C1 sinh(x/2)(1−2λ) + C2 cosh(x/2)1−2λ)]
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V. Many-Body Case; preliminary results

Co-algebra symmetry → N -body integrable version.

Example:N -body version of the simplest Hamiltonian:

HI(N)
z =

1

2

N∑
j=1

sz(q
2
j )p

2
j exp(z

∑
k 6=j

sgn(k − j)q2
k)

Again we get a “free” Lagrangian:

T I(N)
z =

1

2

N∑
i=1

(q̇i)
2 exp(−z

∑
k 6=j sgn(j − k)q2

k)

sz(q2
i )

with the obvious corresponding metric.

The following coordinates are the most suitable to understand the nature of the

problem, and to enforce separation (here I put for simplicity λ1 = 1,λ2 = 0):

ξ0 = cosh2(ρ) := ΠN
i=1 exp 2zq2

i

ξk = sinh2(ρ)Πk−1
j=1 sinh2 θj cosh2 θk = ΠN−k

i=1 exp(2zq2
i )(exp(2zq2

N−k+1 − 1) (k = 1, . . . , N−1)
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ξN = sinh2(ρ)ΠN
j=1 sinh2 θj

ξ2
0 −

N∑
k=1

ξ2
k = 1.

• Geodesic flow in (ρ, ~θ) variables:

The Hamiltonian reads

HI(N)
z = cosh(ρ)[p2

ρ +
1

sinh2(ρ)

N∑
j=1

(Πj−1
k=1

1

sin2(θk)
)p2
θj

]

and the Integrals of motion are:

Ij = ∆(j)C = (Πj−1
k=1

1

sin2(θk)
)p2
θj

So we are left with a one-dimensional problem.

• Main advantage (and limitation) of dynamical systems with co-algebra symme-

try: for any N , you end up with a typical mean field dynamics: The system has

a cluster structure: each cluster, whose dynamical variables are given by the
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partial coproducts of the (q-deformed) Lie algebra generators, moves as a sin-

gle particle in a field generated self-consistently by the individual constituents.

The coupling between the clusters and the mean field is parametrized by the

appropriate partial Casimirs.

• The models can be extended to incorporate the interaction with an external

central field, preserving integrability. It is enough modifying the Hamiltonian

by adding an arbitrary function of J−. In this way, we have constructed Hamil-

tonian describing an integrable deformation of Harmonic or Kepler motion on

a curved background, reducing to the usual one as z → 0.
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VI. Towards Quantization

The Poisson brackets relations are replaced by the following CRs:

• Deformed CRs:

[J3, J+ ]− = [J+ cosh z, J−]+ [J3, J−]− = −2
sinh zJ−

z
[J−, J+]− = 4J3

• Casimir operator

Cz =
1

2
[
sinh zJ−

z
, J+]+ − J2

3

• Realization.

As the coproduct map has no ordering ambiguities, also in the quantum case

the basic information is encoded in the one-dimensional case. We use the

coordinate x = λ1ρ and get:

Ĵ− = λ−2
1 log coshx

Ĵ3 =
1

2
[∂x, sinh(x)]+

Ĵ+ = λ2
1(∂xh(x)∂x +

1

h(x)
) h(x) = 2 coshx
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• Notice the additional term 1
h(x) with respect to the classical case.

As an example we consider just the quantum analog of the geodesic motion with

nonconstant curvature, thus taking Ĵ+ as the Hamiltonian operator. After a further

(trivial) gauge transformation, we arrive at the equation (µ: “spectral parameter”)

� ψxx = (µsechx +
1

4
)ψ

1. � is a special case of Heun differential equation with parameters:

a = −1; µ = q : γ = 0; δ = 1;α, β = ±1/2

2. Extra-dimensions result in the addition of appropriate centrifugal terms, con-

trolled by the partial Casimirs.
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• Examples

1. E1: Geodesic motion on constant curvature surfaces

2. E2: Deformed Harmonic motion on constant curvature surfaces.

3. E3: Geodesic motion on nonconstant curvature surfaces
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EXAMPLE I

Let:

H = J+ exp(zJ−) =
exp(2zq2 − 1)

2zq2
p2

Define

ai = J3,i exp(zJ−,i); bi = J+,i exp(zJ−,i); ci = J−,i

Cz,i = exp(−2zci)(a
2
i + bi

exp(2zci)− 1

2z
)
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We don’t work with single particle variables, but first use:

a = ∆(2)(a1) = ∆(2)(J3,1) exp(z∆(2)J−,1) =

a1 + exp(2zc1)a2

b = ∆(2)(b1) = b1 + exp(2zc1)b2 := H2

c = ∆(2)(c1) = c1 + c2

Then, turn to a1, b1, c1

Remark: Geometric variables: cosh(λ1ρ) = exp(2zc) sin2(λ2θ) = exp(2zc1)−1
exp(2zc)−1

According with the previous outlined strategy, we start by solving the simplest

equation, involving collecting variables, then solve for single-particle dynamics

Evolution equations for collective variables:

ȧ = 2b + 4a2 = E + 4a2

ḃ = 0

ċ = 4a
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There are two cases, according to the sign of zE.

1. 2zE = γ2 > 0, γ ∈ R; then:

a =
E

γ
tanh(2γ(t− t0))

cosh(λ1ρ) = exp(2zc) = cosh(2γ(t− t0))

Notice: The ”radius” ρ grows linearly in time.

2. 2zE = − γ2 < 0, γ ∈ R. Hyperbolic functions are replaced by trigono-

metric ones. However, having to do with free motion, the energy E has to be

taken as positive. So it is z that changes sign, and consequently the variable

ρ, which again evolves linearly in time, has to be viewed as an angle.
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The one-body variables obey the system of nonlinear equations:

ȧ1 = 2b1 + 4za2
1 + 4b2 exp(2c1z)

exp(2c1z)− 1

2z
ḃ1 = 8za1 exp(2zc1)b2

ċ1 = 4a1

which can be explicitly solved in terms of trigonometric/hyperbolic functions.
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You may proceed as follows:

• From the second and the third equation, you get:

exp(2zc1) =
E − b1
b2

b2 : constant of the motion

• Then, you use the one-body Casimir δ(1), such that:

exp(2zc1) =
za2

1 + b1
zδ(1) + b1

to eliminate a1 in favor of b1, c1, finally getting the evolution equation for

γ1 := exp(2zc1):

γ̇1 = 8γ1

√
zb2(γ1 − γ+)(γ1 − γ−)

the parameters γ± being given in terms of the constants b2, δ
(1), E.

• For zE < 0, γ± ∈ R the solution is given in terms of trigonometric functions

and reads:

γ1 =
γ+γ−

γ+ cos2(
√
zE(t− t0)) + γ− sin2(

√
zE(t− t0))
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EXAMPLE II

Let

H = exp(zJ−)(J+ω
2sinh(zJ−)

z
)

It describes the motion of a particle in the field given by a q−deformed harmonic

oscillator, on a surface with constant curvature.

The dynamical variables and the Casimir are defined as before. The equations for

the collective variables are easily written down in terms of variables a, b, γ := exp(2zc) = cosh(λ1ρ).

ȧ = 2b + 4za2 + ω2 exp(2zc)(
exp(2zc)− 1

z
)

ḃ = −4ω2aγ

γ̇ = 8zaγ

Thanks to the integrals of motion H, Cz one finally gets a first order evolution

equation for γ (→ for ρ):

γ̇ = 8zγ
√
ω2(γ − γ+)(γ− − γ)

For suitable values of H, Cz the motion for γ is periodic, expressed in terms of

trigonometric functions, just as that for the one-body variables derived in the pre-

vious example, and confined in the interval [γ−, γ+].
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Following again the same path, one now considers evolution equations for single-

particle variables:

ȧ1 = 2b1 + 4za2
1 + 2 exp(2zc)

1− 2 exp(2c1z)

2z
(2zb2 exp(−2zc2 + ω2)

ḃ1 = 8za1 exp(2zc)
ω2 + b2 exp(−2zc2)

2z
ċ1 = 4a1 (0.1)

As for the geodesic case, the constants of the motion H, Cz, δ(1), δ(2) yield finally

first order equations for the above degrees of freedom. The simplest one involves

exp(2zc1) = γ1and reads:

γ̇1 = 8zγ1

√
k(ξ+ − γ1)(ξ− − γ1)

which is again solvable in terms of trigonometric/hyperbolic functions.
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EXAMPLE III

As for the geodesic motion on surfaces with noncostant curvature, just a few pre-

liminary remarks.

Recall that in polar variables ρ, pρ, θ, pθ for the so-called deformed ADS space-time

the Hamiltonian reads:

H = cos ρ(p2
ρ +

p2
θ

sin2(ρ)
)

The corresponding evolution equation for the collective variable cos ρ is obtained

by inverting the integral:

t =

∫ cos ρ dy√
y(E(1− y2)− p2

θy)

In suitable rescaled variables (a = cot(p2
θ/|E|), one get for cos ρ a periodic motion,

with the following period:

T = (|E|)−
1
2

∫ a

0

dx√
x(x− a)(x + a−1)
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