LOR 2006

June 22-24, 2006, Budapest

Q-Deformations and Integrable Motions on Manifolds with Curvature

O.Ragnisco
in collaboration with A.Ballesteros, F.Herranz, F.Musso, M.Petrera, G.Satta
PLB 610 (2005), 107-114; JPA 38 (2005), 7129-7144 Cz.J.P. 55 (2005), 1327-1333.

- AIM : to show the intimate relation between algebraic notions and quantities (namely q-Poisson coalgebras) and geometric ones (integrable motions on 2D manifolds with constant and non-constant curvature)
- TOOLS: Hopf-algebra structure of Non - Standard q-deformations

PLAN OF THE LECTURE

1. Hamiltonians with co-algebra symmetry
2. Non-Standard deformations
3. Integrable Hamiltonians and non-constant curvature
4. Super-integrable Hamiltonians and constant curvature
5. More degrees of freedom. Separation of variables
6. From Classical to Quantum

I. Poisson Coalgebra $(s l(2, \mathbb{C}), \Delta)$

$$
\begin{gathered}
s l(2, \mathbb{C}):=\left\{J_{3}, J_{+}, J_{-}\right\} \\
\left\{J_{3}, J_{ \pm}\right\}= \pm 2 J_{ \pm} \\
\left\{J_{+}, J_{-}\right\}=4 J_{3}
\end{gathered}
$$

- Δ : co-associative Poisson Homomorphism:

$$
\begin{gathered}
\Delta:(s l(2, \mathbb{C}) \rightarrow(s l(2, \mathbb{C}) \oplus(s l(2, \mathbb{C})) \\
\Delta\left(J_{k}\right)=J_{k} \oplus I+I \oplus J_{k}
\end{gathered}
$$

- One particle symplectic realization:

$$
J_{-}^{(1)}=q_{1}^{2} \quad J_{+}^{(1)}=p_{1}^{2}+b_{1} / q_{1}^{2} \quad J_{3}^{(1)}=q_{1} p_{1}
$$

- Casimir function

$$
\mathcal{C}^{(1)}=J_{-} J_{+}+J_{3}^{2}=b_{1}
$$

- From 1- to 2- (and to many-) particle symplectic realization through Δ

$$
\begin{gathered}
J_{-}^{(2)}=q_{1}^{2}+q_{2}^{2} \quad J_{+}^{(2)}=p_{1}^{2}+p_{2}^{2}+b_{1} / q_{1}^{2}+b_{2} / q_{2}^{2} \\
J_{3}^{(2)}=q_{1} p_{1}+q_{2} p_{2}
\end{gathered}
$$

- Fundamental property:

Any smooth function $\mathcal{H}^{(2)}=\mathcal{H}\left(J_{-}^{(2)}, J_{+}^{(2)}, J_{3}^{(2)}\right)\left(^{*}\right)$ defines a completely integrable two-particle system, as it is equipped with the extra-integral of motion $\mathcal{C}^{(2)}$, reading:

$$
\begin{gathered}
\mathcal{C}^{(2)}=\Delta(\mathcal{C})= \\
\left(q_{1} p_{2}-q_{2} p_{1}\right)^{2}+\left(\frac{b_{1}}{q_{1}^{2}}+\frac{b_{2}}{q_{2}^{2}}\right)\left(q_{1}^{2}+q_{2}^{2}\right)
\end{gathered}
$$

- Hence, integrability of any Hamiltonian $\left(^{*}\right)$ is merely a consequence of coalgebra symmetry

It is worth to notice that, moreover, there are exceptional hamiltonians of type (*) which are Superintegrable (SI), namely, a further integral of motion exists:

$$
\left\{\mathcal{H}^{(2)}, \mathcal{I}^{(2)}\right\}=0
$$

Example: if we consider a generic hamiltonian of the form:

$$
\mathcal{H}=\frac{1}{2} J_{+} \mathcal{F}\left(J_{-}\right)
$$

for linear \mathcal{F} we get a super-integrable system.

II. Integrable Systems through Non-Standard Deformations of $(s l(2, \mathbb{C}), \Delta)$

- Deformed PB:

$$
\left\{J_{3}, J_{+}\right\}=2 J_{+} \cosh z J_{-} \quad\left\{J_{3}, J_{-}\right\}=-2 \frac{\sinh z J_{-}}{z} \quad\left\{J_{-}, J_{+}\right\}=4 J_{3}
$$

- Casimir function

$$
\mathcal{C}_{z}=\frac{\sinh z J_{-}}{z} J_{+}-J_{3}^{2}
$$

- Deformed Coproduct

$$
\Delta_{z}\left(J_{-}\right)=J_{-} \otimes 1+1 \otimes J_{-} \quad \Delta_{z}\left(J_{i}\right)=J_{i} \otimes \mathrm{e}^{z J_{-}}+\mathrm{e}^{-z J_{-}} \otimes J_{i} \quad i=+, 3
$$

z : real deformation parameter

- One and two particle symplectic realization

One-particle:

$$
\begin{aligned}
& J_{-}=q_{1}^{2} \quad J_{3}=\frac{\sinh z q_{1}^{2}}{z q_{1}^{2}} q_{1} p_{1} \\
& J_{+}=\frac{\sinh z q_{1}^{2}}{z q_{1}^{2}} p_{1}^{2}
\end{aligned}
$$

Two-particle:

$$
\begin{aligned}
& J_{-}=q_{1}^{2}+q_{2}^{2} \quad J_{3}=\frac{\sinh z q_{1}^{2}}{z q_{1}^{2}} q_{1} p_{1} \mathrm{e}^{z q_{2}^{2}}+\frac{\sinh z q_{2}^{2}}{z q_{2}^{2}} q_{2} p_{2} \mathrm{e}^{-z q_{1}^{2}} \\
& J_{+}=\left(\frac{\sinh z q_{1}^{2}}{z q_{1}^{2}} p_{1}^{2}+\frac{z b_{1}}{\sinh z q_{1}^{2}}\right) \mathrm{e}^{z q_{2}^{2}}+\left(\frac{\sinh z q_{2}^{2}}{z q_{2}^{2}} p_{2}^{2}+\frac{z b_{2}}{\sinh z q_{2}^{2}}\right) \mathrm{e}^{-z q_{1}^{2}}
\end{aligned}
$$

Two-particle Casimir:

$$
\begin{gathered}
\mathcal{C}_{z}=\frac{\sinh z q_{1}^{2}}{z q_{1}^{2}} \frac{\sinh z q_{2}^{2}}{z q_{2}^{2}}\left(q_{1} p_{2}-q_{2} p_{1}\right)^{2} \mathrm{e}^{-z q_{1}^{2}} \mathrm{e}^{z q_{2}^{2}}+\left(b_{1} \mathrm{e}^{2 z q_{2}^{2}}+b_{2} \mathrm{e}^{-2 z q_{1}^{2}}\right) \\
+\left(b_{1} \frac{\sinh z q_{2}^{2}}{\sinh z q_{1}^{2}}+b_{2} \frac{\sinh z q_{1}^{2}}{\sinh z q_{2}^{2}}\right) \mathrm{e}^{-z q_{1}^{2}} \mathrm{e}^{z q_{2}^{2}}
\end{gathered}
$$

Most general integrable deformation of the free motion in $\mathbb{E}^{2}\left(\mathcal{H}=\frac{1}{2}\left(p_{1}^{2}+p_{2}^{2}\right)\right)$:

$$
\mathcal{H}=\frac{1}{2} J_{+} f\left(z J_{-}\right)
$$

Simplest choice: $f(x)=1$: however, not superintegrable!
Superintegrable hamiltonian:

$$
\mathcal{H}_{z}^{S}=\frac{1}{2} J_{+} \exp \left(z J_{-}\right)
$$

i.e : $f(x)=\exp (x)$

Extra-integral:

$$
\mathcal{I}_{z}=\frac{\sinh z q_{1}^{2}}{z q_{1}^{2}} p_{1}^{2} \exp \left(q_{1}^{2}\right)=J_{+}^{(1)} \exp \left(z J_{-}^{(1)}\right)
$$

$\mathcal{H}_{z}^{S}, \mathcal{I}_{z}, \mathcal{C}_{z}:$ functionally independent

Natural interpretation:
Hamiltonians of the form $J_{+} f\left(z J_{-}\right)$are deformed kinetic energies:

$$
\mathcal{H}_{z}=\mathcal{T}_{z}\left(q_{i}, p_{i}\right)
$$

We will show:

1. \mathcal{H}_{z}^{I} : geodesic motion in 2 D Riemannian space or $1+1$ rel. space-time, with curvature depending both on z and on the point (q,p);
2. \mathcal{H}_{z}^{S} : geodesic motion \ldots with curvature depending just on z

III. Integrable Deformations and Non-Constant Curvature

Let $\mathcal{H}_{z}^{I}\left(q_{i}, p_{i}\right) \quad \rightarrow \mathcal{T}_{z}^{I}\left(q_{i}, \dot{q}_{i}\right) \quad$ (Legendre Transformation):

$$
\begin{gathered}
\mathcal{T}_{z}^{I}\left(q_{i}, \dot{q}_{i}\right)=\frac{1}{2}\left(\frac{\left(\dot{q}_{1}\right)^{2} \exp \left(-z\left(q_{2}\right)^{2}\right.}{s_{z}\left(q_{1}^{2}\right)}+\frac{\left(\dot{q}_{2}\right)^{2} \exp \left(z\left(q_{1}\right)^{2}\right.}{s_{z}\left(q_{2}^{2}\right)}\right) \\
s_{z}(x):=\frac{\sin (z x)}{z x}
\end{gathered}
$$

yields a geodesic flow on a 2 D space.

- Metric:

$$
\begin{gathered}
d s^{2} \equiv \frac{\exp \left(-z\left(q_{2}\right)^{2}\right.}{s_{z}\left(q_{1}^{2}\right)} d q_{1}^{2}+\frac{\exp \left(z\left(q_{1}\right)^{2}\right.}{s_{z}\left(q_{2}^{2}\right)} d q_{2}^{2}:= \\
g_{11}(q) d q_{1}^{2}+g_{22}(q) d q_{2}^{2}
\end{gathered}
$$

- Gaussian curvature:
$K=-\frac{1}{\left(g_{11} g_{22}\right)^{\frac{1}{2}}}\left\{\frac{\partial}{\partial q_{1}}\left(g_{11}^{-\frac{1}{2}} \frac{\partial}{\partial q_{1}} g_{22}^{\frac{1}{2}}\right)+\frac{\partial}{\partial q_{2}}\left(g_{22}^{-\frac{1}{2}} \frac{\partial}{\partial q_{2}} g_{11}^{\frac{1}{2}}\right)\right\}=-z \sinh \left[z\left(q_{1}^{2}+q_{2}^{2}\right)\right]$
K : negative and nonconstant!

Notice: To give a nonconstant curvature, the exponentials appearing in the deformed coproducts are essential

Geometry is better seen through a change of variables.

$$
\begin{gathered}
\cosh \left(\lambda_{1} \rho\right)=\exp z\left(q_{1}^{2}+q_{2}^{2}\right) \quad(\rho>0) \\
\sin ^{2}\left(\lambda_{2} \theta\right)=\frac{\exp \left(2 z q_{1}^{2}\right)-1}{\exp z\left(q_{1}^{2}+q_{2}^{2}\right)-1}
\end{gathered}
$$

Remarks

- We have set $z=\lambda_{1}^{2}$ and we have introduced a new real parameter λ_{2}, related with the signature of the metric.
- The new variable $\cosh \left(\lambda_{1} \rho\right)$ is a collective variable, function of $\Delta\left(J_{-}\right)$; its role will be further specified later.
- The zero-deformation limit (improperly called the "classical limit") z $\rightarrow 0$ is in fact the flat limit $K \rightarrow 0$. In this limit $\rho \rightarrow 2\left(q_{1}^{2}+q_{2}^{2}\right), \sin ^{2}\left(\lambda_{2} \theta\right) \rightarrow \frac{q_{1}^{2}}{q_{1}^{2}+q_{2}^{2}}$

Metric in the new variables:

$$
\begin{gathered}
d s^{2}=\frac{1}{\cosh (\rho)}\left(d \rho^{2}+\frac{\lambda_{2}^{2}}{\lambda_{1}^{2}} \sinh ^{2}\left(\lambda_{1} \rho\right) d \theta^{2}\right)=\frac{1}{\cosh (\rho)} d s_{0}^{2} \\
\left.d s_{0}^{2}: \text { so - called } \quad \text { CK (Cayley }- \text { Klein }\right) \text { metric. } \\
K=K(\rho)=-\frac{1}{2} \lambda_{1}^{2} \frac{\sinh ^{2}\left(\lambda_{1} \rho\right)}{\cosh \left(\lambda_{1} \rho\right)} \\
z \in \mathbb{R}^{+}: K<0 ; \quad z \in \mathbb{R}^{-}: K \text { periodic }
\end{gathered}
$$

Kinetic energy and Hamiltonian:

$$
\begin{aligned}
& \left.\mathcal{T}_{z}^{I}(q, \dot{q})=\frac{1}{2} \frac{1}{\cosh \left(\lambda_{1} \rho\right)}\left((\dot{\rho})^{2}+\frac{\lambda_{2}^{2}}{\lambda_{1}^{2}} \sinh ^{2}\left(\lambda_{1} \rho\right)(\dot{\theta})^{2}\right)\right) \\
& \mathcal{H}_{z}^{I}(q, p)=\frac{1}{2} \cosh \left(\lambda_{1} \rho\right)\left(p_{\rho}^{2}+\frac{\lambda_{1}^{2}}{\lambda_{2}^{2}} \sinh ^{-2}\left(\lambda_{1} \rho\right)\left(p_{\theta}\right)^{2}\right)
\end{aligned}
$$

Moreover, as $\left(p_{\theta}\right)^{2}=\mathcal{C}_{z}^{I}$, the usual reduction to the radial coordinate can be performed.
Specializations:

- $\lambda_{2} \in \mathbb{R}: z \in \mathbb{R}^{+}$: def. Hyperbolic - space; $z \in \mathbb{R}^{-}$: def. sphere
- $\lambda_{2} \in i \mathbb{R}: z \in \mathbb{R}^{+}$: def. DS - space; $z \in \mathbb{R}^{-}$: def. ADS - space

IV. Super-Integrable Deformations and Constant Curvature

- We start from the Superintegrable Hamiltonian:

$$
\mathcal{H}_{z}^{S}=\frac{1}{2} J_{+} \exp \left(z J_{-}\right)
$$

- Legendre Transform \rightarrow the two-body "free" Lagrangian (Kinetic energy):

$$
\mathcal{T}_{z}^{S}(q, \dot{q})=\frac{1}{2}\left(\frac{\exp \left(-z\left(q_{1}^{2}+2 q_{2}^{2}\right)\right)}{s_{z}\left(q_{1}^{2}\right)}\left(\dot{q}_{1}\right)^{2}+\frac{\exp \left(-z q_{2}^{2}\right)}{s_{z}\left(q_{2}^{2}\right)}\left(\dot{q}_{2}\right)^{2}\right)
$$

- Associated metric:

$$
d s^{2}=\left(\frac{\exp \left(-z\left(q_{1}^{2}+2 q_{2}^{2}\right)\right)}{s_{z}\left(q_{1}^{2}\right)}\left(\dot{q}_{1}\right)^{2}+\frac{\exp \left(-z q_{2}^{2}\right)}{s_{z}\left(q_{2}^{2}\right)}\left(\dot{q}_{2}\right)^{2}\right)
$$

- Gaussian curvature:

$$
K(q, z)=z=\text { const. }
$$

- Change of variables (as before):

$$
\begin{gathered}
d s^{2}=\frac{1}{\cosh ^{2}\left(\lambda_{1} \rho\right)}\left(d \rho^{2}+\frac{\lambda_{2}^{2}}{\lambda_{1}^{2}} \sinh ^{2}\left(\lambda_{1} \rho\right) d \theta^{2}\right)= \\
=\frac{1}{\cosh ^{2}\left(\lambda_{1} \rho\right)} d s_{0}^{2}
\end{gathered}
$$

- New radial variable:

$$
r=\int_{0}^{\rho} \frac{d x}{\cosh \left(\lambda_{1} x\right)}
$$

whence:

$$
\begin{aligned}
& \tan \left(\lambda_{1} r\right)=\sinh \left(\lambda_{1} \rho\right) \\
& \cos \left(\lambda_{1} r\right)=\frac{1}{\cosh \left(\lambda_{1} \rho\right)}
\end{aligned}
$$

Finally:

$$
\begin{aligned}
& \left.\mathcal{T}_{z}^{S}=\frac{1}{2}(\dot{r})^{2}+\frac{\lambda_{2}^{2}}{\lambda_{1}^{2}} \sin ^{2}\left(\lambda_{1} r\right)(\dot{\theta})^{2}\right) \\
& \left.\mathcal{H}_{z}^{S}=\frac{1}{2}\left(p_{r}\right)^{2}+\frac{\lambda_{1}^{2}}{\lambda_{2}^{2} \sin ^{2}\left(\lambda_{1} r\right)}\left(p_{\theta}\right)^{2}\right)
\end{aligned}
$$

Integrals of motion:

$$
\mathcal{C}_{z}^{S}=p_{\theta}^{2} ; \quad \mathcal{I}_{z}^{S}=\left(\sin \left(\lambda_{2} \theta\right) p_{r}+\frac{\lambda_{1}}{\lambda_{2}} \frac{\cos \left(\lambda_{2} \theta\right)}{\tan \left(\lambda_{1} r\right)} p_{\theta}\right)^{2}
$$

Comment:
The change of variable $\rho \rightarrow r$ through $d r=d \rho\left(\cosh \left(\lambda_{1} \rho\right)\right)^{-\frac{1}{2}}$ is of course admissible even in the non-superintegrable case; however, with negligible advantage.

- Question : Are there other choices for the Hamiltonian yielding constant curvature?
- Answer: Yes, there are ! However, I cannot say at the moment whether they all yield superintegrable systems.

In fact, let:

$$
\mathcal{H}_{z}^{S}=\frac{1}{2} J_{+} f\left(z J_{-}\right)
$$

and ask for $K(\rho, z)$ be costant. It turns out:

$$
\begin{gathered}
K(x, z) / z=f^{\prime} \cosh x+\left(f^{\prime \prime}-f-\left(f^{\prime}\right)^{2} / f\right) \sinh x= \\
=f\left[g \cosh x+\left(g^{\prime}-1\right) \sinh x\right] ; \quad g:=f^{\prime} / f \\
K^{\prime}=0 \equiv 2 y \cosh x+y^{\prime} \sinh x=0: \quad y:=2 g^{\prime}+g^{2}-1
\end{gathered}
$$

yielding: $y=\frac{A}{\sinh ^{2}(x)}$;
Solving for g, we get for $F:=f^{\frac{1}{2}}$:

$$
F^{\prime \prime}=\frac{1}{4}\left(1+\frac{A}{\sinh ^{2} x}\right) F
$$

whose general solution is $(A:=\lambda(\lambda-1))$:

$$
F=(\sinh x)^{\lambda}\left[C_{1} \sinh (x / 2)^{(1-2 \lambda)}+C_{2} \cosh (x / 2)^{1-2 \lambda)}\right]
$$

V. Many-Body Case; preliminary results

Co-algebra symmetry $\rightarrow N$-body integrable version.
Example: N -body version of the simplest Hamiltonian:

$$
\mathcal{H}_{z}^{I(N)}=\frac{1}{2} \sum_{j=1}^{N} s_{z}\left(q_{j}^{2}\right) p_{j}^{2} \exp \left(z \sum_{k \neq j} \operatorname{sgn}(k-j) q_{k}^{2}\right)
$$

Again we get a "free" Lagrangian:

$$
\mathcal{T}_{z}^{I(N)}=\frac{1}{2} \sum_{i=1}^{N} \frac{\left(\dot{q}_{i}\right)^{2} \exp \left(-z \sum_{k \neq j} \operatorname{sgn}(j-k) q_{k}^{2}\right)}{s_{z}\left(q_{i}^{2}\right)}
$$

with the obvious corresponding metric.
The following coordinates are the most suitable to understand the nature of the problem, and to enforce separation (here I put for simplicity $\lambda_{1}=1, \lambda_{2}=0$):

$$
\begin{gathered}
\xi_{0}=\cosh ^{2}(\rho):=\Pi_{i=1}^{N} \exp 2 z q_{i}^{2} \\
\xi_{k}=\sinh ^{2}(\rho) \Pi_{j=1}^{k-1} \sinh ^{2} \theta_{j} \cosh ^{2} \theta_{k}=\Pi_{i=1}^{N-k} \exp \left(2 z q_{i}^{2}\right)\left(\exp \left(2 z q_{N-k+1}^{2}-1\right)(k=1, \ldots, N-1)\right.
\end{gathered}
$$

$$
\begin{gathered}
\xi_{N}=\sinh ^{2}(\rho) \Pi_{j=1}^{N} \sinh ^{2} \theta_{j} \\
\xi_{0}^{2}-\sum_{k=1}^{N} \xi_{k}^{2}=1 .
\end{gathered}
$$

- Geodesic flow in $(\rho, \vec{\theta})$ variables:

The Hamiltonian reads

$$
\mathcal{H}_{z}^{I(N)}=\cosh (\rho)\left[p_{\rho}^{2}+\frac{1}{\sinh ^{2}(\rho)} \sum_{j=1}^{N}\left(\Pi_{k=1}^{j-1} \frac{1}{\sin ^{2}\left(\theta_{k}\right)}\right) p_{\theta_{j}}^{2}\right]
$$

and the Integrals of motion are:

$$
\mathcal{I}_{j}=\Delta^{(j)} \mathcal{C}=\left(\Pi_{k=1}^{j-1} \frac{1}{\sin ^{2}\left(\theta_{k}\right)}\right) p_{\theta_{j}}^{2}
$$

So we are left with a one-dimensional problem.

- Main advantage (and limitation) of dynamical systems with co-algebra symmetry: for any N, you end up with a typical mean field dynamics: The system has a cluster structure: each cluster, whose dynamical variables are given by the
partial coproducts of the (q-deformed) Lie algebra generators, moves as a single particle in a field generated self-consistently by the individual constituents. The coupling between the clusters and the mean field is parametrized by the appropriate partial Casimirs.
- The models can be extended to incorporate the interaction with an external central field, preserving integrability. It is enough modifying the Hamiltonian by adding an arbitrary function of J_{-}. In this way, we have constructed Hamiltonian describing an integrable deformation of Harmonic or Kepler motion on a curved background, reducing to the usual one as $z \rightarrow 0$.

VI. Towards Quantization

The Poisson brackets relations are replaced by the following CRs:

- Deformed CRs:

$$
\left[J_{3}, J_{+}\right]_{-}=\left[J_{+} \cosh z, J_{-}\right]_{+} \quad\left[J_{3}, J_{-}\right]_{-}=-2 \frac{\sinh z J_{-}}{z} \quad\left[J_{-}, J_{+}\right]_{-}=4 J_{3}
$$

- Casimir operator

$$
\mathcal{C}_{z}=\frac{1}{2}\left[\frac{\sinh z J_{-}}{z}, J_{+}\right]_{+}-J_{3}^{2}
$$

- Realization.

As the coproduct map has no ordering ambiguities, also in the quantum case the basic information is encoded in the one-dimensional case. We use the coordinate $x=\lambda_{1} \rho$ and get:

$$
\begin{aligned}
& \hat{J}_{-}=\lambda_{1}^{-2} \log \cosh x \\
& \hat{J}_{3}=\frac{1}{2}\left[\partial_{x}, \sinh (x)\right]_{+} \\
& \hat{J}_{+}=\lambda_{1}^{2}\left(\partial_{x} h(x) \partial_{x}+\frac{1}{h(x)}\right) \quad h(x)=2 \cosh x
\end{aligned}
$$

- Notice the additional term $\frac{1}{h(x)}$ with respect to the classical case.

As an example we consider just the quantum analog of the geodesic motion with nonconstant curvature, thus taking \hat{J}_{+}as the Hamiltonian operator. After a further (trivial) gauge transformation, we arrive at the equation (μ : "spectral parameter")

$$
\square \quad \psi_{x x}=\left(\mu \operatorname{sech} x+\frac{1}{4}\right) \psi
$$

1.is a special case of Heun differential equation with parameters:

$$
a=-1 ; \quad \mu=q: \quad \gamma=0 ; \quad \delta=1 ; \alpha, \beta= \pm 1 / 2
$$

2. Extra-dimensions result in the addition of appropriate centrifugal terms, controlled by the partial Casimirs.

- Examples

1. E_{1} : Geodesic motion on constant curvature surfaces
2. E_{2} : Deformed Harmonic motion on constant curvature surfaces.
3. E_{3} : Geodesic motion on nonconstant curvature surfaces

EXAMPLE I

Let:

$$
\mathcal{H}=J_{+} \exp \left(z J_{-}\right)=\frac{\exp \left(2 z q^{2}-1\right)}{2 z q^{2}} p^{2}
$$

Define

$$
\begin{aligned}
& a_{i}=J_{3, i} \exp \left(z J_{-, i}\right) ; \quad b_{i}=J_{+, i} \exp \left(z J_{-, i}\right) ; \quad c_{i}=J_{-, i} \\
& \mathcal{C}_{z, i}=\exp \left(-2 z c_{i}\right)\left(a_{i}^{2}+b_{i} \frac{\exp \left(2 z c_{i}\right)-1}{2 z}\right)
\end{aligned}
$$

We don't work with single particle variables, but first use:

$$
\begin{aligned}
& a=\Delta^{(2)}\left(a_{1}\right)=\Delta^{(2)}\left(J_{3,1}\right) \exp \left(z \Delta^{(2)} J_{-, 1}\right)= \\
& a_{1}+\exp \left(2 z c_{1}\right) a_{2} \\
& b=\Delta^{(2)}\left(b_{1}\right)=b_{1}+\exp \left(2 z c_{1}\right) b_{2}:=\mathcal{H}_{2} \\
& c=\Delta^{(2)}\left(c_{1}\right)=c_{1}+c_{2}
\end{aligned}
$$

Then, turn to a_{1}, b_{1}, c_{1}
Remark: Geometric variables: $\cosh \left(\lambda_{1} \rho\right)=\exp (2 z c) \quad \sin ^{2}\left(\lambda_{2} \theta\right)=\frac{\exp \left(2 z c_{1}\right)-1}{\exp (2 z c)-1}$
According with the previous outlined strategy, we start by solving the simplest equation, involving collecting variables, then solve for single-particle dynamics

Evolution equations for collective variables:

$$
\begin{aligned}
& \dot{a}=2 b+4 a^{2}=E+4 a^{2} \\
& \dot{b}=0 \\
& \dot{c}=4 a
\end{aligned}
$$

There are two cases, according to the sign of $z E$.

1. $2 z E=\gamma^{2}>0, \quad \gamma \in \mathbb{R}$; then:

$$
\begin{aligned}
& a=\frac{E}{\gamma} \tanh \left(2 \gamma\left(t-t_{0}\right)\right) \\
& \cosh \left(\lambda_{1} \rho\right)=\exp (2 z c)=\cosh \left(2 \gamma\left(t-t_{0}\right)\right)
\end{aligned}
$$

Notice: The "radius" ρ grows linearly in time.
2. $2 z E=-\gamma^{2}<0, \quad \gamma \in \mathbb{R}$. Hyperbolic functions are replaced by trigonometric ones. However, having to do with free motion, the energy E has to be taken as positive. So it is z that changes sign, and consequently the variable ρ, which again evolves linearly in time, has to be viewed as an angle.

The one-body variables obey the system of nonlinear equations:

$$
\begin{aligned}
& \dot{a}_{1}=2 b_{1}+4 z a_{1}^{2}+4 b_{2} \exp \left(2 c_{1} z\right) \frac{\exp \left(2 c_{1} z\right)-1}{2 z} \\
& \dot{b}_{1}=8 z a_{1} \exp \left(2 z c_{1}\right) b_{2} \\
& \dot{c}_{1}=4 a_{1}
\end{aligned}
$$

which can be explicitly solved in terms of trigonometric/hyperbolic functions.

You may proceed as follows:

- From the second and the third equation, you get:

$$
\exp \left(2 z c_{1}\right)=\frac{E-b_{1}}{b_{2}} \quad b_{2}: \text { constant of the motion }
$$

- Then, you use the one-body Casimir $\delta^{(1)}$, such that:

$$
\exp \left(2 z c_{1}\right)=\frac{z a_{1}^{2}+b_{1}}{z \delta^{(1)}+b_{1}}
$$

to eliminate a_{1} in favor of b_{1}, c_{1}, finally getting the evolution equation for $\gamma_{1}:=\exp \left(2 z c_{1}\right)$:

$$
\dot{\gamma}_{1}=8 \gamma_{1} \sqrt{z b_{2}\left(\gamma_{1}-\gamma_{+}\right)\left(\gamma_{1}-\gamma_{-}\right)}
$$

the parameters $\gamma_{ \pm}$being given in terms of the constants $b_{2}, \delta^{(1)}, E$.

- For $z E<0, \gamma_{ \pm} \in \mathbb{R}$ the solution is given in terms of trigonometric functions and reads:

$$
\gamma_{1}=\frac{\gamma_{+} \gamma_{-}}{\gamma_{+} \cos ^{2}\left(\sqrt{z E}\left(t-t_{0}\right)\right)+\gamma_{-} \sin ^{2}\left(\sqrt{z E}\left(t-t_{0}\right)\right)}
$$

EXAMPLE II

Let

$$
\mathcal{H}=\exp \left(z J_{-}\right)\left(J_{+} \omega^{2} \frac{\sinh \left(z J_{-}\right)}{z}\right)
$$

It describes the motion of a particle in the field given by a q-deformed harmonic oscillator, on a surface with constant curvature.

The dynamical variables and the Casimir are defined as before. The equations for the collective variables are easily written down in terms of variables $a, b, \gamma:=\exp (2 z c)=\cosh \left(\lambda_{1} \rho\right)$.

$$
\begin{aligned}
& \dot{a}=2 b+4 z a^{2}+\omega^{2} \exp (2 z c)\left(\frac{\exp (2 z c)-1}{z}\right) \\
& \dot{b}=-4 \omega^{2} a \gamma \\
& \dot{\gamma}=8 z a \gamma
\end{aligned}
$$

Thanks to the integrals of motion $\mathcal{H}, \mathcal{C}_{z}$ one finally gets a first order evolution equation for $\gamma(\rightarrow$ for $\rho)$:

$$
\dot{\gamma}=8 z \gamma \sqrt{\omega^{2}\left(\gamma-\gamma_{+}\right)\left(\gamma_{-}-\gamma\right)}
$$

For suitable values of $\mathcal{H}, \mathcal{C}_{z}$ the motion for γ is periodic, expressed in terms of trigonometric functions, just as that for the one-body variables derived in the previous example, and confined in the interval $\left[\gamma_{-}, \gamma_{+}\right]$.

Following again the same path, one now considers evolution equations for singleparticle variables:

$$
\begin{align*}
& \dot{a}_{1}=2 b_{1}+4 z a_{1}^{2}+2 \exp (2 z c) \frac{1-2 \exp \left(2 c_{1} z\right)}{2 z}\left(2 z b_{2} \exp \left(-2 z c_{2}+\omega^{2}\right)\right. \\
& \dot{b}_{1}=8 z a_{1} \exp (2 z c) \frac{\omega^{2}+b_{2} \exp \left(-2 z c_{2}\right)}{2 z} \\
& \dot{c}_{1}=4 a_{1} \tag{0.1}
\end{align*}
$$

As for the geodesic case, the constants of the motion $\mathcal{H}, \mathcal{C}_{z}, \delta^{(1)}, \delta^{(2)}$ yield finally first order equations for the above degrees of freedom. The simplest one involves $\exp \left(2 z c_{1}\right)=\gamma_{1}$ and reads:

$$
\dot{\gamma}_{1}=8 z \gamma_{1} \sqrt{k\left(\xi_{+}-\gamma_{1}\right)\left(\xi_{-}-\gamma_{1}\right)}
$$

which is again solvable in terms of trigonometric/hyperbolic functions.

EXAMPLE III

As for the geodesic motion on surfaces with noncostant curvature, just a few preliminary remarks.

Recall that in polar variables $\rho, p_{\rho}, \theta, p_{\theta}$ for the so-called deformed ADS space-time the Hamiltonian reads:

$$
\mathcal{H}=\cos \rho\left(p_{\rho}^{2}+\frac{p_{\theta}^{2}}{\sin ^{2}(\rho)}\right)
$$

The corresponding evolution equation for the collective variable $\cos \rho$ is obtained by inverting the integral:

$$
t=\int^{\cos \rho} \frac{d y}{\sqrt{y\left(E\left(1-y^{2}\right)-p_{\theta}^{2} y\right)}}
$$

In suitable rescaled variables $\left(a=\cot \left(p_{\theta}^{2} /|E|\right)\right.$, one get for $\cos \rho$ a periodic motion, with the following period:

$$
T=(|E|)^{-\frac{1}{2}} \int_{0}^{a} \frac{d x}{\sqrt{x(x-a)\left(x+a^{-1}\right)}}
$$

