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Theoretical description

The relativistic concept of a charged particle does not
exist.

Kulish and Faddeev, 1970

Massless photon
Long range nature of force between (electric) charges
Non-trivial asymptotic dynamics
Soft infrared divergences in QED
Massless charges produce additional collinear divergences.
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The party line

The Bloch-Nordsieck (1937) method in QED:
suitable inclusive cross-sections are finite

Does not work for massless charges
Unnatural time asymmetry

The Lee-Nauenberg ‘theorem’ (1964):
remove divergences by summing over all degenerate states

Works fine for final state degeneracies (so for collinear
structures as in LEP)
Does not work for initial and final state degeneracies
[M Lavelle and DM JHEP 2006]

Only calculate observables that are insensitive to the
infrared (infrared safe)
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Can we do better?

Basic Question: Should we identify particles directly with
the matter fields ψ that enters the Lagrangian?

Coupling does not switch off as t → ±∞
Matter ψ(x) is never gauge invariant ψ(x) → U (x)ψ(x)
Matter field is never a physical field.

Our response [M.Lavelle and DM]: Need to ‘dress’ matter
to make a charge

Find a field dependent dressing h−1(x) that transforms as

h−1(x) → h−1(x)U−1(x)

under a gauge transformation.
Identify a charged particle with the gauge invariant
combination

h−1(x)ψ(x)

Other conditions on the dressing are needed for a particle
description.
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A static charge

Dirac’s dressed electron

ψD(r) = exp
(

ie∂iAi
∇2 (r)

)
ψ(r)

Creates a charged state

|ψD(r)〉 = ψD(r) |0〉

The state has the proper Coulombic field for a static
charge

Ei(x) |ψD(r)〉 =
e

4π
(x − r)i
|x − r |3 |ψD(r)〉
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Some results

[E.Bagan, M.Lavelle, DM]
Can extend Dirac’s suggestion to moving and colour
charges
Find that the dressing has structure

h−1 =

Structure responsible for different infrared effects.
Structure in non-abelian theory reflects screening and
anti-screening forces between charges.
Global obstruction to construction of coloured charges.
Direct interplay between Gribov copies and confinement.
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Monopoles

Common lore: condensation of magnetic monopoles is
responsible for confinement

Numerous lattice investigations
Many open questions
Analytic description lacking
Want a gauge invariant description of monopole operator.
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Monopole operator

A magnetic monopole operator M (r) should:

Create a one monopole state

|M (r)〉 := M (r) |0〉

Create a Coulombic magnetic charge

Bi(x) |M (r)〉 =
1
g

(x − r)i
|x − r |3 |M (r)〉

Gauge invariant
Finite energy
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Monopoles in electrodynamics

Dirac: the need for singular potentials

λN := −1
2g r × ẑ

r(r + z)
λS := 1

2g r × ẑ
r(r − z)

A candidate operator

M (r) = exp
(

i
g

∫
d3wλN

i (w − r)Ei(w)
)

Gauge invariant X

Generates Coulombic field X

Generates Dirac string X
No overall magnetic charge X
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Monopoles on R3 − {0}

Removing the position of the monopole means we can introduce
multi-valued potentials

Λ(r) = θ(z)λN + θ(−z)λS +
1
g δ(z)φ(r)ẑ

An improved operator

M (r) = exp
(

i
g

∫
R3−{r}

d3wΛi(w − r)Ei(w)

)

Gauge invariant X

Now generates only the Coulombic field X
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An improved operator

M (r) = exp
(

i
g

∫
R3−{r}

d3wΛi(w − r)Ei(w)

)

Gauge invariant X

Now generates only the Coulombic field X



Charges in nature The theoretical challenge of charges Magnetic charges Conclusions

Monopoles on R3 − {0}

Removing the position of the monopole means we can introduce
multi-valued potentials

Λ(r) = θ(z)λN + θ(−z)λS +
1
g δ(z)φ(r)ẑ
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Georgi-Glashow model

SU(2) gauge field coupled to adjoint Higgs

L = −1
4F2 + (DH )2 −V (H 2)

Can define a gauge invariant field strength

Fµν =
H a

|H |F
a
µν −

1
g

1
|H |3 ε

abcH a(DµH )b(DνH )c

Define magnetic current J M
µ = 1

2εµνλσ∂
νFλσ

Magnetic charge exists as a physical observable.

QM =
1

4π

∫
d3xJ M

0 =
1

8πg

∫
d2Siεĳkε

abcĤ a∂jĤ b∂kĤ c
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Monopole creation operator

We find [A. Khvedelidze, A. Kovner, DM, JHEP 2006]

M (r) = D(r)MA(r)

where we first create monopole and string

MA(r) = exp
(

i
g

∫
d3wλN

i (w − r)Ĥ a(w)Ea
i (w)

)

then we remove string contribution to magnetic field

D(r) = exp
(

i
g

∫
d3wφ(r − w)δ(r⊥ − w⊥)

ri − wi
|r⊥ − w⊥|

Ĥ a(w)Ea
i (w)

)
multi-valued but now allowed by the (vanishing) Higgs.
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Perturbative tests 〈M (r)〉

In Higgs phase monopoles are massive so expect that in a
finite but large volume L,

〈M 〉 ∝ exp (−µL)

In the confining phase we expect that

〈M 〉 6= 0

This is a non-perturbative effect.
In a perturbative calculation expect a milder volume
dependence.

We find within path integral calculation
(steepest descent method, dandelion configuration)

〈M 〉 = exp
(
− c

g2 ln(ΛL)
)
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Conclusions

Charges can be defined in gauge theories and a relativistic
description of a charged particle is possible.
Charges have structure which is reflected in their infrared
behaviour and forces between them.
A promising approach to magnetic charges has been
initiated.
Subtle interplay between construction of charges and
topology of Yang-Mills configuration space.
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