Semilocal vortices	The stationary Ansatz	Field Equations	Numerical Solutions
0000	00000	00	00000000

Twisted Superconducting Strings in Extended Abelian Higgs Models

with Sébastien Reuillon, Mikhail Volkov

LOR 2006 meeting June, 2006, Budapest

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Semilocal vortices	The stationary Ansatz	Field Equations	Numerical Solutions
Vortices and St	rings		

 Vortices/Strings – line defects – basic objects in various domains of Physics: from condensed matter to cosmology

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Semilocal vortices	The stationary Ansatz	Field Equations 00	Numerical Solutions
Vortices and	Strings		

- Vortices/Strings line defects basic objects in various domains of Physics: from condensed matter to cosmology
- high energy physics paradigm: the Nielsen-Olesen vortex Abelian Higgs model (in superconductivity: Abrikosov vortex in the Landau-Ginzburg theory)

Semilocal vortices	The stationary Ansatz	Field Equations	Numerical Solutions
Vortices and St	rings		

- Vortices/Strings line defects basic objects in various domains of Physics: from condensed matter to cosmology
- high energy physics paradigm: the Nielsen-Olesen vortex Abelian Higgs model (in superconductivity: Abrikosov vortex in the Landau-Ginzburg theory)
- Extended Abelian Higgs model: introducing several (complex) scalars with a global symmetry acting on the scalars → semilocal models

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Vortices and	Strings		
0000	00000	00	00000000
Semilocal vortices	The stationary Ansatz	Field Equations	Numerical Solutions

- Vortices/Strings line defects basic objects in various domains of Physics: from condensed matter to cosmology
- high energy physics paradigm: the Nielsen-Olesen vortex Abelian Higgs model (in superconductivity: Abrikosov vortex in the Landau-Ginzburg theory)
- Extended Abelian Higgs model: introducing several (complex) scalars with a global symmetry acting on the scalars → semilocal models
- The case of 2 complex scalars with an SU(2) symmetry: $\rightarrow \sin^2 \theta_w \rightarrow 1$ limit of the bosonic sector of the standard electroweak model (decoupling of the SU(2) gauge fields).

Semilocal vortices ●○○○	The stationary Ansatz	Field Equations	Numerical Solutions
The SU(2) Se	milocal model.		

Semilocal vortices	The stationary Ansatz	Field Equations	Numerical Solutions
0000			
The SU(2) S	emilocal model		

• Abelian Higgs model with an extended scalar sector

$$S=rac{1}{g^2}\int\!d^4x\,\left\{-rac{1}{4}\, F_{\mu
u}F^{\mu
u}+(D_\mu\Phi)^\dagger D^\mu\Phi-rac{eta}{2}\,(\Phi^\dagger\Phi-1)^2
ight\}\,,$$

where

$$\Phi = (\phi_1, \phi_2), \quad D_\mu = \partial_\mu - iA_\mu, \quad F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu,$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Semilocal vortices	The stationary Ansatz	Field Equations	Numerical Solutions
0000			
The SU(2) S	emilocal model		

• Abelian Higgs model with an extended scalar sector

$$S = rac{1}{g^2} \int d^4 x \, \left\{ -rac{1}{4} \, F_{\mu
u} F^{\mu
u} + (D_\mu \Phi)^\dagger D^\mu \Phi - rac{eta}{2} \, (\Phi^\dagger \Phi - 1)^2
ight\} \, ,$$

where

$$\Phi = (\phi_1, \phi_2), \quad D_\mu = \partial_\mu - iA_\mu, \quad F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu,$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 global SU(2) symmetry acting on the scalars (φ₁, φ₂) and local U(1) gauge symmetry.

Semilocal vortices	The stationary Ansatz	Field Equations	Numerical Solutions
The SU(2) Sem	ilocal model		

• Abelian Higgs model with an extended scalar sector

$$S = rac{1}{g^2} \int d^4 x \, \left\{ -rac{1}{4} \, F_{\mu
u} F^{\mu
u} + (D_\mu \Phi)^\dagger D^\mu \Phi - rac{eta}{2} \, (\Phi^\dagger \Phi - 1)^2
ight\} \, ,$$

where

$$\Phi = (\phi_1, \phi_2), \quad D_\mu = \partial_\mu - i A_\mu \,, \quad F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu \,,$$

- global SU(2) symmetry acting on the scalars (φ₁, φ₂) and local U(1) gauge symmetry.
- mass spectrum: a massive vector particle of mass $m_v = g\eta$, (η is the vev of the scalar field) one scalar particle of mass $m_s = \sqrt{\beta}\eta$, (i.e. $\sqrt{\beta} = m_s/m_v$) and two Nambu-Goldstone bosons.

Semilocal vortices ○●○○	The stationary Ansatz	Field Equations	Numerical Solutions
Semilocal vortic	ces.		

• \nexists finite energy static solutions in the 3 + 1 dim. Abelian Higgs theory

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Semilocal vortices ○●○○	The stationary Ansatz	Field Equations	Numerical Solutions
Semilocal vortion	ces.		

- \nexists finite energy static solutions in the 3 + 1 dim. Abelian Higgs theory
- ∃ infinitely long stringlike solutions with finite energy per unit length. ⇒ the planar section of a straight Abrikosov-Nielsen-Olesen (ANO) string is the vortex.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

Semilocal vortices ○●○○	The stationary Ansatz	Field Equations	Numerical Solutions
Semilocal vortion	ces.		

- *finite energy static solutions in the* 3 + 1 dim. Abelian Higgs theory
- ∃ infinitely long stringlike solutions with finite energy per unit length. ⇒ the planar section of a straight Abrikosov-Nielsen-Olesen (ANO) string is the vortex.
- Topological stability of the ANO vortex in the Abelian Higgs model with a single component complex Higgs field: $\mathcal{V}_1 = \{\phi^{\dagger}\phi = 1\} \cong S^1 \text{ and } \pi_1(\mathcal{V}_1) \equiv \mathbb{Z}$

Semilocal vortices ○●○○	The stationary Ansatz	Field Equations	Numerical Solutions
Semilocal vortion	ces.		

- *finite energy static solutions in the* 3 + 1 dim. Abelian Higgs theory
- ∃ infinitely long stringlike solutions with finite energy per unit length. ⇒ the planar section of a straight Abrikosov-Nielsen-Olesen (ANO) string is the vortex.
- Topological stability of the ANO vortex in the Abelian Higgs model with a single component complex Higgs field: $\mathcal{V}_1 = \{\phi^{\dagger}\phi = 1\} \cong S^1 \text{ and } \pi_1(\mathcal{V}_1) \equiv \mathbb{Z}$
- In the case of two complex scalars the vacuum manifold

$$\mathcal{V} = \{ \Phi^{\dagger} \Phi = 1 \} \cong S^3 \ \Rightarrow \ \pi_1(\mathcal{V}) \equiv 0$$

(日)((1))

 $\longrightarrow \nexists$ topological vortex solutions in the plane

Semilocal vortices	The stationary Ansatz	Field Equations	Numerical Solutions
0000			

$$A_i(x) = A_{\text{ANO}}(x), \quad \Phi = \phi_{\text{ANO}}(x)\Phi_0$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Semilocal vortices	The stationary Ansatz	Field Equations	Numerical Solutions
0000			

$$A_i(x) = A_{ANO}(x), \quad \Phi = \phi_{ANO}(x)\Phi_0$$

• Surprisingly the embedded ANO vortices in the SU(2) semilocal model are stable for $\beta \leq 1$ (type I superconductors) (Hindmarsh, Vachaspati, Preskill, Kibble,...)

Semilocal vortices	The stationary Ansatz	Field Equations	Numerical Solutions
0000			

$$A_i(x) = A_{ANO}(x), \quad \Phi = \phi_{ANO}(x)\Phi_0$$

- Surprisingly the embedded ANO vortices in the SU(2) semilocal model are stable for $\beta \leq 1$ (type I superconductors) (Hindmarsh, Vachaspati, Preskill, Kibble,...)
- For $\beta > 1$ the embedded ANO vortex becomes unstable, with respect to the delocalization of the magnetic flux in the whole plane ("spreading instability")

Semilocal vortices	The stationary Ansatz	Field Equations	Numerical Solutions
0000			

$$A_i(x) = A_{\text{ANO}}(x), \quad \Phi = \phi_{\text{ANO}}(x)\Phi_0$$

- Surprisingly the embedded ANO vortices in the SU(2) semilocal model are stable for $\beta \leq 1$ (type I superconductors) (Hindmarsh, Vachaspati, Preskill, Kibble,...)
- For $\beta > 1$ the embedded ANO vortex becomes unstable, with respect to the delocalization of the magnetic flux in the whole plane ("spreading instability")
- for β = 1 the SU(2) semilocal model admits a new family of vortices ("skyrmions") (Hindmarsh). These vortices are energetically degenerate with the corresponding ANO solutions.

Semilocal vortices	The stationary Ansatz	Field Equations	Numerical Solutions
0000			

$$A_i(x) = A_{\text{ANO}}(x), \quad \Phi = \phi_{\text{ANO}}(x)\Phi_0$$

- Surprisingly the embedded ANO vortices in the SU(2) semilocal model are stable for $\beta \leq 1$ (type I superconductors) (Hindmarsh, Vachaspati, Preskill, Kibble,...)
- For $\beta > 1$ the embedded ANO vortex becomes unstable, with respect to the delocalization of the magnetic flux in the whole plane ("spreading instability")
- for β = 1 the SU(2) semilocal model admits a new family of vortices ("skyrmions") (Hindmarsh). These vortices are energetically degenerate with the corresponding ANO solutions.
- Their magnetic field, *B*, does not decrease exponentially as for the ANO vortices: $B \sim |w|^2/r^4$.

Semilocal vortices ○○○●	The stationary Ansatz	Field Equations	Numerical Solutions
Twisted semilo	cal vortices.		

 Main point: In the case for β > 1 new vortices/strings exist when one allows for a z-dependent relative phase (twist) between the two complex scalar field; ⇒ a current is induced flowing along the z-direction.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Semilocal vortices	The stationary Ansatz	Field Equations	Numerical Solutions
Twisted semilor	al vortices		

- Main point: In the case for β > 1 new vortices/strings exist when one allows for a z-dependent relative phase (twist) between the two complex scalar field; ⇒ a current is induced flowing along the z-direction.
- The relative phase can also depend on time:
 ⇒ stationary, "internally" rotating strings with a nonzero momentum, angular momentum and a (shielded) electric field.

Semilocal vortices	The stationary Ansatz	Field Equations	Numerical Solutions
0000	00000	00	00000000
Twisted sem	ilocal vortices		

- Main point: In the case for β > 1 new vortices/strings exist when one allows for a z-dependent relative phase (twist) between the two complex scalar field; ⇒ a current is induced flowing along the z-direction.
- The relative phase can also depend on time:
 ⇒ stationary, "internally" rotating strings with a nonzero momentum, angular momentum and a (shielded) electric field.
- An important parameter of these new solutions is the value of the twist (0 < ω ≤ ω_{max}(β, n, m)) (or the corresponding current), 0 < |I₃| < ∞. The fields of the twisted strings exhibit exponential localization!

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Semilocal vortices	The stationary Ansatz	Field Equations	Numerical Solutions
0000	00000	00	00000000
Twisted sem	ilocal vortices		

- Main point: In the case for β > 1 new vortices/strings exist when one allows for a z-dependent relative phase (twist) between the two complex scalar field; ⇒ a current is induced flowing along the z-direction.
- The relative phase can also depend on time:
 ⇒ stationary, "internally" rotating strings with a nonzero momentum, angular momentum and a (shielded) electric field.
- An important parameter of these new solutions is the value of the twist (0 < ω ≤ ω_{max}(β, n, m)) (or the corresponding current), 0 < |I₃| < ∞. The fields of the twisted strings exhibit exponential localization!
- For $\mathcal{I}_3 \to 0$ ($\omega \to \omega_{\text{bif}}(\beta, n, m)$) the twisted vortices *bifurcate* with the embedded ANO vortex.

Semilocal vortices	The stationary Ansatz	Field Equations	Numerical Solutions
0000	00000	00	00000000
Twisted sem	ilocal vortices		

- Main point: In the case for β > 1 new vortices/strings exist when one allows for a z-dependent relative phase (twist) between the two complex scalar field; ⇒ a current is induced flowing along the z-direction.
- The relative phase can also depend on time:
 ⇒ stationary, "internally" rotating strings with a nonzero momentum, angular momentum and a (shielded) electric field.
- An important parameter of these new solutions is the value of the twist (0 < ω ≤ ω_{max}(β, n, m)) (or the corresponding current), 0 < |I₃| < ∞. The fields of the twisted strings exhibit exponential localization!
- For $\mathcal{I}_3 \to 0$ ($\omega \to \omega_{\text{bif}}(\beta, n, m)$) the twisted vortices *bifurcate* with the embedded ANO vortex.
- Their energy per unit length is smaller than that of the embedded ANO vortices!

Semilocal vortices	The stationary Ansatz	Field Equations	Numerical Solutions
The general sta	tionary Ansatz.		

The most general *z*-translationally symmetric and stationary Ansatz:

$$\begin{aligned} A_{\mu} &= (A_{\alpha}(x_1, x_2), A_i(x_1, x_2)), \quad \alpha = 0, 3, \ i = 1, 2, \\ \phi_1 &= f_1(x_1, x_2), \quad \phi_2 = f_2(x_1, x_2) e^{i(\omega_0 t + \omega_3 z)}, \end{aligned}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

where f_1, f_2 are complex functions and $\omega_{\alpha} \in \mathbb{R}$.

Semilocal vortices	The stationary Ansatz	Field Equations	Numerical Solutions
The general sta	tionomy Ancota		

The general stationary Ansatz.

The most general *z*-translationally symmetric and stationary Ansatz:

$$\begin{aligned} A_{\mu} &= (A_{\alpha}(x_1, x_2), A_i(x_1, x_2)), \quad \alpha = 0, 3, \ i = 1, 2, \\ \phi_1 &= f_1(x_1, x_2), \quad \phi_2 = f_2(x_1, x_2) e^{i(\omega_0 t + \omega_3 z)}, \end{aligned}$$

where f_1, f_2 are complex functions and $\omega_{\alpha} \in \mathbb{R}$.

• a space-time translation moves the fields along gauge orbits

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Semilocal vortices	The stationary Ansatz	Field Equations	Numerical Solutions
0000	00000	00	000000000
The general sta	tionary Ansatz.		

The most general *z*-translationally symmetric and stationary Ansatz:

$$\begin{aligned} &A_{\mu} = (A_{\alpha}(x_1, x_2), A_i(x_1, x_2)), \quad \alpha = 0, 3, \ i = 1, 2, \\ &\phi_1 = f_1(x_1, x_2), \quad \phi_2 = f_2(x_1, x_2) e^{i(\omega_0 t + \omega_3 z)}, \end{aligned}$$

where f_1, f_2 are complex functions and $\omega_{\alpha} \in \mathbb{R}$.

- a space-time translation moves the fields along gauge orbits
- interpretation of the phases: relative rotation, ω_0 , resp. twist along the *z*-axis, ω_3 , between (ϕ_1, ϕ_2) .

• the Ansatz breaks the global SU(2) symmetry to U(1).

Semilocal vortices	The stationary Ansatz	Field Equations	Numerical Solutions
The general sta	tionary Ansatz.		

The most general *z*-translationally symmetric and stationary Ansatz:

$$\begin{aligned} &A_{\mu} = (A_{\alpha}(x_1, x_2), A_i(x_1, x_2)), \quad \alpha = 0, 3, \ i = 1, 2, \\ &\phi_1 = f_1(x_1, x_2), \quad \phi_2 = f_2(x_1, x_2) e^{i(\omega_0 t + \omega_3 z)}, \end{aligned}$$

where f_1, f_2 are complex functions and $\omega_{\alpha} \in \mathbb{R}$.

- a space-time translation moves the fields along gauge orbits
- interpretation of the phases: relative rotation, ω_0 , resp. twist along the *z*-axis, ω_3 , between (ϕ_1, ϕ_2) .
- the Ansatz breaks the global SU(2) symmetry to U(1).
- The Noether current corresponding to the remaining U(1) global symmetry:

$$J_{\mu} = 2i(\bar{\phi}_2 D_{\mu} \phi_2 - \phi_2 \overline{D_{\mu} \phi_2})$$

Semilocal vortices	The stationary Ansatz	Field Equations	Numerical Solutions

• \exists conserved Noether charge per unit length, Q

$$\mathcal{Q} \propto \mathcal{I}_0 = \int d^2 x (\omega_0 - A_0) ar{\phi}_2 \phi_2 \,.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Semilocal vortices	The stationary Ansatz	Field Equations	Numerical Solutions

• \exists conserved Noether charge per unit length, Q

$$\mathcal{Q} \propto \mathcal{I}_0 = \int d^2 x (\omega_0 - A_0) ar{\phi}_2 \phi_2 \, .$$

• the z-component of the "string worldsheet" current \mathcal{I}_{α} ,

$$\mathcal{I}_3 = \int d^2 x (\omega_3 - A_3) \bar{\phi}_2 \phi_2 \,.$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Semilocal vortices	The stationary Ansatz	Field Equations	Numerical Solutions
0000	00000	00	00000000

• \exists conserved Noether charge per unit length, Q

$$\mathcal{Q} \propto \mathcal{I}_0 = \int d^2 x (\omega_0 - A_0) ar{\phi}_2 \phi_2 \,.$$

• the *z*-component of the "string worldsheet" current \mathcal{I}_{α} ,

$$\mathcal{I}_3 = \int d^2 x (\omega_3 - A_3) \bar{\phi}_2 \phi_2 \,.$$

 translational symmetry of the Ansatz → conserved momentum, P:

$$P=\int d^2x \, T^0_{\ z}=2\omega_0 \mathcal{I}_3\,,$$

and for configurations with rotational symmetry in the plane a conserved angular momentum, J:

$$J = \int d^2x \, T^0_{\varphi} \propto \mathcal{I}_0 \,. \tag{1}$$

Semilocal vortices	The stationary Ansatz ●○○○○	Field Equations	Numerical Solutions
l orentz symn	netrv		

• Lorentz symmetry of the Ansatz : boosts in the (t, z)-plane:

$$t = t' \cosh \gamma + z' \sinh \gamma \qquad z = z' \cosh \gamma + t' \sinh \gamma$$

$$A'_{0} = A_{0} \cosh \gamma + A_{3} \sinh \gamma \qquad A'_{3} = A_{0} \sinh \gamma + A_{3} \cosh \gamma$$

$$\omega'_{0} = \omega_{0} \cosh \gamma + \omega_{3} \sinh \gamma \qquad \omega'_{3} = \omega_{3} \cosh \gamma + \omega_{0} \sinh \gamma$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Semilocal vortices	The stationary Ansatz	Field Equations	Numerical Solutions
	00000		
Lorentz sym	metry		

• Lorentz symmetry of the Ansatz : boosts in the (t, z)-plane:

$$\begin{split} t &= t'\cosh\gamma + z'\sinh\gamma \qquad \qquad z &= z'\cosh\gamma + t'\sinh\gamma \\ A'_0 &= A_0\cosh\gamma + A_3\sinh\gamma \qquad \qquad A'_3 &= A_0\sinh\gamma + A_3\cosh\gamma \\ \omega'_0 &= \omega_0\cosh\gamma + \omega_3\sinh\gamma \qquad \qquad \omega'_3 &= \omega_3\cosh\gamma + \omega_0\sinh\gamma \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• \Rightarrow only the Lorentz invariant combination $\omega^2 = \omega_3^2 - \omega_0^2$, appears in the eqs. of motion.

•	00	00000000

• Lorentz symmetry of the Ansatz : boosts in the (t, z)-plane:

$$t = t' \cosh \gamma + z' \sinh \gamma \qquad z = z' \cosh \gamma + t' \sinh \gamma$$

$$A'_{0} = A_{0} \cosh \gamma + A_{3} \sinh \gamma \qquad A'_{3} = A_{0} \sinh \gamma + A_{3} \cosh \gamma$$

$$\omega'_{0} = \omega_{0} \cosh \gamma + \omega_{3} \sinh \gamma \qquad \omega'_{3} = \omega_{3} \cosh \gamma + \omega_{0} \sinh \gamma$$

- \Rightarrow only the Lorentz invariant combination $\omega^2 = \omega_3^2 \omega_0^2$, appears in the eqs. of motion.
- Therefore the space of solutions decomposes into three classes labelled by the possible Lorentz types of the length of ω^2 (Carter):

$$\omega^{2} \begin{cases} = 0 & \text{null or chiral case} \rightarrow \text{ANO, Hindmarsh, Abraham} \\ < 0 & \text{time-like or electric case} \\ > 0 & \text{space-like or magnetic case} \rightarrow \text{new twisted vortices} \end{cases}$$

Semilocal vortices	The stationary Ansatz	Field Equations	Numerical Solutions
	0000		

Decomposition of the phase space

(ロ) (日) (日) (日) (日) (日) (日) (日)

Semilocal vortices	The stationary Ansatz	Field Equations	Numerical Solutions
0000	00000	00	00000000

If $\omega^2 > 0$ (magnetic case) by a Lorentz boost one can always achieve $\omega_0 = 0$, $A_0 = 0$, i.e. it is sufficient to consider the *static* case.

The two "Gauss-law" eqs. for $A_{\alpha} = (A_0, A_3)$:

$$\Delta A_0 - 2A_0 |\Phi|^2 + 2\omega_0 \overline{\phi}_2 \phi_2 = 0 \Delta A_3 - 2A_3 |\Phi|^2 + 2\omega_3 \overline{\phi}_2 \phi_2 = 0$$

$$\Rightarrow A_0 = \frac{\omega_0}{\omega_3} A_3 .$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$$\triangle = \frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2}$$

Semilocal	vortices	

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 We shall consider solutions with cylindrical symmetry: the most general such Ansatz in polar coordinates can be written as:

$$\begin{split} A_0 &= \omega_0 a_0(\rho), A_\rho = 0, A_\varphi = na(\rho), A_3 = \omega_3 a_3(\rho), \\ \phi_1 &= f_1(\rho) e^{in\varphi}, \quad \phi_2 = f_2(\rho) e^{im\varphi} e^{i(\omega_0 t + \omega_3 z)}, \end{split}$$

where the integer $n \in \mathbb{Z}_+$ determines the magnetic flux, $m = 0, \ldots n - 1$.

٠

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 We shall consider solutions with cylindrical symmetry: the most general such Ansatz in polar coordinates can be written as:

$$\begin{split} A_0 &= \omega_0 a_0(\rho), A_\rho = 0, A_\varphi = na(\rho), A_3 = \omega_3 a_3(\rho), \\ \phi_1 &= f_1(\rho) e^{in\varphi}, \quad \phi_2 = f_2(\rho) e^{im\varphi} e^{i(\omega_0 t + \omega_3 z)}, \end{split}$$

where the integer $n \in \mathbb{Z}_+$ determines the magnetic flux, $m = 0, \ldots n - 1$.

• Note that the electric potential is given either by

 $A_0 = A_3$

chiral case ($|\omega_0| = |\omega_3|$), or by

$$A_0 = \omega_0 A_3 / \omega_3$$

magnetic case, i.e. in both cases one can take

$$a_0(\rho) = a_3(\rho)$$

Semilocal vortices	The stationary Ansatz	Field Equations	Numerical Solutions
0000	00000		

• A Bogomoln'y-type rearrangement of the energy yields:

$$E = 2\pi n + (\omega_0^2 + \omega_3^2)Q + \pi(\beta - 1) \int_0^\infty \rho d\rho (1 - |f|^2)^2 + \dots (3)$$

emilocal vortices	The stationary Ansatz	Field Equations	Numerical Solutions
	00000		

• A Bogomoln'y-type rearrangement of the energy yields:

$$E = 2\pi n + (\omega_0^2 + \omega_3^2)Q + \pi(\beta - 1) \int_0^\infty \rho d\rho (1 - |f|^2)^2 + \dots (3)$$

where

$$Q = 2\pi \int_{0}^{\infty} \rho d\rho (1 - a_3) f_2^2 = 2\pi \int_{0}^{\infty} \rho d\rho a_3 f_1^2,$$

determines the vortex worldsheet current,

$$\mathcal{I}_{\alpha}=\omega_{\alpha}Q.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

emilocal vortices	The stationary Ansatz	Field Equations	Numerical Solutions
	00000		

• A Bogomoln'y-type rearrangement of the energy yields:

$$E = 2\pi n + (\omega_0^2 + \omega_3^2)Q + \pi(\beta - 1)\int_0^\infty \rho d\rho (1 - |f|^2)^2 + \dots (3)$$

where

$$Q = 2\pi \int_{0}^{\infty} \rho d\rho (1 - a_3) f_2^2 = 2\pi \int_{0}^{\infty} \rho d\rho a_3 f_1^2,$$

determines the vortex worldsheet current,

$$\mathcal{I}_{\alpha}=\omega_{\alpha}Q.$$

• the momentum and the angular momentum can be expressed as

$$P = 2\omega_0\omega_3Q,$$

$$J = -2\omega_0\nu Q, \text{ where } \nu := n - m = 1, \dots, n.$$

Semilocal vortices	The stationary Ansatz	Field Equations ●○	Numerical Solutions
Field Equations			

• the cylindrically symmetric field equations can be written as:

$$\begin{split} &\frac{1}{\rho}(\rho a_3')' = 2a_3|f|^2 - 2f_2^2 \,, \quad \text{where }' = d/d\rho \,. \\ &\rho\left(\frac{a'}{\rho}\right)' = 2f_1^2(a-1) + 2f_2^2(a-\frac{m}{n}) \,, \\ &\frac{1}{\rho}(\rho f_1')' = f_1\left[n^2\frac{(1-a)^2}{\rho^2} + \omega^2 a_3^2 - \beta(1-|f|^2)\right] \,, \\ &\frac{1}{\rho}(\rho f_2')' = f_2\left[\frac{(m-na)^2}{\rho^2} + \omega^2(1-a_3)^2 - \beta(1-|f|^2)\right] \,. \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Semilocal vortices	The stationary Ansatz	Field Equations ●○	Numerical Solutions
Field Equations			

• the cylindrically symmetric field equations can be written as:

$$\begin{aligned} &\frac{1}{\rho}(\rho a_3')' = 2a_3|f|^2 - 2f_2^2, \quad \text{where }' = d/d\rho. \\ &\rho\left(\frac{a'}{\rho}\right)' = 2f_1^2(a-1) + 2f_2^2(a-\frac{m}{n}), \\ &\frac{1}{\rho}(\rho f_1')' = f_1\left[n^2\frac{(1-a)^2}{\rho^2} + \omega^2 a_3^2 - \beta(1-|f|^2)\right], \\ &\frac{1}{\rho}(\rho f_2')' = f_2\left[\frac{(m-na)^2}{\rho^2} + \omega^2(1-a_3)^2 - \beta(1-|f|^2)\right]. \end{aligned}$$

• These equations depend only on the Lorentz-invariant combination $\omega^2 = \omega_3^2 - \omega_0^2$, \rightarrow any solution determines a whole class, i.e. its Lorentz orbit corresponding to boosts.

Semilocal vortices	The stationary Ansatz	Field Equations ●○	Numerical Solutions
Field Equations			

• the cylindrically symmetric field equations can be written as:

$$\begin{aligned} &\frac{1}{\rho}(\rho a_3')' = 2a_3|f|^2 - 2f_2^2, \quad \text{where }' = d/d\rho. \\ &\rho\left(\frac{a'}{\rho}\right)' = 2f_1^2(a-1) + 2f_2^2(a-\frac{m}{n}), \\ &\frac{1}{\rho}(\rho f_1')' = f_1\left[n^2\frac{(1-a)^2}{\rho^2} + \omega^2 a_3^2 - \beta(1-|f|^2)\right], \\ &\frac{1}{\rho}(\rho f_2')' = f_2\left[\frac{(m-na)^2}{\rho^2} + \omega^2(1-a_3)^2 - \beta(1-|f|^2)\right]. \end{aligned}$$

- These equations depend only on the Lorentz-invariant combination $\omega^2 = \omega_3^2 \omega_0^2$, \rightarrow any solution determines a whole class, i.e. its Lorentz orbit corresponding to boosts.
- Finite energy implies that $\omega^2 \ge 0$ (space-like or null classes).

Semilocal vortices	The stationary Ansatz	Field Equations ○●	Numerical Solutions
Regularity cond	itions		

• There is a 4-parameter family of local solutions regular at the origin, $\rho = 0$:

$$\begin{aligned} \mathbf{a} &= \mathbf{a}^{(2)} \rho^2 + O(\rho^{2m+2}), \qquad \mathbf{a}_3 &= \mathbf{a}_3^{(0)} + O(\rho^{2m+2}), \\ f_1 &= f_1^{(n)} \rho^n + O(\rho^{n+2}), \qquad f_2 &= f_2^{(m)} \rho^m + O(\rho^{m+2}), \end{aligned}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Semilocal vortices	The stationary Ansatz	Field Equations ○●	Numerical Solutions
Regularity cond	itions		

There is a 4-parameter family of local solutions regular at the origin, ρ = 0:

$$\begin{aligned} & a = a^{(2)}\rho^2 + O(\rho^{2m+2}), \qquad a_3 = a^{(0)}_3 + O(\rho^{2m+2}), \\ & f_1 = f^{(n)}_1\rho^n + O(\rho^{n+2}), \qquad f_2 = f^{(m)}_2\rho^m + O(\rho^{m+2}), \end{aligned}$$

• possible asymptotic behaviours for $\rho \rightarrow \infty$ ($\omega >$ 0):

$$\begin{split} a &= 1 + A\sqrt{\rho} \, e^{-\sqrt{2}\rho} - D^2 \left[(1 - m/n)/(1 - 2\omega^2) \right] e^{-2\omega\rho}/\rho + \dots \,, \\ a_3 &= B e^{-\sqrt{2}\rho}/\sqrt{\rho} + D^2/(1 - 2\omega^2) e^{-2\omega\rho}/\rho + \dots \,, \\ f_1 &= 1 + C e^{-\sqrt{2\beta}\rho}/\sqrt{\rho} - \tilde{D}^2 e^{-2\omega\rho}/\rho + (\tilde{A}^2 + \tilde{B}^2) e^{-2\sqrt{2}\rho}/\rho + \dots \,, \\ f_2 &= D e^{-\omega\rho}/\sqrt{\rho} + \dots \,, \end{split}$$

where $\{a^{(2)}, a_3^{(0)}, f_1^{(n)}, f_2^{(m)}\}$ and $\{A, B, C, D\}$ are free parameters.

Semilocal vortices	The stationary Ansatz	Field Equations	Numerical Solutions
			00000000

The profile of the ANO vortex for $\beta = 2$ and n = 1.

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨ - のへの

Semilocal vortices	The stationary Ansatz	Field Equations	Numerical Solutions
			00000000

The profile of a typical member of the $\beta = 1$ family

- イロト イ間ト イミト イミト 三臣 - のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Semilocal vortices	The stationary Ansatz	Field Equations	Numerical Solutions
			00000000

Twisted semilocal vortex solutions for n = 1, $\beta = 2$

Semilocal vortices	The stationary Ansatz	Field Equations

Numerical Solutions

Twisted semilocal vortex solutions for n = 1, $\beta = 2$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Semilocal vortices	The stationary Ansatz	Field Equations	Numerical Solutions
$\beta = \infty - CP^1$	-modell		

• For $\beta = \infty \Leftrightarrow |f_1|^2 + |f_2|^2 \equiv 1$, the semilocal model reduces to a \mathbb{CP}^1 -model.

Semilocal vortices	The stationary Ansatz	Field Equations	Numerical Solutions ○○○○●○○○○
$\beta = \infty - \mathbf{C}$	P ¹ -modell		

- For $\beta = \infty \Leftrightarrow |f_1|^2 + |f_2|^2 \equiv 1$, the semilocal model reduces to a \mathbb{CP}^1 -model.
- It is convenient to parameterize the scalars as $f_1 = \cos \theta$, $f_2 = \sin \theta$, and the field eqs. become

$$\frac{1}{r}(ra'_{3})' = a_{3} - \sin^{2}\theta,$$

$$r(\frac{a'}{r})' = a - \cos^{2}\theta,$$

$$\frac{1}{r}(r\theta')' = \frac{1}{2}\left[\omega^{2}(1 - 2a_{3}) - \frac{1 - 2a}{r^{2}}\right]\sin(2\theta).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Semilocal vortices	The stationary Ansatz	Field Equations	Numerical Solutions ○○○○●○○○○
$\beta = \infty - \mathbf{C}$	P ¹ -modell		

- For $\beta = \infty \Leftrightarrow |f_1|^2 + |f_2|^2 \equiv 1$, the semilocal model reduces to a \mathbb{CP}^1 -model.
- It is convenient to parameterize the scalars as $f_1 = \cos \theta$, $f_2 = \sin \theta$, and the field eqs. become

$$\begin{aligned} &\frac{1}{r}(ra_3')' = a_3 - \sin^2\theta, \\ &r(\frac{a'}{r})' = a - \cos^2\theta, \\ &\frac{1}{r}(r\theta')' = \frac{1}{2} \left[\omega^2(1 - 2a_3) - \frac{1 - 2a}{r^2} \right] \sin(2\theta). \end{aligned}$$

• For $\beta = \infty$ the vortices are completely different from the corresponding ANO ones, whose energy is divergent in this limit.

Semilocal vortices	The stationary Ansatz	Field Equations	Numerical Solutions
			00000000

A superconducting vortex solution for $\beta = \infty, \omega = 1$

・ロト・(部)・(日)・(日)・ 日 の(の)

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへで

Semilocal	vortices

Numerical Solutions

Phase space of the n=1 twisted vortices.

・ロト ・聞 ト ・目 ト ・目

æ

Numerical Solutions

Energy landscape of the n=1 twisted vortices.

590

æ

Semilocal vortices

Numerical Solutions

The current, $\tilde{\mathcal{I}}_3$ as a function of ω for $\beta = 1.5, 2, 3$.

. C