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Vortices and Strings

Vortices/Strings – line defects – basic objects in various
domains of Physics: from condensed matter to cosmology

high energy physics paradigm: the Nielsen-Olesen vortex
Abelian Higgs model ( in superconductivity: Abrikosov vortex
in the Landau-Ginzburg theory)
Extended Abelian Higgs model: introducing several (complex)
scalars with a global symmetry acting on the scalars →
semilocal models
The case of 2 complex scalars with an SU(2) symmetry:
→ sin2 θw → 1 limit of the bosonic sector of the standard
electroweak model (decoupling of the SU(2) gauge fields).
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The SU(2) Semilocal model.

Abelian Higgs model with an extended scalar sector

S =
1
g2

∫
d4x

{
−1

4 FµνF µν + (DµΦ)†DµΦ− β

2 (Φ†Φ− 1)2
}

,

where

Φ = (φ1, φ2), Dµ = ∂µ − iAµ , Fµν = ∂µAν − ∂νAµ ,

global SU(2) symmetry acting on the scalars (φ1, φ2) and
local U(1) gauge symmetry.
mass spectrum: a massive vector particle of mass mv = gη,
(η is the vev of the scalar field)
one scalar particle of mass ms =

√
βη, (i.e.

√
β = ms/mv)

and two Nambu-Goldstone bosons.
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Semilocal vortices.

@ finite energy static solutions in the 3 + 1 dim. Abelian Higgs
theory

∃ infinitely long stringlike solutions with finite energy per unit
length. ⇒ the planar section of a straight
Abrikosov-Nielsen-Olesen (ANO) string is the vortex.
Topological stability of the ANO vortex in the Abelian Higgs
model with a single component complex Higgs field:
V1 = {φ†φ = 1} ∼= S1 and π1(V1) ≡ Z
In the case of two complex scalars the vacuum manifold

V = {Φ†Φ = 1} ∼= S3 ⇒ π1(V) ≡ 0

−→ @ topological vortex solutions in the plane
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The ANO vortex can be trivially embedded in a semilocal
model with several scalar fields:

Ai(x) = AANO(x) , Φ = φANO(x)Φ0

Surprisingly the embedded ANO vortices in the SU(2)
semilocal model are stable for β ≤ 1 (type I superconductors)
(Hindmarsh, Vachaspati, Preskill, Kibble,...)
For β > 1 the embedded ANO vortex becomes unstable, with
respect to the delocalization of the magnetic flux in the whole
plane (“spreading instability”)
for β = 1 the SU(2) semilocal model admits a new family of
vortices (“skyrmions”) (Hindmarsh). These vortices are
energetically degenerate with the corresponding ANO
solutions.
Their magnetic field, B, does not decrease exponentially as for
the ANO vortices: B ∼ |w |2/r4.
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Twisted semilocal vortices.

Main point: In the case for β > 1 new vortices/strings exist
when one allows for a z-dependent relative phase (twist)
between the two complex scalar field; ⇒ a current is induced
flowing along the z-direction.

The relative phase can also depend on time:
⇒ stationary, “internally” rotating strings with a nonzero
momentum, angular momentum and a (shielded) electric field.
An important parameter of these new solutions is the value of
the twist (0 < ω ≤ ωmax(β, n, m)) (or the corresponding
current), 0 < |I3| < ∞. The fields of the twisted strings
exhibit exponential localization!
For I3 → 0 (ω → ωbif(β, n, m)) the twisted vortices bifurcate
with the embedded ANO vortex.
Their energy per unit length is smaller than that of the
embedded ANO vortices!
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The general stationary Ansatz.

The most general z-translationally symmetric and stationary
Ansatz:

Aµ = (Aα(x1, x2) , Ai(x1, x2)), α = 0, 3 , i = 1, 2,

φ1 = f1(x1, x2), φ2 = f2(x1, x2)ei(ω0t+ω3z) ,

where f1,f2 are complex functions and ωα ∈ R.

a space-time translation moves the fields along gauge orbits
interpretation of the phases: relative rotation, ω0, resp. twist
along the z-axis, ω3, between (φ1, φ2).
the Ansatz breaks the global SU(2) symmetry to U(1).
The Noether current corresponding to the remaining U(1)
global symmetry:

Jµ = 2i(φ̄2Dµφ2 − φ2Dµφ2)
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∃ conserved Noether charge per unit length, Q

Q ∝ I0 =

∫
d2x(ω0 − A0)φ̄2φ2 .

the z-component of the “string worldsheet” current Iα,

I3 =

∫
d2x(ω3 − A3)φ̄2φ2 .

translational symmetry of the Ansatz → conserved
momentum, P:

P =

∫
d2x T 0

z = 2ω0I3 ,

and for configurations with rotational symmetry in the plane a
conserved angular momentum, J :

J =

∫
d2x T 0

ϕ ∝ I0 . (1)
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Lorentz symmetry.

Lorentz symmetry of the Ansatz : boosts in the (t, z)-plane:

t = t ′ cosh γ + z ′ sinh γ

A′0 = A0 cosh γ + A3 sinh γ

ω′0 = ω0 cosh γ + ω3 sinh γ

z = z ′ cosh γ + t ′ sinh γ

A′3 = A0 sinh γ + A3 cosh γ

ω′3 = ω3 cosh γ + ω0 sinh γ

⇒ only the Lorentz invariant combination ω2 = ω2
3 − ω2

0,
appears in the eqs. of motion.
Therefore the space of solutions decomposes into three classes
labelled by the possible Lorentz types of the length of ω2

(Carter):

ω2


= 0 null or chiral case → ANO, Hindmarsh, Abraham
< 0 time-like or electric case
> 0 space-like or magnetic case → new twisted vortices

(2)



Semilocal vortices The stationary Ansatz Field Equations Numerical Solutions

Lorentz symmetry.

Lorentz symmetry of the Ansatz : boosts in the (t, z)-plane:

t = t ′ cosh γ + z ′ sinh γ

A′0 = A0 cosh γ + A3 sinh γ

ω′0 = ω0 cosh γ + ω3 sinh γ

z = z ′ cosh γ + t ′ sinh γ

A′3 = A0 sinh γ + A3 cosh γ

ω′3 = ω3 cosh γ + ω0 sinh γ

⇒ only the Lorentz invariant combination ω2 = ω2
3 − ω2

0,
appears in the eqs. of motion.

Therefore the space of solutions decomposes into three classes
labelled by the possible Lorentz types of the length of ω2

(Carter):

ω2


= 0 null or chiral case → ANO, Hindmarsh, Abraham
< 0 time-like or electric case
> 0 space-like or magnetic case → new twisted vortices

(2)



Semilocal vortices The stationary Ansatz Field Equations Numerical Solutions

Lorentz symmetry.

Lorentz symmetry of the Ansatz : boosts in the (t, z)-plane:

t = t ′ cosh γ + z ′ sinh γ

A′0 = A0 cosh γ + A3 sinh γ

ω′0 = ω0 cosh γ + ω3 sinh γ

z = z ′ cosh γ + t ′ sinh γ

A′3 = A0 sinh γ + A3 cosh γ

ω′3 = ω3 cosh γ + ω0 sinh γ

⇒ only the Lorentz invariant combination ω2 = ω2
3 − ω2

0,
appears in the eqs. of motion.
Therefore the space of solutions decomposes into three classes
labelled by the possible Lorentz types of the length of ω2

(Carter):

ω2


= 0 null or chiral case → ANO, Hindmarsh, Abraham
< 0 time-like or electric case
> 0 space-like or magnetic case → new twisted vortices

(2)



Semilocal vortices The stationary Ansatz Field Equations Numerical Solutions

Decomposition of the phase space

PSfrag replacements
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ANO vortices,
skyrmions

superconducting
vortices, I > 0

superconducting
vortices, I < 0

rest frame solutions
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If ω2 > 0 (magnetic case) by a Lorentz boost one can always
achieve ω0 = 0 , A0 = 0, i.e. it is sufficient to consider the static
case.
The two “Gauss-law” eqs. for Aα = (A0, A3):

4A0 − 2A0|Φ|2 + 2ω0φ̄2φ2 = 0
4A3 − 2A3|Φ|2 + 2ω3φ̄2φ2 = 0

}
⇒ A0 =

ω0
ω3

A3 .

4 = ∂2

∂x2
1

+ ∂2

∂x2
2
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We shall consider solutions with cylindrical symmetry: the
most general such Ansatz in polar coordinates can be written
as:

A0 = ω0a0(ρ) , Aρ = 0 , Aϕ = na(ρ) , A3 = ω3a3(ρ) ,

φ1 = f1(ρ)einϕ, φ2 = f2(ρ)eimϕei(ω0t+ω3z) ,

where the integer n ∈ Z+ determines the magnetic flux,
m = 0, . . . n − 1.

Note that the electric potential is given either by

A0 = A3

chiral case (|ω0| = |ω3|), or by

A0 = ω0A3/ω3

magnetic case, i.e. in both cases one can take

a0(ρ) = a3(ρ)

.
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A Bogomoln’y-type rearrangement of the energy yields:

E = 2πn+(ω2
0 +ω2

3)Q +π(β−1)

∞∫
0

ρdρ
(
1−|f |2)2 + . . . (3)

where

Q = 2π

∞∫
0

ρdρ (1− a3)f 2
2 = 2π

∞∫
0

ρdρ a3f 2
1 ,

determines the vortex worldsheet current,

Iα = ωαQ.

the momentum and the angular momentum can be expressed
as

P = 2ω0ω3Q ,

J = −2ω0νQ , where ν := n −m = 1, . . . , n .
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Field Equations

the cylindrically symmetric field equations can be written as:

1
ρ
(ρa′3)′ = 2a3|f |2 − 2f 2

2 , where ′ = d/dρ .

ρ

(
a′
ρ

)′
= 2f 2

1 (a − 1) + 2f 2
2 (a − m

n ) ,

1
ρ
(ρf ′1)′ = f1

[
n2 (1− a)2

ρ2 + ω2a2
3 − β(1− |f |2)

]
,

1
ρ
(ρf ′2)′ = f2

[
(m − na)2

ρ2 + ω2(1− a3)
2 − β(1− |f |2)

]
.

These equations depend only on the Lorentz-invariant
combination ω2 = ω2

3 − ω2
0, → any solution determines a

whole class, i.e. its Lorentz orbit corresponding to boosts.
Finite energy implies that ω2 ≥ 0 (space-like or null classes).



Semilocal vortices The stationary Ansatz Field Equations Numerical Solutions

Field Equations

the cylindrically symmetric field equations can be written as:

1
ρ
(ρa′3)′ = 2a3|f |2 − 2f 2

2 , where ′ = d/dρ .

ρ

(
a′
ρ

)′
= 2f 2

1 (a − 1) + 2f 2
2 (a − m

n ) ,

1
ρ
(ρf ′1)′ = f1

[
n2 (1− a)2

ρ2 + ω2a2
3 − β(1− |f |2)

]
,

1
ρ
(ρf ′2)′ = f2

[
(m − na)2

ρ2 + ω2(1− a3)
2 − β(1− |f |2)

]
.

These equations depend only on the Lorentz-invariant
combination ω2 = ω2

3 − ω2
0, → any solution determines a

whole class, i.e. its Lorentz orbit corresponding to boosts.

Finite energy implies that ω2 ≥ 0 (space-like or null classes).



Semilocal vortices The stationary Ansatz Field Equations Numerical Solutions

Field Equations

the cylindrically symmetric field equations can be written as:

1
ρ
(ρa′3)′ = 2a3|f |2 − 2f 2

2 , where ′ = d/dρ .

ρ

(
a′
ρ

)′
= 2f 2

1 (a − 1) + 2f 2
2 (a − m

n ) ,

1
ρ
(ρf ′1)′ = f1

[
n2 (1− a)2

ρ2 + ω2a2
3 − β(1− |f |2)

]
,

1
ρ
(ρf ′2)′ = f2

[
(m − na)2

ρ2 + ω2(1− a3)
2 − β(1− |f |2)

]
.

These equations depend only on the Lorentz-invariant
combination ω2 = ω2

3 − ω2
0, → any solution determines a

whole class, i.e. its Lorentz orbit corresponding to boosts.
Finite energy implies that ω2 ≥ 0 (space-like or null classes).



Semilocal vortices The stationary Ansatz Field Equations Numerical Solutions

Regularity conditions

There is a 4-parameter family of local solutions regular at the
origin, ρ = 0:

a = a(2)ρ2 + O(ρ2m+2) , a3 = a(0)
3 + O(ρ2m+2) ,

f1 = f (n)
1 ρn + O(ρn+2) , f2 = f (m)

2 ρm + O(ρm+2) ,

possible asymptotic behaviours for ρ →∞ (ω > 0):

a = 1 + A√ρ e−
√

2ρ − D2
[
(1−m/n)/(1− 2ω2)

]
e−2ωρ/ρ + . . . ,

a3 = Be−
√

2ρ/
√

ρ + D2/(1− 2ω2)e−2ωρ/ρ + . . . ,

f1 = 1 + Ce−
√

2βρ/
√

ρ− D̃2e−2ωρ/ρ + (Ã2 + B̃2)e−2
√

2ρ/ρ + . . . ,

f2 = De−ωρ/
√

ρ + . . . ,

where {a(2), a(0)
3 , f (n)

1 , f (m)
2 } and {A, B, C , D} are free

parameters.
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The profile of the ANO vortex for β = 2 and n = 1.
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The profile of a typical member of the β = 1 family
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Twisted semilocal vortex solutions for n = 1, β = 2
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Twisted semilocal vortex solutions for n = 1, β = 2
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β = ∞ — CP1-modell

For β = ∞ ⇔ |f1|2 + |f2|2 ≡ 1, the semilocal model reduces
to a CP1-model.

It is convenient to parameterize the scalars as f1 = cos θ,
f2 = sin θ, and the field eqs. become

1
r (ra′3)′ = a3 − sin2 θ ,

r(a′
r )′ = a − cos2 θ ,

1
r (rθ′)′ = 1

2

[
ω2(1− 2a3)−

1−2a
r2

]
sin(2θ) .

For β = ∞ the vortices are completely different from the
corresponding ANO ones, whose energy is divergent in this
limit.
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A superconducting vortex solution for β =∞, ω = 1
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Phase space of the n=1 twisted vortices.
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Energy landscape of the n=1 twisted vortices.
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The current, Ĩ3 as a function of ω for β = 1.5, 2, 3.
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