Hőkezelés hatása az a-Si:H, a-Ge:H és a-SiGe:H rétegekben

Serényi Miklós

Energiatudományi Kutatóközpont, Műszaki Fizikai és Anyagtudományi Intézet

FELHASZNÁLÁS

- amorf napelem

"Ez a legelterjedtebb típus, mert olcsó az előállítási költsége. A hatásfoka 4-6% között van, ami alulmarad a többihez képest... Az élettartamuk csak 10év körül van."

- vékonyréteg tranzisztor, Schottky –dióda
- "fekete réteg", kijelzők háttere, bolométer

AMORF ANYAG

- a-Si, a-Ge és a-SiGe rövidtávú rend, periodikus potenciál eltűnik
- Si-Si (Ge-Ge) kötések felhasadnak : dangling bonds
- töltéshordozó lokalizáció és a sávszerkezet változása ⇒ optikai paraméterek változnak
- rekombinációs centrumok száma megnő ⇒ elektromos tulajdonságok romlanak

KOVALENS KÖTÉS KIALAKÍTÁSA

- ✓ Si-H és Ge-H, kötési energia ~ 3.3 és 3.00 eV
- ✓ Dangling bond passzívációja
- ✓ Hibasürüség csökken $10^{20/}$ cm³ –ról 5x10¹⁵/cm³–ig

Technológia: szilán, germán

Cél:porlasztás Ar+H₂

Korábbi eredmények

A fajlagos ellenállás a gázkeverék hidrogénáramának függvényében

_50 nm

5 nm vastag rétegekből álló a-Si/Ge:H multiréteg Si és Ge réteg hidrogéntartalma a porlasztáshoz használt H₂ gázáram függvényében. (ERDA)

H vesztés a felület változása nélkül

SNMS (Secondary Neutral Mass Spectrometry) eredménye 135 °C 10 perc (fekete) és 40 perces (piros) hőkezelés után.

M. Serényi, C. Frigeri, A. Csik, N. Q. Khánh, A. Németh and Z. Zolnai, CrystEngComm, 2017, DOI: 10.1039/C7CE00076F.

SNMS (Secondary Neutral Mass Spectrometry) eredménye 180 °C 10 perc és 40 perces hőkezelés után.

Infravörös spektroszkópia: a modus koncentrációja a görbe alatti területtel arányos

No annealing

Si

Η

Typical IR absorption spectra in the stretching mode range of the wavenumber for the H content of a) 10.8, b) 14.7, c) 17.6 at%. For each plot the spectra for the unannealed (solid curve), annealed for 1 h (dash curve) and for 4 h (dot curve) at 350C.

Stretching	2005 [1/cm] 2090* 2140* *	Si-H Si-H ₂ (Si-H ₂) _n Si-H ₃
Bending	650 845-890 * 862-907 * *	Si-H Si-H ₂ Si-H ₃
Wagging	640	all hydrides

Poly-hydride chain $(Si-H_2)_n$

Infravörös spektroszkópia eredménye: a-Si:H

a) Typical IR absorption spectra in the stretching mode range of the wavenumber for the H partial pressure of 0.6 for the three annealing (135C) times of 0 min (black spectrum A), 40 min (red spectrum B) and 120 min (blue spectrum C). b) As a) for the H partial pressure of 0.9.

1855(80) 1980 2050	Ge-H Ge-H ₂ (Ge-H ₂) _n Ge-H ₃	
755-782 vagy 770-830	Ge-H ₂ Ge-H ₃ Ge-H ₂ Ge-H ₃	
565	all hydrides	

H vesztés a felület megváltozásával

Felületi reflexió lézeres mérése

buborékképződés

a szubsztrát felülete

000000 Wols.4mm 15.0kV x450

- buborékok kialakulásának ideje (t) megfeleződik minden ~10C fok emelkedés során.
- Arrhenius-egyenlet egy egyszerű, áttekinthető formula a buborékok kialakulási idejének, a folyamat sebességének jellemzésére
- a folyamat E_a activációs energiával jellemezhető $1/t = A \cdot exp(-E_a/kT)$
- méréseink szerint $E_a = 1.63 \text{ eV} \text{ a-Ge:H rendszerre}$

 $E_a = 2.42 \text{ eV}$ a-Si:H rendszerre

• E_a activációs energia értelmezése: $E_a = 2 \epsilon (GeH) - \epsilon (H_2)$.

 ϵ (GeH) =2.99-3.33 eV ϵ (H₂) = 4.5 eV

M. Serényi, C. Frigeri, A. Csik, N. Q. Khánh, A. Németh and Z. Zolnai, CrystEngComm, 2017, DOI: 10.1039/C7CE00076F.

Hőkezelés hatása az a-Si:H, a-Ge:H és a-SiGe:H rétegekben

Hőkezelés hatása az a-SiGe:H rétegekben

 $\epsilon = 2[X \cdot \epsilon(SiH) + (1-X) \cdot \epsilon(GeH)] - \epsilon(H_2)$

X a Si tartalom

H helyett:

- SiGe egykristály (13% Ge)
- nano-, mikrokristályos rétegek
 Ellipszometria az összetétel meghatározására
 Köszönöm a figyelmet!