

2014 Július 2014 July

Tomolya K., et al., Anyagok Világa (Materials Word) 1 (2014) 73-82

CuZr alapú ötvözetekben őrlés hatására végbemenő kristályos-amorf átalakulások vizsgálata

Crystalline-amorphous transformation by ball-milling in CuZr based alloys

Tomolya K.*, Janovszky D., Sycheva A., Roósz A.

MTA-ME Anyagtudományi Kutatócsoport, Miskolc-Egyetemváros *femkinga@uni-miskolc.hu

Absztrakt

A cikk $(Cu_{49}Zr_{45}Al_6)_{100-x-y}Ni_xTi_y$ (x = 0, 10; y = 0; 10) ötvözetek mechanikai őrlésével és az őrlés szerkezetre gyakorolt hatásával foglalkozik. Homogén, kristályos mesterötvözetet 25 óráig őröltünk, hogy amorf vagy amorf/kristályos szerkezetű port hozzunk létre. Az amorf átalakulás folyamata függ az ötvözet összetételétől. $Cu_{49}Zr_{45}Al_6$ esetében 15 órás őrlés elegendő volt az ún. röntgen-amorf szerkezet kialakulásához. Az őrlési idő azonban kis mennyiségű Ti és Ti-Ni ötvözők hozzáadásával megnövekedett.

Abstract

The paper deals with the effect of ball-milling on the structure in $(Cu_{49}Zr_{45}Al_6)_{100-x-}$ _yNi_xTi_y (x = 0, 10; y = 0; 10) alloys. Homogenous, crystalline master alloys were milled for 25 hours in order to produce amorphous or amorphous/crystalline powders. The amorphization progress depends on the composition of the alloys. Based on the XRD analysis, in the case of $Cu_{49}Zr_{45}Al_6$ alloy amorphous state could be reached after 15 h of milling. By Ti and Ti-Ni addition, the milling time enhanced.

Bevezetés

A tömbi amorf fémek (BMG: Bulk Metallic Glasses) az utóbbi pár évtizedben a kutatók figyelmének középpontjába került a kitűnő mechanikai, kémiai és mágneses tulajdonságaik miatt [1, 2, 3]. A réz alapú, és különösen a Cu-Zr-Al ötvözetek ígéretesek a nagy üvegképző hajlamuk (GFA: Glass Forming Ability), viszonylag nagy nyúlásuk és olcsóságuk miatt [1]. Amorf állapotot létrehozhatunk olvadék állapotból vagy szilárd fázisú technikákkal, így például öntéssel vagy porkohászati úton (őrlés, sajtolás, szinterelés). Az öntészeti úton történő gyártást korlátozza, hogy az elérhető vastagságot befolyásolja a kritikus hűtési sebesség. Az ötvözet összetételétől függően változik az önthető amorf darab vastagsága. Így például CuZrAgAl esetében maximum 25 mm átmérőjű darabot tudtak eddig önteni [4].

A porkohászati technológia ezzel szemben vastagabb darabok előállítására is alkalmas lehet, ennek első lépése az amorf vagy amorf/kristályos kompozit por

2014 Július 2014 July

Tomolya K., et al., Anyagok Világa (Materials Word) 1 (2014) 73-82

gyártása. Őrlés során a golyók által közölt mechanikai energia egy része az amorf szerkezet kialakulását szolgálja, miközben a szemcsék aprózódása és összehegedése egyaránt zajlik. Olyan folyamatok ismétlődnek, mint a mechanikai keveredés, a hideghegedés, a szemcsék töredezése. Végül megváltozott anyagszerkezetű, közepesen diszperz porokat (átlagos szemcseméret <50 μm) kapunk. A folyamat során kristályhibákat viszünk be a kristályos anyagok (fázisok) szerkezetébe, ilyenek a diszlokációk, rétegződési hibák, ikerhatárok [5,6,7]. A kristályos fázis ezeknek a folyamatoknak, a hibák halmozódásának (hibakoncentráció növekedés) köszönhetően amorf szerkezetűvé válik [8]. A porok ezt követően porkohászati úton (PM: Powder Metallurgy) feldolgozásra kerülnek és BMG-k készülnek belőlük. A szemcsék mérete és más paraméterei befolyásolják a végtermék minőségét, amely nem képezi a cikk részét.

Ebben a munkában kristályos $(Cu_{49}Zr_{45}Al_6)_{100-x-y}Ni_xTi_y$ (x = 0, 10; y = 0; 10) ötvözeteket őröltünk golyós malomban. Az őrlés során folyamatosan vizsgáltuk a szemcsék szerkezetváltozását, az ötvözők hatását és meghatároztuk a teljesen amorf szerkezet kialakulásához szükséges időt.

Kísérletek

 $(Cu_{49}Zr_{45}Al_6)_{100-x-y}Ni_xTi_y$ (x = 0, 10; y = 0; 10) összetételű mesterötvözeteket állítottunk elő Cu, Zr, Al tiszta fémek argon alatt történő ívfényes olvasztásával. Az 1. táblázat a mesterötvözetek összetételét mutatja be.

1. táblázat: A mesterötvözetek összetétele						
	Elemek, at %					
	Cu	Zr	Al	Ti	Ni	
1. ötvözet	49	45	6	0	0	
2. ötvözet	44,1	40,5	5,4	10	0	
3. ötvözet	39,2	36	4,8	10	10	

A mesterötvözeteket előkészítettük az őrléshez, azaz aprítottuk és 300 µm szemcseméret alá frakcionáltuk szita segítségével. A mechanikai őrlés nagy energiájú Pulverisette 5 golyósmalomban történt. A tégely és a golyók anyaga saválló acél volt. A golyók átmérője 5, 7 és 10 mm. Az őrlés szárazon, argon védőatmoszféra alatt történt, 200 fordulat/perc sebességgel, 20:1 golyó-por tömegaránnyal. A használt őrlési paraméterek korábbi kísérleti munka eredményein alapulnak [9]. A teljes őrlési folyamatot 25 óráig vizsgáltuk. Egy órás őrlést követően 2 órás állás következett, hogy a tégely lehűljön. 5 óránként mintát vettünk a szerkezet vizsgálatának céljából és ezáltal az őrlés közben lezajló események eredményeit vizsgáltuk.

A szerkezetvizsgálatokhoz a mesterötvözetet és a porokat is műgyantába ágyaztuk, políroztuk, majd 0,5 %-os HF-ban 5 másodpercig marattuk. A mesterötvözetek és a porok szerkezetét Bruker AXS Energy-dispersive X-ray Spectrometer (EDAX) berendezéssel felszerelt Hitachi S4800 pásztázó elektronmikroszkóppal (SEM: Field Emission Scanning Electron Microscope) vizsgáltuk. Philips PW 1830 röntgendiffraktométer (XRD) segítségével elemeztük a szerkezetet monokromatizált

2014 Július 2014 July

Tomolya K., et al., Anyagok Világa (Materials Word) 1 (2014) 73-82

CuKα 0,15418 nm hullámhosszú sugár segítségével. Az amorf hányad meghatározása a röntgendiffraktogram alapján történt, amelyhez az ingyenes Fityk 0.98 szoftvert és a saját fejlesztésű GerKiDo programot használtuk. Az ingyenes programmal görbéket illesztettünk a csúcsokra és az amorf dombra, míg a GerKiDo program a görbék alatti területeket számolja. A kapott eredményeket felhasználva adható meg az amorf térfogat hányada az adott mintában [10].

Eredmények

Mesterötvözetek vizsgálata

A mesterötvözeteket ívfényes olvasztó berendezésben állítottuk elő, amelyben a megolvasztást követően nagy hűlési sebességgel hűthető a darab. A darabok felső része az argon védőatmoszférával érintkezik, amely legalább 100 K/s hűtési sebességgel hűlt. Az 1. ábra a mesterötvözetek röntgendiffrakciós felvételeit mutatja, amelyeken az éles csúcsok a kristályos szerkezetre utalnak. Az 1a. ábrán a háromalkotós ötvözet (1. ötvözet) diffraktogramja látható, amely AlCu₂Zr-t, CuZr-t és egy ismeretlen fázist tartalmaz. 1b. ábra és a 1c. ábra a 2. ötvözet és a 3. ötvözet felvételét demonstrálja. Ezekben az ötvözetekben lévő fázisok azonosítását nem végeztük el.

1. ábra: A mesterötvözetek diffraktogramjai

2014 Július 2014 July

Tomolya K., et al., Anyagok Világa (Materials Word) 1 (2014) 73-82

A 2. ábra a mesterötvözetek pásztázó elektronmikroszkópos felvételeit mutatja. Az 1. ötvözet fázisai egyértelműen megkülönböztethetőek és a röntgenes eredményeket alapul véve azonosíthatóak. Egy nagyon finom eutektikus szövetelemben, mint mátrixban található a CuZr és az ismeretlen fázis. Az eutektikumot a CuZr és az AlCu₂Zr fázisok alkotják. Ezen fázisokat transzmissziós elektronmikroszkóppal azonosítottuk (TEM: Transmission Electron Microscope), amelyet egy korábbi munkánkban közöltünk [11]. A 2. ötvözet szintén egy finom eutektikus szövettel rendelkezik, amelyekben primér dendritek találhatók (3. fázis). Az eutektikum szürke fázisa (2. pont) egy titánban gazdag fázis, amelyben mind a négy összetevő megtalálható.

a) és b) Az 1. ötvözet keresztcsiszolata

b) és c) A 2. ötvözet keresztcsiszolata

2014 Július 2014 July

Tomolya K., et al., Anyagok Világa (Materials Word) 1 (2014) 73-82

d) és e) A 3. ötvözet keresztcsiszolata2. ábra: A mesterötvözetek szerkezete

A 2. táblázat a 2. ötvözet és a 3. ötvözet fázisainak EDAX-szal mért összetételét mutatja ~1 atomszázalékos hibahatárral. A 3. ötvözetben kétféle dendrites fázis található (2d-e. ábra, 1. pont és 3. pont) a titánban gazdag, szürke mátrixban (2. pont). Valamennyi esetben megállapítható, hogy a szerkezet homogén, aminek nagy a jelentősége a további műveletek szempontjából.

Minto	Fázis	Ábra	Összetétel, at %					
Minita			Cu	Zr	Al	Ti	Ni	
	1	2b. ábra	51	41	2	6	-	
2. ötvözet	2	2b. ábra	46	35	5	14	-	
	3	2c. ábra	40	45	6	9	-	
3. ötvözet	1	2d. ábra	40	38	3	10	9	
	2	2e. ábra	42	30	5	15	8	
	3	2e. ábra	46	32	3	11	8	

2. táblázat: A fázisok EDAX-szal mért összetételei

Őrölt porok vizsgálata

A 3. ábra az őrölt porok röntgenes eredményeit mutatja, amelyen keresztül tanulmányozható az idő függvényében a porok szerkezetváltozása.

2014 Július 2014 July

Tomolya K., et al., Anyagok Világa (Materials Word) 1 (2014) 73-82

3. ábra: Az őrölt porok röntgendiffraktogramjai

A kristályos ötvözet röntgendiffraktogramja a kristályos fázisokhoz tartozó csúcsokat tartalmazza. Amorfizálás során a csúcsok száma és intenzitása csökken és megjelenik az ún. amorf domb. Teljesen amorf szerkezetnél csak ez az amorf domb látható. A golyósmalomban történő amorfizálás egy reverzibilis, ciklikus folyamat, további őrlés hatására újra kristályos csúcsok jelennek meg, mivel új kristályos fázisok keletkeznek. Valamennyi őrlési kísérletet 25 óráig végeztünk, mivel a korábbi kísérleteink alapján ezt választottuk maximális őrlési időnek, hogy a tégelyből és a golyókból bekerülő szennyeződéseket elkerüljük (Fe, Cr, Ni). Az amorf átalakulás függ az ötvözet összetételétől, így ötvözetenként meghatározható a teljes amorfizációhoz szükséges idő.

Tomolya K., et al., Anyagok Világa (Materials Word) 1 (2014) 73-82

4. ábra: Amorf térfogathányad az őrlési idő függvényében

A 4. ábra a röntgenes diffraktogramokból számolt amorf térfogat hányadokat mutatja az őrlési idő függvényében. Az 1. ötvözetnél, 5 órás őrlést követően a szerkezet 85 térfogatszázaléka alakult át amorf szerkezetűvé, 15 órát követően pedig 100 százaléka. Ez az ún. röntgen-amorf szerkezet. A 3. ötvözetnek több időre van szüksége a teljes amorfizációra, míg a 2. ötvözetben nem megy végbe teljes amorfizáció 25 óra alatt sem. Ebben az esetben 98 térfogatszázalék az amorf hányad 25 órát követően.

A 3. táblázat visszaszórt pásztázó elektronmikroszkópos felvételeket mutat a porokról 15 és 25 órás őrlést követően. Az átlagos szemcseméret 10-40 μ m 25 órás őrlés után. A 15 órás porokban pórusok és üregek találhatók, amely egyértelműen az őrlés közben lezajló folyamatok, mint a törés és összehegedés eredménye. A nagymértékű mechanikai hatás következményeként repedések találhatók a szemcséken. További őrlés során az eredeti fázishatárok eltűnnek és a fázisok az őrlés végén már nem különböztethetőek meg egymástól. A korábbi vizsgálatok is kimutatták, hogy a 2. ötvözet eltérően viselkedik, mint a többi ötvözet, a porokban helyenként megfigyelhetőek a fázisok. A másik két ötvözetnél az őrlés korai szakaszában megfigyelhető, hogy a kiinduló fázisok határai elmosódnak, és 25 óra után teljesen eltűnnek és még nagyobb nagyításban sem láthatók (1. ötvözet és 3. ötvözet, 25 óra, maratott).

2014 Július 2014 July

Tomolya K.,	et al.,	Anyagok	Világa	(Materials	Word) 1	(2014)	73-82
-------------	---------	---------	--------	------------	---------	--------	-------

	Őrlési idő	Polírozott felület	0,5 % HF-ban maratott felület
1. ötvözet	15 óra	S4900 20 0KV x3 00k YAGBSE 9/24/2013	24200 20 dW v 3 30% VACEBE 1/22/2014
	25 óra	5460 20 04V x3 004 YA2BBE 9/24/2013	54800 20 DKV x3 00K YACBSE 10/14/2013
2. ötvözet	15 óra	54800 20 0KV x3 00 VAGBSE 2/13/2014	54800 20 0kV x3 00k YAGBSE 2/14/2014
	25 óra	54800 20 0kV x3 00k YAGBSE 2/13/2014	4800 20 0KV x3 00 VAGBSE 274/201
3. ötvözet	15 óra	54800 20 0KV x3 00K YAGBSE 2/12/2014	maradó fázisok S4800 20 0kV x3.00k YACBSE 2/14/2014
	25 óra	54600 20 0KV x3 00k YAGBBE 2/13/2014	54500 20 G/V x10 0K YAGESE 2/14/2014

3. táblázat: A porok keresztcsiszolatai polírozás és maratást követően

2014 Július 2014 July

Tomolya K., et al., Anyagok Világa (Materials Word) 1 (2014) 73-82

Összefoglalás

A kísérleti munkában kristályos ($Cu_{49}Zr_{45}Al_6$)_{100-x-y}Ni_xTi_y (x = 0, 10; y = 0; 10) ötvözeteket őröltünk golyósmalomban. Homogén mesterötvözetet gyártottunk a kísérletekhez. A $Cu_{49}Zr_{45}Al_6$ (1. ötvözet) szerkezete megváltozott Ti és Ti-Ni ötvözők hozzáadásával. A kristályos fázisokhoz tartozó diffrakciós csúcsok intenzitása és száma csökken az őrlés hatására. Az amorf átalakulást befolyásolja az ötvözet összetétele és a fázisszerkezete. Az 1. ötvözetnek elegendő 15 órás őrlés a teljesen amorf szerkezet kialakulásához (röntgen-amorf). A Ti és a Ni hozzáadása az ötvözethez (3. ötvözet) megnöveli a teljes amorfizációhoz szükséges időt. A 2. ötvözet (csak Ti az ötvöző) teljesen amorffá válása nem történik meg 25 óra alatt.

Köszönetnyilvánítás

A kutatás az Európai Unió és Magyarország támogatásával, az Európai Szociális Alap társfinanszírozásával a TÁMOP 4.2.4.A/2-11-1-2012-0001 azonosító számú "Nemzeti Kiválóság Program – Hazai hallgatói, illetve kutatói személyi támogatást biztosító rendszer kidolgozása és működtetése konvergencia program" című kiemelt projekt keretei között valósul meg.

Irodalomjegyzék

[1] M. Abbasi, R. Gholamipour, F. Shahri, Trans. Nonferrous Met. Soc. China 23 (2013) 2037–2041

[2] S. Pauly, J. Das, J. Bednarcik, N. Mattern, K.B. Kim, D.H. Kim, J. Eckert, Scripta Materialia 60 (2009) 431–434

[3] Y. Wu, H. Wang, H.H. Wu, Z.Y. Zhang, X.D. Hui, G.L. Chen, D. Ma, X.L. Wang, Z.P. Lu, Acta Materialia 59 (2011) 2928–2936

[4] Kim, Y.C. Lee, J.C. Cha, P.R. Ahn, J.P. Fleury, E., Mater. Sci. Eng. A 437 (2006) 248–253

[5] Bian, Z. Chen, G.L. He, G. Hui, X.D., Mater. Sci. Eng. A 316 (2001) 135–144

[6] Tomolya Kinga: Golyósmalomban őrölt CuZr alapú ötvözetek szerkezetváltozásának vizsgálata, BKL Kohászat 146:(3) (2013) 15-18

[7] Csanády, Á.: Mechanikai őrlés-ötvözés-nanoőrlés (3.1.), in Csanády Á.; Kálmán E., Konczos G.: Bevezetés az Anyagok világába (2009) Eötvös Kiadó, 105-115

[8] Bhatt, J. Murty, B.S., J. Alloys Compd. 459 (2008) 135-141

[9] K. Tomolya, D. Janovszky, T. Janvari, A. Sycheva, F. Tranta, J. Solyom, T. Ferenczi, A. Roosz, J. Alloys Compd. 536 (2012) S154-S158

[10] G. Körösy, K. Tomolya, D. Janovszky, J. Sólyom, Mater. Sci. Forum 729 (2013) 419-423

[11] K. Tomolya, D. Janovszky, A. Sycheva, Mater. Sci. Forum, 790-791 (2014) 509-514