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Introduction/Motivation

Experimental motivation:
New RHIC data for hadron-hadron correlations – indication
of jet structure down to small transverse momenta
(→ Jan Rak)
Theoretical motivation:
Dynamics of gluon/parton ladders – a theoretical chalange.
The QCD dynamics (collinear, kt-factorization) is usually
investigated for inclusive reactions:

γ∗-proton total cross section (or F2)
Inclusive production of jets
Inclusive production of mesons (pions)
Inclusive production of open charm, bottom, top
Inclusive production of direct photons
Inclusive production of quarkonia

July 2007, Budapest – p. 3



Introduction/Motivation
Very interesting are:

Dijet correlations (Leonidov-Ostrovsky, Bartels et al.)
QQ̄ correlations (→ Marta Luszczak)
γ∗ – jet correlations (→ Tomasz Pietrycki)
jet – J/ψ correlations (Baranov-Szczurek)
Exclusive reactions: pp→ pXp where
X = J/ψ, χc, χb, η

′, ηc, ηb

(Matrin-Khoze-Ryskin, Szczurek-Pasechnik-Teryaev)
They contain much more information about QCD ladders.
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QCD motivation
HERA γ∗p total cross section (F2(x,Q

2))
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Collinear approach to dijet correlations
In LO:

dσ

dφ
= f(W ) δ (φ− π) (1)

In NLO:
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Figure 1: A typical diagram for 2→ 3 contributions. July 2007, Budapest – p. 6



kt-factorization approach to dijet correlations
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Figure 2: Typical diagrams for kt-factorization approach.
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Pair of partons in kt-factorization approach

dσ(h1h2 → jj)

d2p1,td2p2,t

=

∫

dy1dy2
d2κ1t

π

d2κ2t

π

1

16π2(x1x2s)2
|M(gg → jj)|2

· δ2(−→κ 1,t +−→κ 2,t −−→p 1,t −−→p 2,t)f(x1, κ
2
1,t)f(x2, κ

2
2,t) ,(2)

where
x1 =

m1t√
s

e+y1 +
m2t√
s

e+y2 , (3)

x2 =
m1t√
s

e−y1 +
m2t√
s

e−y2 . (4)

The final partonic state is jj = gg, qq̄.

There are other (quark/antiquark initiated) processes
(→ see soon)
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Pair of partons in kt-factorization approach

f1(x1, κ
2
1,t)→ x1g1(x1)δ(κ

2
1,t) (5)

and
f2(x2, κ

2
2,t)→ x2g2(x2)δ(κ

2
2,t) (6)

then one recovers the standard collinear formula.

Inclusive cross sections:

dσ(h1h2 → j)

dy1d2p1,t

= 2

∫

dy2
d2κ1,t

π

d2κ2,t

π
(...) |~p2,t=~κ1,t+~κ2,t−~p1,t

(7)

or equivalently

dσ(h1h2 → j)

dy2d2p2,t

= 2

∫

dy1
d2κ1,t

π

d2κ2,t

π
(...) |~p1,t=~κ1,t+~κ2,t−~p2,t

.

(8)
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Pair of partons in kt-factorization approach
The integration with the Dirac delta function in (2)

∫

dy1dy2
d2κ1t

π

d2κ2t

π
(...) δ2(...) . (9)

can be performed by introducing the following new
auxiliary variables:

−→
Q t = −→κ 1t +−→κ 2t ,
−→q t = −→κ 1t −−→κ 2t . (10)

The jacobian of this transformation is:

∂(
−→
Q t,
−→q t)

∂(−→κ 1t,
−→κ 2t)

=

(

1 1

1 −1

)

·
(

1 1

1 −1

)

= 2 · 2 = 4 . (11)
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Pair of partons in kt-factorization approach
Then:

dσ(h1h2 → QQ̄)

d2p1,td2p2,t

=
1

4

∫

dy1dy2 d
2Qtd

2qt (...) δ2(
−→
Q t−−→p 1,t−−→p 2,t)

(12)

=
1

4

∫

dy1dy2 d2qt
︸︷︷︸

(...) |−→
Q t=

−→
P t

= (13)

=
1

4

∫

dy1dy2

︷ ︸︸ ︷

qtdqt
︸︷︷︸

dϕ (...) |−→
Q t=

−→
P t

= (14)

=
1

4

∫

dy1dy2

︷ ︸︸ ︷

1

2
dq2

t dϕ (...) |−→
Q t=

−→
P t
. (15)

Above ~Pt = ~p1,t + ~p2,t.
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Pair of partons in kt-factorization approach
If one is interested in the distribution of the sum of
transverse momenta of the outgoing quarks, then it is
convenient to write

d2p1,t d
2p2,t =

1

4
d2Ptd

2pt =
1

4
dϕ+PtdPt dϕ−ptdpt

=
1

4
2πPtdPt dϕ−ptdpt . (16)

If one is interested in studying a two-dimensional map
p1,t × p2,t then

d2p1,t d
2p2,t = dφ1 p1,tdp1,t dφ2 p2,tdp2,t . (17)

Then

dσ(p1,t, p2,t)

dp1,tdp2,t

=

∫

dφ1dφ2 p1,tp2,t

∫

dy1dy2
1

4
qtdqtdφqt

(...) .

(18)
The integral above is formally a 6-dimensional one.
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Pair of partons in kt-factorization approach
It is convenient to make the following transformation of
variables

(φ1, φ2)→ (φsum = φ1 + φ2, φdif = φ1 − φ2) , (19)

where φsum ∈ (0, 4π) and φdif ∈ (−2π, 2π). Now the new
domain (φsum, φdif ) is twice bigger than the original one
(φ1, φ2).

dφ1dφ2 =

(
∂φ1∂φ2

∂φsum∂φdif

)

dφsumdφdif . (20)

The transformation jacobian is:
(

∂φ1∂φ2

∂φsum∂φdif

)

=
1

2
. (21)
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Pair of partons in kt-factorization approach

d2p1,t d
2p2,t = = p1,tdp1,t p2,tdp2,t

dφsumdφdif

2
= p1,tdp1,t p2,tdp2,t 2πdφdif . (22)

The integrals in Eq.(18) can be written equivalently as

dσ(p1,t, p2,t)

dp1,tdp2,t

=
1

2
·1
2

∫

dφsumdφdif p1,tp2,t

∫

dy1dy2
1

4
qtdqtdφqt

(...) .

(23)
First 1

2
– jacobian, second 1

2
– extra extension of the

domain.
By symmetry, there is no dependce on φsum

dσ(p1,t, p2,t)

dp1,tdp2,t

=
1

2
·1
2
·4π
∫

dφdif p1,tp2,t

∫

dy1dy2
1

4
qtdqtdφqt

(...) .

(24)
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Matrix elements for 2→ 2 processes
The matrix elements for on-shell initial gluons/partons

|Mgg→gg|2 =
9

2
g4

s

(

3− t̂û

ŝ2
− ŝû

t̂2
− ŝt̂

û2

)

,

|Mgg→qq̄|2 =
1

8
g4

s

(

6
t̂û

ŝ2
+

4

3

û

t̂
+

4

3

t̂

û
+ 3

t̂

ŝ
+ 3

û

ŝ

)

,

|Mgq→gq|2 = g4
s

(

−4

9

ŝ2 + û2

ŝû
+
û2 + ŝ2

t̂2

)

,

|Mqg→qg|2 = g4
s

(

−4

9

ŝ2 + t̂2

ŝt̂
+
t̂2 + ŝ2

û2

)

. (25)

The matrix elements for off-shell initial gluons – the same
formulae but with ŝ, t̂, û from off-shell kinematics. In this
case ŝ+ t̂+ û = k2

1 + k2
2, where k2

1, k
2
2 < 0. Our prescription

– a smooth analytic continuation of the on-shell formula off
mass shell.
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2→ 3 processes in collinear approach
Standard parton model formula:

dσ(h1h2 → ggg) =

∫

dx1dx2 g1(x1, µ
2)g2(x2, µ

2) dσ̂(gg → ggg)

(26)
The elementary cross section can be written as

dσ̂(gg → ggg) =
1

2ŝ
|Mgg→ggg|2dR3 . (27)

The three-body phase space element is:

dR3 =
d3p1

2E1(2π)3

d3p2

2E2(2π)3

d3p3

2E3(2π)3
(2π)4δ4(pa+pb−p1−p2−p3) ,

(28)
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2→ 3 processes in collinear-factorization approach
It can be written in an equivalent way as:

dR3 =
dy1d

2p1t

(4π)(2π)2

dy2d
2p2t

(4π)(2π)2

dy3d
2p3t

(4π)(2π)2
(2π)4δ4(pa+pb−p1−p2−p3) ,

(29)
The last formula is useful for practical purposes. Now

dσ = dy1d
2p1tdy2d

2p2tdy3·
1

(4π)3(2π)2

1

ŝ2
x1f1(x1, µ

2
f )x2f2(x2, µ

2
f ) |M2→3|2 ,

(30)
where

x1 =
p1t√
s

exp(+y1) +
p2t√
s

exp(+y2) +
p3t√
s

exp(+y3) ,

x2 =
p1t√
s

exp(−y1) +
p2t√
s

exp(−y2) +
p3t√
s

exp(−y3) . (31)
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2→ 3 processes in collinear-factorization approach
Repeating similar steps as for 2→ 2:

dσ =
1

64π4ŝ2
x1f1(x1, µ

2
f )x2f2(x2, µ

2
f ) |M2→3|2

p1tdp1tp2tdp2tdΦ−dy1dy2dy3 ,
(32)

where Φ− is restricted to the interval (0, π).
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Matrix elements for 2→ 3 processes
For the gg → ggg process (k1 + k2 → k3 + k4 + k5) the
squared matrix element is

|M|2 =
1

2
g6

s

N3
c

N2
c − 1

[
(12345) + (12354) + (12435) + (12453) + (12534) + (12543)+

(13245) + (13254) + (13425) + (13524) + (12453) + (14325)
]

×
∑

i<j

(kikj)/
∏

i<j

(kikj) ,

(33)

where (ijlmn) ≡ (kikj)(kjkl)(klkm)(kmkn)(knki).
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Matrix elements for 2→ 3 processes
It is useful to calculate matrix element for the process
qq̄ → ggg. The squared matrix elements for other
processes can be obtained by crossing the squared matrix
element for the process qq̄ → ggg (pa + pb → k1 + k2 + k3)

|M|2 = g6
s

N2
c − 1

4N4
c

3∑

i

aibi(a
2
i + b2i )/(a1a2a3b1b2b3)

×
[

ŝ

2
+N2

c

(
ŝ

2
− a1b2 + a2b1

(k1k2)
− a2b3 + a3b2

(k2k3)
− a3b1 + a1b3

(k3k1)

)

+
2N4

ŝ

(
a3b3(a1b2 + a2b1)

(k2k3)(k3k1)
+
a1b1(a2b3 + a3b2)

(k3k1)(k1k2)
+
a2b2(a3b1 + a1b3)

(k1k2)(k2k3)

)]

,

(34)

where the quantities ai and bi are defined as:

ai ≡ (paki) ,

bi ≡ (pbki) . (35)
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Matrix elements for 2→ 3 processes
The matrix element for the process gg → qq̄g is obtained
from that of qq̄ → ggg by appropriate crossing:

|M|2gg→qq̄g(k1, k2, k3, k4, k5) =
9

64
·|M|2qq̄→ggg(−k4,−k3,−k1,−k2, k5) .

(36)
We sum over 3 final flavours (f = u, d, s).
For the qg → qgg process

|M|2qg→qgg(k1, k2, k3, k4, k5) =

(

−3

8

)

·|M|2qq̄→ggg(k1,−k3,−k2, k4, k5)

(37)
and finally for the process gq̄ → q̄gg

|M|2gq̄→q̄gg(k1, k2, k3, k4, k5) =

(

−3

8

)

·|M|2qq̄→ggg(−k3, k2,−k1, k4, k5) .

(38)
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Unintegrated gluon distributions (part 1)
Gaussian smearing

Fnaive(x, κ
2, µ2

F ) = xgcoll(x, µ2
F ) · fGauss(κ

2) , (39)

fGauss(κ
2) =

1

2πσ2
0

exp
(
−κ2

t/2σ
2
0

)
/π . (40)

BFKL UGDF

−x∂f(x, q2
t )

∂x
=
αsNc

π
q2
t

∫ ∞

0

dq2
1t

q2
1t

[

f(x, q2
1t)− f(x, q2

t )

|q2
t − q2

1t|
+

f(x, q2
t )

√

q4
t + 4q4

1t

]

.

(41)
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Unintegrated gluon distributions (part 2)
Golec-Biernat-Wuesthoff saturation model
from dipole-nucleon cross section to UGDF

αsF(x, κ2
t ) =

3σ0

4π2
R2

0(x)κ2
t exp(−R2

0(x)κ2
t ) , (42)

R0(x) =

(
x

x0

)λ/2
1

GeV
. (43)

Parameters adjusted to HERA data for F2.

Kharzeev-Levin gluon saturation

F(x, κ2) =

{

f0 if κ2 < Q2
s,

f0 · Q2
s

κ2 if κ2 > Q2
s.

(44)

f0 adjusted by Szczurek to HERA data for F2.
Describes nicely inclusive pion production at RHIC.
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Kwiecinski parton distributions
QCD-most-consistent approach – CCFM.

For LO (2→ 1) processes convenient to use UPDFs in
a space conjugated to transverse momentum (Kwieciński
et al.)

f̃(x, b, µ2) =
1

2π

∫

d2κ exp
(

−i~κ ·~b
)

F(x, κ2, µ2)

F(x, κ2, µ2) =
1

2π

∫

d2 b exp
(

i~κ ·~b
)

f̃(x, b, µ2)

The relation between
Kwieciński UPDF and the collinear PDF:

xpk(x, µ2) =

∫ ∞

0

dκ2
tfk(x, κ2

t , µ
2)
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Kwiecinski parton distributions
At b = 0 the functions fj are related to the familiar
integrated parton distributions, pj(x,Q), as follows:

fj(x, 0, Q) =
x

2
pj(x,Q).

pNS = u− ū, d− d̄,
pS = ū+ u+ d̄+ d+ s̄+ s+ ...,

psea = 2d̄+ 2u+ s̄+ s+ ...,

pG = g,

where . . . stand for higher flavors.
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Kwiecinski equations
for a given impact parameter:

∂fNS(x, b, Q)

∂Q2
=

αs(Q2)

2πQ2

Z

1

0

dz Pqq(z)

»

Θ(z − x) J0((1 − z)Qb) fNS

“ x

z
, b, Q

”

− fNS(x, b, Q)

–

∂fS(x, b, Q)

∂Q2
=

αs(Q2)

2πQ2

Z

1

0

dz



Θ(z − x) J0((1 − z)Qb)

»

Pqq(z) fS

“ x

z
, b, Q

”

+ Pqg(z) fG

“ x

z
, b, Q

”

–

− [zPqq(z) + zPgq(z)] fS(x, b, Q)

ff

∂fG(x, b, Q)

∂Q2
=

αs(Q2)

2πQ2

Z

1

0

dz



Θ(z − x) J0((1 − z)Qb)

»

Pgq(z) fS

“ x

z
, b, Q

”

+ Pgg(z) fG

“ x

z
, b, Q

”

–

− [zPgg(z) + zPqg(z)] fG(x, b, Q)

ff
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Nonperturbative effects
Transverse momenta of partons due to:

perturbative effects
(solution of the Kwieciński- CCFM equations),
nonperturbative effects
(intrinsic momentum distribution of partons)

Take factorized form in the b-space:

f̃q(x, b, µ
2) = f̃CCFM

q (x, b, µ2) · F np
q (b) .

We use a flavour and x independent form factor

F np
q (b) = F np(b) = exp

(−b2
4b20

)

May be too simplistic ?
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Unintegrated gluon distributions (comparison)
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Processes included in our kt-factorization approach
There are 4 important contributions:

gluon+gluon→ gluon+gluon (Leonidov-Ostrovsky)
gluon+gluon→ quark+antiquark (Leonidov-Ostrovsky)
gluon+(anti)quark→ gluon+(anti)quark (new !!! )
(anti)quark+gluon→ (anti)quark+gluon (new !!! )

First two processes discussed also by:
Bartels-Sabio-Vera-Schwennsen
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New contributions

h2
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Figure 3:
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Processes included in kt-factorization

gg → gg (left upper),
gg → qq̄ (right upper),
gq → gq (left lower),
qg → qg (right lower).

Kwieciński UPDFs with b0 = 1 GeV−1, µ2 = 100 GeV2.
Full range of parton rapidities.
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Processes included in kt-factorization
Fractional contributions of different subprocesses

gg → gg (left upper),
gg → qq̄ (right upper),
gq → gq (left lower),
qg → qg (right lower).

Kwieciński UPDFs with b0 = 1 GeV−1, µ2 = 100 GeV2.
5 GeV < p1t, p2t < 20 GeV.
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Azimuthal correlations

Figure 4: gg → gg (solid), gg → qq̄ (dashed), gq → gq

= qg → qg (dash-dotted). Kwieciński UPDFs and b0 = 1
GeV−1. The integration is made for jets from the transverse
momentum interval: 5 GeV < p1t, p2t < 20 GeV and from
the rapidity interval: -4 < y1, y2 < 4.

July 2007, Budapest – p. 33



Scales in Kwiecinski UGDF
µ2 = 0.25 (black), 10 (blue), 100 (red) GeV2

Figure 5: gg → gg component with the Kwieciński UGDFs
for different b0 and for different evolution scales µ2 = 10
(blue), 100 (red) GeV2. The initial distributions – black lines.
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Different UGDFs

Figure 6: gg → gg component for different UGDFs. The
Kwieciński distribution is for b0 = 1 GeV−1 and µ2 = 100
GeV2.

July 2007, Budapest – p. 35



2→ 3 processes in collinear approach

Figure 7: gg → ggg component for W = 200 GeV.

Singularities when ~p1 → 0, ~p2 → 0 and ~p3 → 0.
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How to remove NLO singularities?

p1,t

p2,t

pmin
1,t pmax

1,t

pmin
2,t

pmax
2,t

e
xc

lu
de

d
r
eg

io
n

kt-factorization – no singularities, no delta functions !!!
July 2007, Budapest – p. 37



gg → gg, different UGDFs vs gg → ggg

KL (left upper),
BFKL (right upper),
Ivanov-Nikolaev (left lower),
gg → ggg (right lower).

-4 < y1, y2 < 4.
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Dijet correlations for gg → ggg, leading jets
p1t(selected) > p3t and p2t(selected) > p3t

Figure 8:
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Dijet correlations for gg → ggg, leading jets
p1t(selected) > p3t and p2t(selected) > p3t

Figure 9:
July 2007, Budapest – p. 40



Windows in p1t, p2t

0 5 10 15 20 p1,t
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A31 A32 A33

Figure 10: Definition of windows in p1t × p2t plane.
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Windows in p1t, p2t

Figure 11:
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Extra scalar cuts
to eliminate LO and NLO singularities (yes!)
to enhance resummation with respect to NLO (no!)

Figure 12: |p1t − p2t| > ∆s.
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Extra vector cuts
to eliminate LO and NLO singularities (yes!)
to enhance resummation with respect to NLO (no!)

Figure 13: |~p1t + ~p2t| > ∆v.
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Summary/Conclusions of the first part
Dijet correlations at RHIC have been calculated in the
kt-factorization approach with different UGDFs
(UPDFs) from the literature
Two new mechanisms have been included compared
to the literature. They are dominant at larger rapidities
(or rapidity gaps) i.e. constitute competition for
Mueller-Navelet (BFKL) jets
Results have been compared with collinear NLO
calculations
At φ < 1200 and/or asymmetric jet transverse momenta
the kt-factorization is superior over the collinear NLO
This calculation is a first step for hadron-hadron
correlations measured at RHIC. Here internal structure
of both jets enters in addition.
The method can be used in semihard region (small pt)
at LHC.
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Photon-jet correlations
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Plan of the second part of the talk

Introduction
Inclusive spectra
Photon-jet correlations
Results
Conclusions

based partially on:
1) Phys.Rev. D 75, 014023 (2007)
2) arXiv:hep-ph/0704.2158, in print in Phys. Rev. D
in collaboration with T. Pietrycki
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Cascade mechanism 1
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Cascade mechanism 2
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KMR UPDFs
Kimber-Martin-Ryskin for k2
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UPDFs and photon production

dσ(h1h2 → γ, parton)

d2p1,td2p2,t

=

∫

dy1dy2
d2k1,t

π

d2k2,t

π

1

16π2(x1x2s)2

∑

i,j,k

|M(ij → γk)|2

· δ2(~k1,t + ~k2,t − ~p1,t − ~p2,t)fi(x1, k
2
1,t)fj(x2, k

2
2,t)

f(x1, ~k
2

1,t)

f(x2, ~k
2

2,t)

~p1,t

~p2,t

f(x1, ~k
2

1,t)

f(x2, ~k
2

2,t)

~p1,t

~p2,t

f(x1, ~k
2

1,t)

f(x2, ~k
2

2,t)

~p1,t

~p2,t

f(x1, ~k
2

1,t)

f(x2, ~k
2

2,t)

~p1,t

~p2,t

(i, j, k) =(q, q̄, g), (q̄, q, g),

(g, q̄, q), (q, g, q)

standard collinear
formula
fi(x1, k

2
1,t)→ x1pi(x1)δ(k

2
1,t)

fj(x2, k
2
2,t)→ x2pj(x2)δ(k

2
2,t)

July 2007, Budapest – p. 51



Differential cross section
2→ 2 in kt-factorization approach
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Photon-jet correlations dσ/dφ−
2→ 2 in kt-factorization approach
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Decorrelations in (p1,t, p2,t) space
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Scale dependence in Kwieciński UPDFs
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Photon-jet correlations dσ/dφ−
NLO collinear vs kt-factorization approach
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Scalar cuts

|p1,t − p2,t| > ∆S

√
s = 1960 GeV
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y1, y2, y3 ∈ (−4, 4)

NLO collinear
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σ0 = 1 GeV
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t0 = 1 GeV2

Kwieciński
b0 = 1/ GeV
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Vector cuts

|~p1,t + ~p2,t| > ∆V
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Leading photon/jet
NLO collinear

(dashed) no limits on p3,t

(solid) p3,t < p2,t

(dotted) p3,t < p1,t

p3,t < p2,t

√
s = 1960 GeV

p1,t, p2,t ∈ (5, 20) GeV

y1, y2, y3 ∈ (−4, 4)

p1,t - photon
p2,t - observed parton
p3,t - unobs. parton
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Leading photon/jet
NLO collinear versus kt-factorization

(solid) p3,t < p2,t

(dotted) p3,t < p1,t

p3,t < p2,t

√
s = 1960 GeV

p1,t, p2,t ∈ (5, 20) GeV

y1, y2, y3 ∈ (−4, 4)

p1,t - photon
p2,t - observed parton
p3,t - unobs. parton
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Leading photon/jet in (p1,t, p2,t) space

no limits on p3,t p3,t < p2,t
p3,t < p1,t

p3,t < p2,t
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Windows in (p1,t, p2,t)
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Windows in (p1,t, p2,t) - RHIC
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Photon hadron correlations
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Photon hadron correlations - results
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Photon hadron correlations - results
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Summary/Conclusions of the second part

Good agreement with exp. data using Kwiecinski
UPDFs
(carefull treatment of the evolution of the QCD ladder)

Predictions made for LHC based on several UPDFs

The kt-factorization approach is also better tool
for φ− < π/2 if leading parton/photon condition is
imposed
for φ− = π (no singularities)

RHIC measures γ-hadron, next step inclusion of jet
hadronization
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