Dissipation and differential elliptic flow

Denes Molnar

RIKEN/BNL Research Center & Purdue University

Zimányi Memorial Workshop

July 2-4, 2007, KFKI/RMKI, Budapest, Hungary

- Thermalization question
 - can pQCD rates do it at RHIC?
 - an ancient beast... or friend perhaps?
 - what if we have the highest possible rates?

first a bit of history... Great Hunt for DCCs Biro, DM, Feng, Csernai, PRD55 ('97)

$$\mathcal{L} = \bar{\Psi} \left[i\gamma \cdot \partial - g \left(\sigma + i\gamma_5 \vec{\tau} \vec{\pi} \right) \right] \Psi + \frac{1}{2} (\partial \Phi)^2 - U(\Phi)^2$$

"Mexican hat"

evolution from large initial ang. mom.

 $[F \equiv |\vec{\Phi}|, P \equiv \partial_{\tau} F]$

we had great fun (if only Nature had been kinder)

to what degree QCD matter thermalizes in a RHIC collision?

local equilibrium POSTULATE quite successful but need to understand equilibration dynamics Gyulassy, Pang, Zhang, DM...

• one measure - "elliptic flow" (v_2)

Covariant transport

Boltzmann ..., Israel, Stewart, de Groot, ... Pang, Zhang, Gyulassy, DM, Vance, Csizmadia, Pratt, Cheng, Xu, Greiner ...

Covariant, causal, nonequil. approach - formulated in terms of local rates.

$$\Gamma_{2\to 2}(x) \equiv \frac{dN_{scattering}}{d^4x} = \sigma v_{rel} \frac{n^2(x)}{2}$$

transport eqn.: $f_i(\vec{x}, \vec{p}, t)$ - phase space distributions

$$p^{\mu}\partial_{\mu}f_{i}(\vec{x},\vec{p},t) = \underbrace{S_{i}(\vec{x},\vec{p},t)}^{\text{source}} 2 \rightarrow 2 (\operatorname{ZPC},\operatorname{GCP},\ldots) \\ + \underbrace{C_{i}^{el.}[f](\vec{x},\vec{p},t)}^{2\leftrightarrow 3} (\operatorname{MPC},\operatorname{Xu-Greiner}) \\ + \underbrace{C_{i}^{inel.}[f](\vec{x},\vec{p},t)}^{2\leftrightarrow 3} + \underbrace{C_{i}^{inel.}[f](\vec{x},\vec{p},t)}^{2\leftrightarrow 3} + \ldots$$

algorithms: OSCAR code repository @ http://nt3.phys.columbia.edu/OSCAR

HERE: utilize MPC algorithm DM, NPA 697 ('02)

rate is a local and manifestly covariant scalar

for particles with momenta p_1 and p_2 :

$$\Gamma(\mathbf{x}) = \sigma \, v_{rel} \, n_1(\mathbf{x}) n_2(\mathbf{x}) = \sigma \, \frac{\sqrt{(p_1 \cdot p_2)^2 - m_1^2 m_2^2}}{E_1 E_2} \, n_1(\mathbf{x}) n_2(\mathbf{x})$$

(n/E is a scalar)

an equivalent alternative form is $v_{rel} = \sqrt{(\vec{v}_1 - \vec{v}_2)^2 - (\vec{v}_1 \times \vec{v}_2)^2}$

[in cascade algorithms, rate is evaluated in the pair c.o.m. frame, where $\vec{v}_1 || \vec{v}_2$ and thus $v_{rel} = |\vec{v}_1 - \vec{v}_2|$]

Example: Molnar's Parton Cascade

Elementary processes: elastic $2 \rightarrow 2$ processes + $gg \leftrightarrow q\bar{q}$, $q\bar{q} \rightarrow q'\bar{q}' + ggg \leftrightarrow gg$

Equation for $f^i(x, \vec{p})$: $i = \{g, d, \bar{d}, u, \bar{u}, ...\}$

$$p_{1}^{\mu}\partial_{\mu}\tilde{f}^{i}(x,\vec{p}_{1}) = \frac{\pi^{4}}{2} \sum_{jkl} \iiint_{2,3,4} \left(\tilde{f}_{3}^{k}\tilde{f}_{4}^{l} - \tilde{f}_{1}^{i}\tilde{f}_{2}^{j} \right) \left| \mathcal{M}_{12\to34}^{i+j\to k+l} \right|^{2} \delta^{4}(12-34)$$

$$+ \frac{\pi^{4}}{12} \iiint_{2,3,4,5} \left(\frac{\tilde{f}_{3}^{i}\tilde{f}_{4}^{i}\tilde{f}_{5}^{i}}{g_{i}} - \tilde{f}_{1}^{i}\tilde{f}_{2}^{i} \right) \left| \mathcal{M}_{12\to345}^{i+i\to i+i+l} \right|^{2} \delta^{4}(12-345)$$

$$+ \frac{\pi^{4}}{8} \iiint_{2,3,4,5} \left(\tilde{f}_{4}^{i}\tilde{f}_{5}^{i} - \frac{\tilde{f}_{1}^{i}\tilde{f}_{2}^{i}\tilde{f}_{3}^{i}}{g_{i}} \right) \left| \mathcal{M}_{45\to123}^{i+i\to i+i+l} \right|^{2} \delta^{4}(123-45)$$

$$+ \tilde{S}^{i}(x,\vec{p}_{1}) \leftarrow \text{initial conditions}$$

with shorthands:

$$\tilde{f}_i^q \equiv (2\pi)^3 f_q(x, \vec{p}_i), \quad \int_i \equiv \int \frac{d^3 p_i}{(2\pi)^3 E_i}, \quad \delta^4(p_1 + p_2 - p_3 - p_4) \equiv \delta^4(12 - 34)$$

D. Molnar @ Zimanyi WS, July 2-4, 2007

 $2 \rightarrow 2$

Hydrodynamic limit

mean free path:

$$\lambda(x) \equiv \frac{1}{\operatorname{cross section} \times \operatorname{density}(\mathbf{x})}$$

• Ideal fluid limit $\lambda \to 0$: local equilibrium

 $T^{\mu\nu}_{id} = (e+p)u^{\mu}u^{\nu} - p\,g^{\mu\nu}$

 $\partial_{\mu}S^{\mu} = 0 \quad \Rightarrow \text{ entropy conserved}$

• Viscous hydro $\lambda \ll length \& time \ scales$: near local equilibrium

dissipative dynamics in terms of transport coefficients and relaxation times

$$e.g., \quad {
m shear \ viscosity} \ \eta pprox 0.8 {T\over \sigma_{tr}} \ , \qquad {
m relaxation \ time \ } au_\pi pprox 1.2 \lambda_{tr}$$

Israel, Stewart ('79) ...

sharp cylinder R=5 fm, $au_0=0.2$ fm/c, b=7.5 fm, $dN^{cent}/dy=300$

anisotropy increases with cross section, and developes early ($\sim 1-2$ fm/c)

DM & Gyulassy, NPA 697 ('02): $v_2(p_T,\chi)$ at RHIC

parton transport model MPC diffuse nuclear geometry $dN/d\eta$ based on EKRT saturation Au+Au @ 130 GeV, b = 8 fm

- HIJING (minijet+radiation) initconds
- binary transverse profile
- 1 parton ightarrow 1 π hadronization

large RHIC v_2 : perturbative $2 \rightarrow 2$ rates insufficient, need $15 \times$ higher

radiative transport:

mainly increase in σ_{tr} matters

about $3 \times$ larger with $3 \rightarrow 2$

 \Rightarrow big help but likely not enough (need $v_2(p_T)$ results)

Another important angle in the story of thermalization...

Animal. in dulcib. aquis Ordo II. 363

Æin fibentopfige fclang.

Hadronization

ra an ficta effet, quærere debebat. Mihi cum Erythræo plane commentum artis uidetur. Auriculę, lingua, nalus, facies, toto genere à ferpentium natura difcrepant. quòd fi figmenti author, rerum naturæ (quæ in ipfis etiam monftris plerung: non undiquag: degenerat) no imperitus fuiffet, mul tò artificiofiùs potuiffet imponere spectatoribus.

GERM. Ein Dafferschlang mit vij topfen/foll auß der Türcker gen Denedig ge= bracht feyn worden/ vnnd da offenlich gezeyget/ im jar (D. S. XX. 21ber es bedunckt die verstendigen 8 natur/tein natür= licher/funder ein erdichter torpel seyn.

Lund model

indep. frag \rightarrow parton-hadron \rightarrow duality

coalescence

Ko & Lin, nucl-th/020714 [PLR89 ('02)]: suggested flavor ordering of elliptic flow

 $q\bar{q} \rightarrow meson$, $qqq \rightarrow baryon$ assuming fast quarks pick up partner(s) at REST(?!)

Elliptic flow scaling

simple but naive DM '04: ignores space-time, other hadronization channels

we all love it - simple & works (not exact)

coalescence idea very plausible \rightarrow "must be right"

but life is complicated...

dynamical coalescence: scaled $v_2(p_T)$ is roughly half of underlying parton v_2

Most recent direction:

instead of perturbative dynamics...

study evolution for highest possible scattering rates (quantum limit)

Classical transport rates get arbitrarily large as $\lambda_{MFP} \rightarrow 0$

BUT, quantum mechanics: $\Delta E \cdot \Delta t \ge \hbar/2$ + kinetic theory: $T \cdot \lambda_{MFP} \ge \hbar/3$ Gyulassy & Danielewicz '85 $\eta \approx 4/5 \cdot T/\sigma_{tr}$ $s \approx 4n$ gives minimal viscosity: $\eta/s = \frac{\lambda_{tr}T}{5} \ge 1/15$

 $\mathcal{N} = 4$ SYM + gauge-gravity duality: $\eta/s \ge 1/4\pi$ Policastro, Son, Starinets, PRL87 ('02) Kovtun, Son, Starinets, PRL94 ('05)

might be a universal lower bound - but general proof lacking

 \Rightarrow no ideal fluids - "most perfect" are those with minimal viscosity

["most" is crucial - perfect \equiv ideal already since '50s]

two main frameworks for near-equilibrium evolution:

causal viscous hydrodynamics Israel, Stewart; ... Muronga, Rischke; Romatschke et al; Heinz et al... main challenge - acausality and instability

covariant transport DM

much more difficult numerically but fully stable and causal

No, still not ideal fluid

DM & Huovinen, PRL94 ('05): final $v_2(p_T)$

[identical RHIC Au+Au initconds, b = 8 fm, binary profile, $T_0 = 0.7$ GeV, e=3p EOS]

 $\eta/s \sim \lambda_{tr} T \sim 1/(\sigma T^2)$

initially "better than perfect", after $\tau \sim 1-3$ fm "less than perfect"

 $\Rightarrow \eta/s = const$ needs growing $\sigma(\tau) \propto 1/T^2 \propto \tau^{2/3}$

η/s for transport

"minimal" viscosity - corresponds to $\lambda_{tr} \approx 1/(3T_{eff}) \approx 0.1$ fm at $au_0 = 0.1$ fm

estimate from average density: $\lambda_{tr} = \frac{1}{\langle n \rangle \sigma_{tr}}$

for b = 8 fm @ RHIC, transport with 47 mb gives

$$\lambda_{tr}(\tau_0) = \frac{\tau_0 A_T}{\sigma_{tr} dN/d\eta} \sim 1 - 2 \times 10^{-2} \text{ fm}$$

estimate from transport opacity χ : assuming 1D Bjorken expansion

$$\chi = \int dz \,\rho(z)\sigma_{tr} \sim \int d\tau \rho_0 \frac{\tau_0}{\tau} \sigma_{tr} = \frac{\tau_0}{\lambda_{tr}(\tau_0)} \ln \frac{L}{\tau_0}$$

for b = 8 fm @ RHIC, transport with 47 mb gives $\chi \approx 20$

$$ightarrow \lambda_{tr}(au_0) \sim 1.5 - 2 imes 10^{-2}$$
 fm (!)

 $\Rightarrow \sigma_{gg} \approx 50$ mb is already better than best-case scenario

hydro/transport RHIC comparison, now with "minimal viscosity" $\Rightarrow \sigma_{gg}(\tau = 0.1 \text{ fm}) \sim 4 - 9 \text{ mb}$ [4 mb for center of collision zone]

DM '06: b = 8 fm

 \Rightarrow still 20 – 30% drop in v_2 due to dissipation, even at low p_T

Now apply this at LHC ...

and predict $v_2(\ensuremath{p_T})$ for "minimum viscosity" system, i.e., maximal scattering rates

from a transport perspective, there are 3 relevant scales:

 $\sigma_{tr} \cdot dN/d\eta$, T_{eff} , and au_0/R

[DM & Gyulassy, NPA697 ('01)]

RHIC vs LHC

- I. nuclear geometry identical (gold \simeq lead)
- II. larger $dN_{ch}/d\eta \sim 1200 2500$, highly uncertain but irrelevant(!)

 $\lambda_{tr} \propto \sigma_{tr} \cdot dN/d\eta$ fixed by minimal viscosity requirement

III. higher typical momenta

for massless dynamics, momenta scale with initial T_{eff} ($\langle p_T \rangle$, or for saturation model Q_{sat})

provided there are no other scales in the problem

 $\Rightarrow \text{ universal } v_2(\frac{p_T}{Q_s}), \text{ i.e.,}$ $v_2^{LHC}(p_T) \approx v_2^{RHIC}(p_T \frac{Q_s^{RHIC}}{Q_s^{LHC}})$

estimate Q_s^{RHIC}/Q_s^{LHC} from saturation condition

$$Q_s^2 = \frac{2\pi^2}{C_F} \alpha_S(Q_s^2) \ xG(x = \frac{Q_s}{\sqrt{s}}, Q_s^2) \ T_A$$

 $\Rightarrow Q_s^{LHC}/Q_s^{RHIC} \approx 1.5$ (central collisions)

refine for $b \neq 0$ with $\langle p_T^2 \rangle$ from k_T -factorized GLR as in Adil et al, PRD73 ('06)

$$\frac{dN_g}{d^2 x_T dp_T d\eta} = \frac{4\pi}{C_F} \frac{\alpha_s(p_T^2)}{p_T} \int d^2 k_T \, \phi_A(x_1, \vec{p_1}, \vec{x_T}) \, \phi_B(x_2, \vec{p_2}, \vec{x_T})$$

$$\Rightarrow Q_s^{LHC} / Q_s^{RHIC} \sim \sqrt{\frac{\langle p_T^2 \rangle^{LHC}}{\langle p_T^2 \rangle^{RHIC}}} \approx 1.3 - 1.5 \quad \text{for } b = 8 \text{ fm}$$

at a given pT, v_2 at LHC will be smaller than at RHIC in contrast, SPS \rightarrow RHIC it stayed about same IV. higher T_{eff} also means higher σ , since $\lambda_{tr} \approx \frac{1}{3T_eff}$ quantum bound

i.e., need $v_2(p_T)$ for $1.3 - 1.5 \times$ larger σ

 \Rightarrow small 5 – 10% INCREASE in $v_2(p_T)$ relative to naive scaling

V. higher Q_{set} also (likely) means faster thermalization $au_0 \sim 1/Q_s$

involves the last scale τ_0/R - controls interplay between longitudinal and transverse dynamics

DM ('07): factor 6 decrease in τ_0 gives only about 20% decrease in v_2 \Rightarrow rather insensitive, only a few-% effect DM ('07): $\eta/s \approx \kappa/(4\pi)$

Conclusions

perturbative rates and large v_2 at RHIC: $2 \rightarrow 2$ is insufficient but $3 \leftrightarrow 2$ may work (still open)

there is a 20 - 30% dissipative reduction of elliptic flow at RHIC even if scattering rates saturate their quantum bounds ("minimal viscosity" $\eta/s = 1/(4\pi)$)

if LHC and RHIC plasma are both "minimally viscous", expect

$$v_2^{LHC,5500}(p_T) pprox v_2^{RHIC,200}(p_T \cdot \boldsymbol{k})$$

with $k \approx 1.3 - 1.5$ (GLR estimate for b = 8 fm).

hadronization is a significant theory uncertainty - need more great champions to tame it

Open issues

initial geometry (eccentricity ε)

- gluon saturation models can give $\sim 1.3\times$ larger ε than for binary profile (depends on model details)

this mainly affects interpretation because $v_2 \sim \varepsilon$ (allows for larger η/s)

missing $3 \leftrightarrow 2$ processes

not a big issue here because our viscosity is FIXED by the entropy. Extra scattering channels decrease η below the quantum bound, unless all cross sections are reduced at the same time.