From interacting nuclear matter to strongly interacting quark matter

P. Lévai (RMKI, Budapest)

Zimányi Memorial Workshop Budapest, 2 July 2007

Founder of the Hungarian relativistic heavy ion physics;
Teacher of the Budapest group;
Mastermind behind the Hungarian membership and activity at CERN;
Reformer of the Hungarian NSF;

Dreamer of the QGP for 30 years !

József ZIMÁNYI (Jozsó) (1931-2006) Honorary chair of QM2005 1954-74: Low energy nuclear physics (KFKI, Budapest) γ - γ correlation; stripping reaction; optical potential; ... 1969-...: Visiting Copenhagen (Ole Hansen, NORDITA) 1974 The birth of QCD and relativistic heavy ion physics (T.D. Lee) 1979-06: \sim 100 theory articles and papers about HIC Hydrodynamical model: Bondorf-Garpman-Zimányi, '79 Hadrochemistry: Montvay-Zimányi, '79 Bose condensation: Zimányi-Fai-Jakobsson, '79 Neural network: Csernai-Zimányi, '79 Shock front: Bondorf-Ivanov-Zimányi, '81 Three-fluid model: Lovas-Zimányi-Csernai-Greiner, '81 Quark chemistry: Biró-Zimányi, '82 Entropy and hadrochemistry: Biró-Barz-Lukács-Zimányi,'83 Quark-Gluon Plasma formation: Biró-Zimányi, '85 Relativistic Mean Field Theory: Zimányi-Bondorf-Mishustin, '85 Zimányi-Moskowski, '90 Pion correlation (SPACER) : Csörgő-Zimányi, '90-... Quark coalescence (ALCOR): Biró-Lévai-Zimányi, '95-... Quark mass spectra: Zimányi-Biró-Lévai-Ván, '05-...

Member of the CERN SPS NA49, RHIC PHENIX, CERN LHC ALICE !

Contents:

- 1. Quark matter hadron matter phase transitions in equilibrium
- 2. Interacting nuclear matter/hadron matter
- 3. Equilibrium quark-hadron phase transition
- 4. Coalescence models with massive quarks Conserving quantity of massive quarks
- 5. Data reconstruction at SPS and RHIC energies and predictions for LHC energies
- 6. Charm quark and coalescence special ratios

Relativistic heavy ion collisions: 1980-2000

BEVALAC E(lab) = 1 GeV/A ↓ CERN SPS E(lab) = 158 GeV/A

- Q: Can we compress nuclear matter? Will we see extreme states?
- A: Strong stopping appears !!!
 Many new particles will be produced!
 ↓
 Hidrodynamical description in thermodynamical equilibrium

EOS for nuclear/hadronic matter (EOS for neutron star)

⇒ Interacting nuclear/hadronic matter + fireball dynamics Collective dynamics in heavy ion collisions

EOS for the interacting nuclear/hadronic/quark matter:

Quarks and gluons are present from SPS (AGS?) energy 'Bulk' matter : Hidrodynamical models Thermal descriptions (T,μ) Freeze-out conditions in the expanding diluted fireball

Particle production: $0 \le p_T \le 3 \text{ GeV}$

Exponential hadron distributions support thermal models

EOS for the interacting nuclear/hadronic/quark matter:

EOS for the interacting nuclear and hadronic matter – a la Zimányi :

1. Relativistic mean filed theory (Walecka-model, σ and ω fields)

-- with interacting pions

Zimányi, Bondorf, Mishustin, Theis, Bombay, 1984; NPA435,810,1985

- -- hadrochemistry in relativistic mean fields Biró, J. Zimányi, M. Zimányi, PLB137,271,1986
- -- mass dependent coupling constants $g_{\sigma\Delta} = (1 + \frac{M_{\Delta} M_{N}}{M_{N}})g_{\sigma N}$ Lévai, Lukács, Waldhauser, Zimányi, PLB177,5,1986
- -- derivative scalar coupling $\rightarrow \rightarrow \rightarrow$ Zimányi-Moszkowski model Zimányi, Moszkowski, PRC42,1416,1990 $M^{eff} = \frac{M}{1 + g_s \sigma/M}$

 $\overline{\psi}(\frac{\lambda}{2\,M^{eff}}g_{\nu}\sigma_{\mu\nu}F^{\mu\nu})\psi$

2. Density dependent equation of state [U(n)] Zimányi, Lukács, Lévai, Bondorf, Balázs, NPA484,647,1988

What about the QGP matter and a phase transition in equilibrium?

Equilibrium phase boundary between hadronic matter and QGP P. Lévai, B. Lukács, J. Zimányi, XVI. Hirschegg Workshop, 1988.

EOS for strongly interacting quark-gluon matter from lattice-QCD

zero baryon density (1990-2000)

finite baryon densities (2000 -)

$\rightarrow \epsilon(T, \mu), P(T, \mu)$

More realistic EOS for deconfined matter

Non-ideal EOS → quasi-particle picture of strongly interacting QM >>>> Detailed microscopical picture of deconfinement is needed

Quark matter formation in heavy ion collisions

Lattice-QCD results at finite density, SU(3), $N_f=2 \mu > 0$

Crossover phase transition at small and intermediate baryon densities:

What is the microscopical mechanism of the hadronization ????

⇒ QUARK COALESCENCE is one possibility

Interacting massive quarks around T_c !!

1983	Matter QGP	Degrees of freedom free q,q,g (+B)	Hadron production Thermal equilibrium fast thermalization ("miracles") or parton-hadron duality	Model descr. QCD pQCD
1993	wQGP	on-shell massive quasi-q,g $\Gamma_i \sim g^2 T \ln 1/g < m_i \sim g T$	Thermal equilibrium Quark-coalescence Resonance-production + decay	QCD phenom. QAP, MD
2003	sQGP	quasiparticles with mass distribution strong inter \rightarrow spectral fun $\Gamma_i \approx m_i \sim g T$	Quark-coalescence qq, qq – correlators c.	Lattice QCD QCD phenom
900	ssQGP	no quasipartic. (geometry) [except high energy jets] or	Compactification in higher (effective) dimens.	AdS/CFT
Ō		interaction → LFWF form. or strong field dominance	Coalescence Black hole phenomenology	QAP, <u>Schröd.</u> Gen. relativity

Constituent quark scaling can be clearly seen in v_2 !

<u>Bulk</u> quark-antiquark matter around T_c phase transition, deconfined quark-matter at T>T_c !

Recent RHIC results (QM06): Meson- and baryon-suppressions are the same at high p_T! Jet-picture incl. energy loss (pQCD) is recovered beyond a threshold, but anomalous B/M ratio at intermed. p_T

COALESCENCE: deuteron production in heavy ion collisions

Statistical quantum mechanics: [Feynman '72] ⇒ Dover, Heinz, Zimányi PRC44(1991)1636. projecting the deuteron density matrix onto the two-nucleon density matrix:

[e.g. R. Scheibl, U. Heinz, PRC59(1999)1585.]

$$\frac{dN_d}{d^3P_d} \sim \frac{1}{2!} \int d^3x_1 d^3x_2 \ d^3x_1' d^3x_2' \ \phi_d^*(x_1, x_2) \phi_d(x_1', x_2') \ \left\langle \psi^+(x_2', t_f) \psi^+(x_1', t_f) \psi(x_1, t_f) \psi(x_2, t_f) \right\rangle$$

Deuteron wave-function: $\phi_d(x_1, x_2) = (2\pi)^{-3/2} \exp[iP_d(x_1+x_2)/2] \quad \varphi_d(x_1-x_2)$ Internal wave-function: $\varphi_d(r) = (\pi d^2)^{-3/4} \exp(-r^2/2d^2)$ Wigner transformation: $\varphi_d(r) = \int d^3 \xi \exp[-iq\xi] \varphi_d(r+\xi/2) \varphi_d \ (r-\xi/2)$ $\Rightarrow 8 \exp(-r^2/d^2 - q^2 \cdot d^2)$

Two-nucleon density matrix \rightarrow one-particle density matrix:

 $\langle \psi^{+}(x_{2}^{'},t_{f})\psi^{+}(x_{1}^{'},t_{f})\psi(x_{1},t_{f})\psi(x_{2},t_{f})\rangle = \langle \psi^{+}(x_{2}^{'},t_{f})\psi(x_{2},t_{f})\rangle \langle \psi^{+}(x_{1}^{'},t_{f})\psi(x_{1},t_{f})\rangle$ One-body Wigner function from the one-particle density matrix: $\langle \psi^{+}(x^{'},t_{f})\psi(x,t_{f})\rangle = \int \frac{d^{3}p}{(2\pi)^{3}}f^{W}(p;t_{f},(x+x^{'})/2)\exp[ip(x-x^{'})]$

The deuteron spectrum:

$$\frac{dN_d}{d^3P_d} = \frac{3}{(2\pi)^6} \int d^3r_d d^3q d^3r D(r,q) f_p^W(q_+,r_+) f_n^W(q_-,r_-)$$

Energy conservation: scattering on a third body before coalescence

QUARK COALESCENCE: meson production in bulk quark matter

<u>Meson production</u>: binding of a quark and an antiquark, $q + \overline{q} \Rightarrow M$ (constituent quark model, non-relativistic approx.)

- --- (anti)quarks are inside a deconfined phase [QGP, QAP, CQM]
 - \Rightarrow asymptotic wave functions do not exist inside deconf. phase !!!!
- --- the interaction between quark and antiquark drives the meson production \Rightarrow non-relativistic V(qq) potential (lattice-QCD results around T_c !)
- --- direct calculation of coalescence matrix elements

 $M_{12} = \int d^3 x_1 d^3 x_2 \ \phi_M(|x_1 - x_2|) \ e^{-iPX} \ V_{12}(|x_1 - x_2|) \ \varphi_q(x_1)\varphi_q(x_2)$ $\Rightarrow V_{12}(r) \text{ is an effective coalescence potential: } V_{12} = -\alpha_{eff} \frac{\langle \lambda_1 \lambda_2 \rangle}{r}$

 \Rightarrow many coalescence channels exist $(\pi, \rho, K, K^*, \phi, ...)$

--- introducing $1+2 \to 3$ coalescence cross section [e.g. ALCOR, PLB347,1995,6]: $\sigma_{12}(k) = \frac{m_3^2}{4\pi^2} \sqrt{\frac{2m_1m_2}{(m_1+m_2)^2}} |M_{12}|^{12} = 16m_3^2 \sqrt{\pi} \alpha_{eff}^2 \rho^3 \frac{a}{(1+(ka)^2)^2} \to a$: Bohr radius --- quark coalescence rate: $\langle \sigma_{12}v_{12} \rangle = \frac{\int d^3 P_1 d^3 P_2 f_1(P_1) f_2(P_2) \sigma_{12}v_{12}}{\int d^3 P_1 d^3 P_2 f_1(P_1) f_2(P_2)}$

Can we use such a non-relativistic approximation ??? \rightarrow Quark mass !?! $m(q) \simeq 330 \, MeV, \ T \simeq 175 \, MeV \rightarrow OK$ New messages carried by strangeness and charm in AA collisions:

Initial strangeness/charm content of the colliding nucleons is neglected,
 → final state strangeness/charm characterizes production dynamics !!

Newly produced strange quarks/antiquarks: $N_s = N_{\bar{s}}$ Newly produced charm quarks/antiquarks: $N_c = N_{\bar{c}}$

- 2. Strange and charm quark are massive and heavy: Constituent quark masses: $M_s = M_{\bar{s}} \approx 450 - 500 MeV$ $M_c = M_{\bar{c}} \approx 1200 - 1500 MeV$
 - ➤ Strange/charm hadron production is enhanced in coalescence !! Coalescence rate is enhanced:

$$\sigma_{12}(k) = \frac{m_3^2}{4\pi^2} \sqrt{\frac{2m_1m_2}{(m_1 + m_2)^2}} |M_{12}|^{12} = 16m_3^2\sqrt{\pi}\alpha_{eff}^2\rho^3 \frac{a}{(1 + (ka)^2)^2}$$

- 3. New hadron species can be measured and investigated: U^+ $U^ A^ A^$
 - $\rightarrow \quad K^+, K^-, \Lambda, \Xi, \Omega, ...; D^+, D^-, J/\psi, \Lambda_c, \Xi_c, \Omega_c, \Omega_{cc}, \Omega_{ccc},$ J. Zimányi et al., JPG, New J. Physics, PLB, ...

Quark matter formation in heavy ion collisions - basic assumption

ALCOR model for quark matter hadronization Biró, Lévai, Zimányi, Phys. Lett. B347,6, 1995

Massive quarks/antiquarks are the basic d.o.f.: $u, \overline{u}, d, \overline{d}, s, \overline{s}(c, \overline{c})$

Stopping: initial quarks from colliding nucleus $\frac{dN(u)}{dy} = P * N_u^{(totalu)} + \frac{dN(\langle u \overline{u} \rangle)}{dy}$ Newly produced light quark-antiquark pairs

Newly produced strange quark-antiquark pairs $\frac{dN(s)}{dy} = \frac{dN(\langle s \bar{s} \rangle)}{dy}$

Attractive potential between (anti-)quarks

 $V_{eff}(r) = -\alpha_{eff} \frac{\langle \lambda_i \lambda_j \rangle}{r}$

Heavy hadron resonances are produced -> decay

4 input parameters: \underline{P} ; $\langle u\overline{u} \rangle = \langle d\overline{d} \rangle$; $\langle s\overline{s} \rangle = \underline{f}_{s} * (\langle u\overline{u} \rangle + \langle d\overline{d} \rangle)$; $\alpha_{\underline{eff}}$

Quark matter formation at SPS energies between 20-158 GeV/nucl

Detailed NA49 results on hadron production: Rapidity distributions → rapidity dependent analyzis

Baryon asymmetry (stopping) is very much rapidity dependent !!! "Total" particle numbers >>>>> rapidity densities, dN/dy

ALCOR results at SPS energies in the mid-rapidity:

Input parameters	•				
dN/dy (y=0)	20 GeV/n	30 GeV/n	40 GeV/n	80 GeV/n	158 GeV/n
π -	90±5	95±5	110 ± 5	145 ± 5	182 ± 5
K-	5.5 ± 0.5	8 ± 0.5	8±0.5	12 ± 0.5	17.5 ± 0.5
K+/K-	3 ± 0.2	2.6 ± 0.2	2.55 ± 0.2	2.1 ± 0.2	1.7 ± 0.2
<u> </u>		0.05 ± 0.02	0.07 ± 0.02	0.2 ± 0.05	0.34 ± 0.04
[<i>E</i> -	1±0.2	1.2 ± 0.2	1.1 ± 0.1	1.4 ± 0.2	1.5 ± 0.2]
ALCOR paramete	ers:				
New uu-pairs (±	2) 45	50	62	88	123
f _s (± 0.01)	0.40	0.35	0.30	0.28	0.24
$\alpha_{\rm s}$ (± 0.02)	0.80	0.80	0.80	0.80	0.72
Stopping _{y=0} (± (± 1)	1%)20%	20%	20%	20%	15 %
ALCOR result (ex	<u>xamples):</u>				
K+/π+	0.213	0.192	0.173	0.171	0.158
Λ ⁰ /p ⁻	1.36	1.16	1.0	0.93	0.80
φ/K-	0.42	0.385	0.34	0.32	0.28
$(\Omega^{-}+\Omega^{+})/\pi^{-} \ge 100$	0.268	0.217	0.189	0.233	0.244

Quark matter formation at SPS energies between 20-158 GeV/nucl

ALCOR results in the mid-rapidities:

(Maybe this is the time for a full, rapidity dependent analysis.)

Quark matter formation at RHIC at $\sqrt{s} = 130 \& 200 \text{ A GeV}$

ALCOR model for quark matter hadronization

	ALCOR 130 AGeV fit	ALCOR 200 AGeV prediction
New pairs, $dN_{u\bar{u}}/dy$	250	286
Strangeness, f_s	0.22	0.22
Stopping, in %	3.3	3.0
Interaction, α_{eff}	0.55	0.55

Quark-coalescence:

reproduces most of the bulk properties at RHIC energies (particle numbers, ratios,

their energy dependence)

Au+Au	STAR	ALCOR	STAR	ALCOR
dN_i/dy	130 AGeV		200 AGeV	
π_	287 ± 20	287	327 ± 32	322
K^{-}	41.9 ± 5.5	40.4	49.5 ± 7.4	45.6
K^{-}/K^{+}	0.91 ± 0.11	0.93	0.92 ± 0.02	0.94
Ξ [†]	1.72 ± 0.1	1.76	1.81 ± 0.08	2.23
h^{\pm}		690	780	780
K^+	46.2 ± 6.1	43.1	51.3 ± 7.7	48.1
Ξ-	2.05 ± 0.1	2.16	2.16 ± 0.09	2.59
$\langle \Omega^+ + \overline{\Omega}^+ \rangle$	0.55 ± 0.15	0.59	0.59 ± 0.14	0.72
\overline{p}^-/p^+	0.64 ± 0.07	0.70	0.77 ± 0.05	0.76
$\overline{\Lambda}/\Lambda$	0.71 ± 0.04	0.75	0.81 ± 0.07	0.810
Ξ+/Ξ-	0.83 ± 0.05	0.81	0.84 ± 0.06	0.86
$\overline{\Omega}^+/\Omega^-$	0.95 ± 0.15	0.88	0.95 ± 0.15	0.92
K^+/π^+	0.161 ± 0.024	0.15	0.16 ± 0.02	0.150
K^-/π^-	0.146 ± 0.022	0.14	0.15 ± 0.02	0.142
Λ/h^-	0.054 ± 0.001	0.047		0.050
$ \overline{\Lambda}/h^- $	0.040 ± 0.001	0.037		0.042
Ξ^{-}/π^{-}	0.006 ± 0.001	0.007	0.007 ± 0.001	0.008
K^{*0}	36.7 ± 5.5	28.5		31.7
Φ/K^{*0}	0.49 ± 0.13	0.37		0.37
Φ/K^-		0.26	0.13 ± 0.03	0.26
ρ^{0}/π^{0}		0.22	0.20 ± 0.04	0.22

Color particle densities --- quarks or gluons ???

Estimate for rapidity density at y=0 at LHC energy:

ALCOR results (RHIC) and predictions (LHC) in the mid-rapidity:

dN/dy (y=0)	200 GeV	RHIC.data	LHC-I: 5500 AGeV	LHC-II: 5500 AGeV
New uu-pairs	286		500	750
f _s (strangeness)	0.22		0.22	0.22
$\alpha_{\rm s}$ (eff. coupling	g) 0.55		0.55	0.55
Stopping in y=0	3 %		1 %	1 %
Total (u+d+s+ar	nti) 1396		2440	3660
h±	780	$780{\pm}40$	1252	1830
π^{-}	322	327 ± 32	500	724
K+	48	51.3 ± 7.7	70	99
p +	19		37	62
<u> </u>	2.59	2.16 ± 0.09	6.42	10.7
K+/π+	0.15	0.16 ± 0.02	0.14	0.14
Ξ -/ π -	0.008	0.007 ± 0.002	1 0.013	0.015
$ ho^{0\!/}\pi^{0}$	0.22	0.20 ± 0.04	0.21	0.20
φ/K-	0.26	0.15 ± 0.03	0.25	0.25

Pions at RHIC and LHC from the ALCOR/MICOR + pQCD

(Coalescence results at $v_T=0.6$.)

PQCD + Quark Coalescence at RHIC for pion

PQCD + Quark Coalescence at LHC for pion

PQCD + Quark Coalescence at LHC for pion EdN/d³p (GeV⁻²) 0 10 0 0 0 π^* from guark-coalescence at LHC $v_{\tau} = 0.6, 0.7, 0.8$ $Pb+Pb \rightarrow \pi^++X \text{ at s}^{1/2}=5500 \text{ GeV}$ 10 with Shad + Q (L/ λ =4,8) 10^2 0-10 % central coll. 10-3 LHC 10-4 10-5 10-6 10-7 10 8 L/λ 10-9 10^{-10} 2.5 5 7.5 17.5 20 10 12.5 15 p_T (GeV)

Pions at LHC: (latest calculation)

 $dN/dy (\pi^+, y=0) = 500$ $dN/dy (h^-, y=0) = 625$

v_T=0.6, 0.7, 0.8

Uncertainty from the transverse flow.

PQCD + Quark Coalescence at LHC for proton

Protons at LHC: (latest calculation)

dN/dy (p⁺, y=0) = 70 dN/dy (h⁻, y=0) = 625

v_T=0.6, 0.7, 0.8

Uncertainty from the transverse flow.

Lambdas at LHC: $dN/dy (\Lambda, y=0) = 45$ $dN/dy (\overline{\Lambda}, y=0) = 44$ Charm hadron production at RHIC and LHC energiesAbsolute numbers: early speculations at RHIC, 6-6 Λ_c, (D⁰+D̄⁰)(P. Levai, T.S. Biró, P. Csizmadia, T. Csörgő, J. Zimányi, SQ01, J. Phys. G27 (2001) 703.)let us wait a little bit →→→→ ALCOR4

How large is
$$f_c$$
? $\langle c \overline{c} \rangle = f_c * (\langle u \overline{u} \rangle + \langle d \overline{d} \rangle)$

Ratios, namely special combinations for quark coalescence. Meson ratios: D_s/D $\frac{M(c\,\overline{s})}{M(c\,\overline{u})} = \frac{N_{\overline{s}}}{N_{\overline{u}}} \cdot \frac{\sigma v(c\,\overline{s})}{\sigma v(c\,\overline{u})}$

> Baryon ratios: $\frac{E_c / \Lambda_c}{B(c u s)}$, $\frac{\Omega_c / E_c}{N_s}$, $\frac{B(c u s)}{B(c u u)} = \frac{N_s}{N_u} \cdot \frac{\sigma v(c u s)}{\sigma v(c u u)}$

Coalescence dynamics can be studied from these ratios, especially in the very heavy quark mass limit >>>> testing different wave function models (G. Hamar, PL) Chapters from József Zimányi's scientific heritage:

- 1. Interacting nuclear/hadronic matter \leftarrow challenging task
- 2. Strongly interacting quark matter \leftarrow even larger challenge
- 3. Hadronization descriptions are very "phenomenological" it is essential to understand ⇔ confinement
- 4. The success of the coalescence models at SPS and RHIC energies quark number counting rule ⇐ why does it work ?

Message for the future:

- 5. Further input on identified hadron numbers and spectra
 - LHC ALICE can measure light, strange and charm hadrons (low and high-pT windows: TPC+TOF, HMPID, VHMPID)

- CERN NA49/NA61 (GSI/FAIR): the end point of the

nuclear/quark phase transition