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The CMS experiment
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e Soft physics

— The detector

— Level-1 trigger

— Centrality selection

— Charged hadron rapidity density

— Charged hadron spectra

— Particle identification capabilities
* charged hadrons via energy loss (dE/dx)
* neutral hadrons via decay topology (VO0)

— Azimuthal asymmetry, flow

High Density QCD
with Heavy lons
Physics Technical Design Report, Addendum 1

J. Phys. G: Nucl. Part. Phys. 34 (2007) 2307-2455

Proton-proton program: analysis exercise, first measurements
Heavy-ion program: study of QCD matter under extreme conditions


http://dx.doi.org/10.1088/0954-3899/34/11/008

The CMS detector

Compact Muon Solenoid
One single detector combines global characterization and specific probes



The CMS detector — slice
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e Detectors

— Silicon tracker: pixels and strips (|n| < 2.4)

— Electromagnetic (|n| < 3) and hadronic (|n| < 5) calorimeters
— Muon chambers (|n| < 2.4)

— Extension with forward detectors (next slide)

Can measure leptons (e, 1), hadrons (7, K, p), charged and neutrals (n, )



The CMS detector — forward

CASTOR /ZDC

ZDC
LOCATION

e CASTOR

— tungsten and quartz plates (5.3 < || < 6.6)
— covers region where baryon density is expected to be maximal in Pb-Pb

o /DC

— quartz fibers in a tungsten matrix, 140 m away from the IP (|n| > 8.3)
— measures spectator neutrons and forward photons

Very wide acceptance



Charged hadron spectra in p-p at /s = 14 TeV

One of the first physics results from the LHC will be the measurement of charged
hadron spectra in proton-proton collisions

Will constrain QCD models of hadron production at the highest energies ever
reached at the lab (/s = 14 TeV).

Important in terms of physics (QCD UE/MB/MPI), Monte Carlo tuning,
backgrounds/pile-up, characterization, etc.

The measurement of these basic observables will also serve as an important tool
for the calibration and understanding of the CMS detector and will help establishing
a solid basis for exclusive physics.

e Infos

— CSAOQ07MinBias dataset, Pythia generator, 2 M events
— Corresponds to about 1 month running with 1 Hz, 70% machine efficiency

Analysis exercise



Trigger concepts

e Inelastic processes

— Single diffractive
— Double diffractive
— Non-diffractive

o Triggers

— Minimum bias with forward hadronic calorimeter
— Zero-bias trigger (random, clock) with off-line track or vertex trigger

Pythia Process Fraction of inelastic [%]
11 F+f — f+ f7(QCD) 15.65 + 0.13
28 f+9—f+g 13.92 £ 0.12 ND 60.9
53 gt+g—f+f 0.92 4+ 0.03 '
68 g+g—9g+g 38.69 £ 0.20
92 Single diffractive (XB) 8.86 £ 0.09 SD 17.9
93 Single diffractive (AX) 9.00 £ 0.09 '
94 Double diffractive 12.94 £0.11 DD 129

Usability of different triggers is a function of luminosity



Charged particle tracking

_barrel layer of the third hit

e Pixel detector

— 3 barrel layers (4, 7 and 10 cm radii) and 2 endcaps on each side
— 100 x 150 pum? pixels, 2% occupancy even at dN/dn., = 5000

e Hit triplets

— Use pixel hit triplets instead of pairs, loss of acceptance but lower fake rate
— Modified triplet finding, reconstructing down to pt = 0.075 GeV/c

Tracking optimized for the p-p analysis exercise, 2M events



Modified hit triplet finding

7straight line
prediction

miting trajectories

cylinder of origin

e Modified method
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— Hit pair finding, then prediction for the third hit: same logic

— "origin”: the track must come from the cylinder of origin

— "minimum”: the pt of the track must be above the minimal value

— "third": the track must be able to reach the third layer (barrel or endcap)

How? Limiting circles in planar projection



Limiting circles — some geometry — "origin”

Inverted

Points of the pair: P; and P,
Two limiting circles: touch origin and pass though P; and P,
Construction with help of inversion with center P; and radius k = P{P>

Limiting circles cut out an arc P3 — P3 from the circle of third barrel
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Limiting circles — some geometry — "minimal”

Original Inverted

Radii according to minimal pt
Limiting circles cut out an arc P3 — P3 from the circle of third barrel

Project circles back to 3D using the z coordinates of the pairs
The resulting region is enclosed by limiting helices
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Limiting circles — some geometry — "third” on barrel

Original " Inverted

Allowed tracks are in the intersection of the two (three) regions

Project circles back to 3D using the z coordinates of the pairs
The resulting region is enclosed by limiting helices
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Charged particle tracking — allowed ranges

barrel layer of the third hit
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Intercepts of three special trajectories on the layer form a curve
Three points = parabola = rectangular envelope

How to select third hits?
Check if position is compatible with multiple scattering
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Charged particle tracking — pixel tracks
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Charged particle tracking — strategy, steps

e Seed generation

— Use pixel hit triplets instead of pairs, loss of acceptance but lower fake rate

— Modified triplet finding, reconstructing down to pt = 0.075 GeV/c

— Pixel cluster shape filter

— Pixel track cleaning and merging, pixel tracks with 3-8 hits
e Determination of primary vertex (or vertices)

— Optimized, dedicated study

— Best parameters: NTrkMin = 3, ZSeparation = 0.3 cm, PtMin = 0.15 GeV/c
e Seed re-generation

— Constrain triplets with previously found primary vertex

e Trajectory building, fit

— Filtering: strip cluster width filter
— Smoothing: retry failed fits with last points successively removed
— Cleaning: clean seeds, expect to produce only a single global track

Use pixel and strip silicon detectors for tracking: global tracks
Many improvements and additions to standard p-p reconstruction chain
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Track and trajectory filters — cluster shape

Cluster shape must match trajectory direction



Track and trajectory filters — cluster shape
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Essential for reducing the fake track rate
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Charged particle tracking — global tracks
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Optimization of vertexing

P(m|n)
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If there are n interactions, how many vertices (m) can we detect?

Multinomial distribution, 75% of the inelastic events get a vertex
Vertex finding is an independent process = can treat pile-up
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Charged particle tracking — interactive events

=" Pixel simHits
" Strip simHits
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Ferenc Sikler, powered by LiveGraphics30 &
mouse drag: rotate | mouse release: spin | Shift + mouse vert: zoom | Shift + mouse horiz: rotate perp | 's" stereo | Home'

Example event E gallery at SoftPhysicsGallery “i
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http://sikler.web.cern.ch/sikler/event/event.html
https://twiki.cern.ch/twiki/bin/view/CMS/SoftPhysicsGallery

Charged particle tracking — acceptance

Geometrical acceptance

Fraction of simulated particles which are reconstructible
(it has at least three hits in different pixel layers)

At low pt the effect of the mass is visible
Flat and smooth in central region
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Charged particle tracking — efficiency

Algorithmic efficiency
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Fraction of reconstructible particles which are at least once reconstructed
(a reconstructed track is associated to a simulated particle if more than half of its hits,

but at least three, are shared)

For low pt different for particles with different mass
Steps at 1 and 2 GeV/c are due to stricter requirements (points on track)
Close to flat and smooth in central region
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Charged particle tracking — correction tables

Geometrical acceptance — 1t Algorithmic efficiency — 1t

1 1
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Two dimensional tables, they are used for correction
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Charged particle tracking — multiple counting
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Very small, below per mille level



Charged particle tracking — fake track rate
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Fraction of reconstructed tracks which are fake
(a reconstructed track is fake if it has no associated particles)

Very small, around per mille level
Note: tracker is seeded with triplets + found event vertex



Multiplicity dependence

Average multiple counting
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In case of no vertex (low multiplicity) averages go up

Linear dependence on multiplicity also in pile-up
Multiplicity dependent correction

120
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Corrections

Dependence of several corrections on parameters, such as kinematical variables, particle type and event multiplicity
(also on number of pile-up collisions). The magnitude of the correction and the estimated contribution to the overall
systematic error is shown as well.

. Dependence on Corr. Syst.

Correction :
kine  part  mult [%]

Trigger no no yes 15 5
Geometrical acceptance yes yes no 10-20 2
Algorithmic efficiency yes yes no 10-20 2
Multiple track counting yes no no small small
Fake track rate yes no yes small small
Feed-down yes yes no 2-15 1-2
1, pT resolution no no no 1-5 1-5
Total yes yes yes 7-9

(1 — fakeRate) - (1 — feedDown)
geomAccep - algoEffic - (1 — multiCount)

AN, corrected — AN, measured ( 1)

Corrections are dominated by trigger definition
Summary table
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Corrections — feed-down
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Corrections — pt bias and resolution
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Very small bias
Particles are fitted with pion mass assumption

pt resolution is (n,pt) dependent, 7 resolution is neglected
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Corrections — triggers, vertexing

Probability
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— Track trigger : the event has at least one reconstructed track
— Vertex trigger: the event has at least one reconstructed primary vertex

Probability to reconstruct 0, 1 or 2 interaction vertices are 22.0%, 73.7% and 4.2%
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Corrections — multiplicity distribution
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Track trigger 59.2%  68.6%  99.5% 88.2%
Vertex trigger  38.5%  39.7%  95.6% 77.9%

Peak due to diffractive events is visible
Can measure multiplicity distributions
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Results — charged spectra, comparisons
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Can one identify these particles? = dE/dx

32



Energy loss analysis — estimator
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Energy loss

analysis — fits (1)
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Energy loss

analysis — fits (2)
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Relative yields can be extracted via fitting and integration
(identification in the statistical sense)

35



Energy loss analysis — fits (3)
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About 5-7% expected resolution
Depends on final channel-to-channel calibration



Energy loss analysis

Separation power
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Momentum limit of yield extraction is set to 30 separation
Could use (7 scaling to fix parameters and push up limit
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Results — particle spectra, comparisons
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Results — variables, fit functions

Invariant yields

Ed3N_ N 1 d&N
dp> de¢dyprdpr 2mprdydpr

Interpolation to y

>N E &N
dydpr p dndpr

Empirical fit function (Tsallis or Levy) from UA1, Tevatron, RHIC

BN dN  (n—1)(n—2) Er(pr)] "
dp3  dy 27 nT [nT + (n — 2)m)] ll—l_ nl’ ]

Thermal and power-law function in low and high pt limits

Good description of data
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Detailed results —

charged hadrons

Charged hadrons
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Good fit, only slight changes with 7
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Detailed results — hadrons, pions

Charged hadrons
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Detailed results — kaons, protons

Kaons Protons
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Detailed results — charged hadron fit results
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e Parameters

— Inverse slope T ~ 0.2 GeV/c
— Exponent of the high pt power-law tail is n =~ 7.2
— Average transverse momentum is {pt) ~ 0.7 GeV/c

All parameters change only slightly with increasing n
Empirical parameterization, three parameters



Detailed results — rapidity density
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pT spectrum is summed and integrated

The acceptance of the tracker limits the accessible 7/y range,
total number of produced charged particles cannot be measured

Total and differential cross-sections
can also be obtained using luminosity measurements



Detailed results — energy dependence

Pythia expectations
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Comparison to lower energy measurements: FNAL, ISR, UA1, UA5, E735, CDF

dN/dn|,—o continues its linear increase in log /s
Strong, non-linear increase of (pr)
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Detailed results — multiplicity dependence
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Shape of 1 distribution also varies
Interesting physics (multiparton interactions, underlying event, . . . )
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Other considerations — beam crossing angle
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Acceptance+-efficiency window (black) shifted
Interesting possibilities if beam crossing angle is not zero
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Conclusions and outlook

Inclusive hadron physics program

Charged hadrons (h¥)
Identified charged particles via dE/dx (7%, K*, p/p)

— ldentified neutral particles via decay (KO, A, also =7, 2~ and antiparticles)
— On-vertex resonances (p, K*, ¢)
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