Élenjáró protonok a CERN LHC TOTEM kísérletében

Sziklai János

MTA Wigner FK Részecske és Magfizikai Kutatóintézet A TOTEM kísérlet képviseletében

INFN Sezione di Bari and Politecnico di Bari, Bari, Italy MTA Wigner FK, RMI, Budapest, Hungary Case Western Reserve University, Cleveland, Ohio,USA CERN, Geneva, Switzerland Estonian Academy of Sciences, Tallinn, Estonia Università di Genova and Sezione INFN, Genova, Italy Università di Siena and Sezione INFN-Pisa, Italy University of Helsinki and HIP, Helsinki, Finland Academy of Sciences, Praha, Czech Republic (7 ország, 9 intézet, ~ 80 kutató)

2012.10.03. CERN 20 MTA

TOTEM Fizikai Célok Áttekintése:

Teljes hatáskeresztmetszet

Lágy és kemény diffrakció

2012.10.03. CERN 20 MTA

Rugalmas szórás

Élenjáró protonok

TOTEM Detektorok Elhelyezése az LHC IP5-nél (a CMS mellett)

Inelastikus detektor konfigurációk az IP5 mindkét oldalán: mindegyik képes részecskenyomok azonosítására és triggerelésre is

Feladat: töltöttrészecske azonosítás inelasztikus eseményekben & vertex rekonstrukció

24 Roman Pot a CMS mindkét oldalán: nyalábhoz közeli rugalmas és rugalmatlan protonok mérése

2012.10.03. CERN 20 MTA

TOTEM Előreszögű nyomkövető inelasztikus teleszkópjai T1 teleszkóp CSC (Chatode Strip Chambers) 5 rétegű

Akceptancia: $3.1 < |\eta| < 4.7$

T2 teleszkóp GEM (Gas Electron Multiplier) 5 rétegű

- töltöttrészecske detektálás
- vertex rekonstrukció
- trigger

Akceptancia: $5.3 < |\eta| < 6.5$

2012.10.03. CERN 20 MTA

"Római Fazék"detektorok

 Különleges mozgatható detektoregyüttes, saját vákuumtérben Roman Pot párok 5 méterre 147 és 220 méterre az IP5-től

- detektálja az IP5-ből szórt protonokat
- nyalábközeli mozgatható eszközök
- peremnélküli szilicium mycrostrip detektor
- ~16µm-es felbontás
- triggerelési képesség az FPGA processzálással

TOTEM képességek

CMS +TOTEM = A legnagyobb akceptanciájú detektor amely valaha épült hadronütköztetőnél β* = 1540 (90) m esetén 90% (65%) diffraktív proton detektálása

Rugalmas pp Hatáskeresztmetszet: Adatmintavétel $7 \times 10^{-3} \text{ GeV}^2 < |t| < 3.5 \text{ GeV}^2$

Átfogó |t| tartományú mérések változatos LHC konfigurációkban

Set	$\beta^*(m)$	RP approach	\mathcal{L}_{int}	t range	Elastic
			(μb^{-1})	(GeV^2)	events
1	90	$4.8 - 6.5\sigma$	83	$7 \cdot 10^{-3} - 0.5$	1M
2	90	10σ	1.7	0.02 - 0.4	14k
3	3.5	7σ		0.36 - 3	66k
4	3.5	18σ		2 - 3.5	10k

2012.10.03. CERN 20 MTA

Rugalmas pp szórás a Roman Pot-okban

-20

-10

β^{*}=3.5m (7σ)

β^{*}=90m (10σ)

10 Aperture limitation, t_{max} -10 -20

0

10

20

x near [mm]

30

β^{*}=90m (5σ)

TOTEM

 $\uparrow t_v = -p^2 \Theta_v^2$

Impulzus veszteség ξ**=**∆**p/p**

2012.10.03. CERN 20 MTA

IP5 bal felsőtől –> IP5 jobb alsóig IP5 bal alsótól –> IP5 jobb felsőig Diagonálisok egymástól függetlenül analizálva

LHC optika röviden

Proton transzport mátrix

Rugalmas proton rekonstrukció:

Pot-okban

mérve

- Szórási szög mindkét irányú rekonstrukciója •
- Magas Θ^{*}- rekonstrukciós hatásfok $\sigma(\Theta_v^*)=1.7 \mu rad a \beta^*=90 m és alacsony$ *t*-tartományra $\sigma(\Theta_v^*)=12.5 \mu rad a \beta^*=3.5 m és magas$ *t*-tartományra

 Θ_x

 $y \\ \Theta_y$

| = |

$$\begin{cases} \Theta_x^* = \left(\Theta_{x,RP} - \frac{dv_x}{ds}x^*\right) / \frac{dL_x}{ds}, & \frac{\Delta p}{p} = 0\\ \Theta_y^* = \left(y_{RP} - v_yy^*\right) / L_y \end{cases}$$

 Θ_y^*

 $\Delta p/p$

Szükséges a nyaláboptika kalibrációja és beállítása!

2012.10.03. CERN 20 MTA

Sziklai János

rekonstruált

beam fill-enkénti kalibráció

Optika meghatározása Speciális TOTEM run-ok, nyaláboptika változhat beam fill-enként !!

- Transzport mátrix érzékenysége az LHC tökéletlenségeire (MADX optics model)
- Gép méret tűrések és a mért hibák kombinációja
 - mágnes áramok

TOTEI

- mágnes konverziós görbék, tér tökéletlenségek
- mágnes elmozdulások
- RP proton nyomok eloszlása alapján mért optikai korlátok
 - Optikai illesztés a MADX-szel
- Folyamatok ellenőrzés MC szimulációval

$$\begin{cases} \frac{\delta dL'_{x}}{dL'_{x}} < 1\% \\ \frac{\delta L_{y}}{L_{y}} < 1\% \end{cases} \Rightarrow \frac{\delta t}{t} \approx 0.8\% - 2.6\% \text{ for } \beta^{*} = 90n \\ \text{Optics related systematic errors} \end{cases}$$

H. Niewiadomski, *Roman Pots for beam diagnostic*, OMCM, CERN, 20-23.06.2011

H. Niewiadomski, F. Nemes, LHC Optics Determination with Proton Tracks, IPAC'12, Louisiana, USA, 20-25.05.2012

A Roman Pot-ok beállítása -> Mozgatható eszközök!!

- Belső komponensek: mérés és részecske nyomvonal
- LHC nyalábhoz viszonyítva: nyaláb érintési teszt (<200 μm)
- RP-k közötti relatív: átfedő részecske nyomvonalk (néhány μm)
- Fizika alapú: rugalmasan szórt protonok kollinearitását kihasználva az IP5 két oldalán való korlátokat (néhány μm)
 Elért végső teljes pontosság 10 μm!

Track based alignment Sziklai János

Rugalmas hatáskeresztmetszet

2012.10.03. CERN 20 MTA

$$\left. \frac{d\sigma_{_{EL}}}{dt} \right|_{t \to 0}$$

 $A = 506 \pm 22.7^{\text{syst}} \pm 1.0^{\text{stat}} \text{ mb/GeV}^2$ $A = 503 \pm 26.7^{syst} \pm 1.5^{stat} mb/GeV^2$

Tengelymetszet

 $B = 19.9 \pm 0.26^{\text{syst}} \pm 0.04^{\text{stat}} \text{ GeV}^{-2}$

meredekség

 $B = 20.1 \pm 0.3^{syst} \pm 0.2^{stat} mb/GeV^2$

-t [GeV²]

Rugalmas hatáskeresztmetszet

 $\sigma_{EL} = \sigma_{EL,extrapol.} + \sigma_{EL,meas} =$

 $24.8 \pm 1.0^{\text{lumi}} \pm 0.2^{\text{syst}} \pm 0.2^{\text{stat}}$ mb (50% közvetlen mérés)

2012.10.03. CERN 20 MTA

Inelasztikus hatáskeresztmetszet: Közvetlen T1 and T2 mérés

Inelasztikus események osztyályozása a T2-ben:

- részecske nyomvonalak mindkét oldalon nem-diffraktíve minimum bias dupla diffrakció
- részecske nyomvonalak csak az egyik oldalon főként szimpla diffrakció
 M_{diff}. ≥ 3.4 GeV (|η| ≤ 6.5)

T2 látható eseményeinek korrekciói

- Trigger Hatásfok: 2.3 %
 Részecske nyomvonalak rekonstrukciós hatásfoka: 1 %
- Nyaláb-gáz háttér:
- Pile-up (μ =0.03):

$\sigma_{inelastic, T2 visible} = 69.7 \pm 0.1 \text{ stat} \pm 0.7 \text{ syst} \pm 2.8 \text{ lumi} \text{ mb}$

2.3%

1 % 0.54 % 1.5 %

Teljes hatáskeresztmetszet: 4 közelítés

- 1. CMS Luminozitás (small bunches) + Rugalmas szórás+ Optikai Theoréma függ a CMS luminozitástól alacsony-L bunches & rugalmas hatásfokoktól & ρ paramétertől $\sigma_{TOT} = 98.3 \text{ mb} \pm 2.0 \text{ mb}$ EPL 96 (2011) 21002
- 2. CMS Luminozitás (large bunches) + Rugalmas szórás+ Optikai Theorem függ a CMS luminozitástól nagy-L bunches vs. alacsony-L bunches esetekre ρ=0.14±0.09 (Compete)

 $\sigma_{tot}^2 = \frac{16\pi}{(1+\rho^2)} \frac{1}{\mathcal{L}} \left(\frac{dN_{el}}{dt}\right)_{t=0} \quad \sigma_{TOT} = 98.6 \text{ mb} \pm 2.3 \text{ mb}$

3. CMS Luminozitás (large bunches) + Rugalmas szórás + Rugalmatlan szórás

minimializálja a rugalmas hatásfokoktól való függést és független a p paramétertől

 $\sigma_{tot} = \sigma_{el} + \sigma_{inel}$

 $\sigma_{TOT} = 99.1 \ mb \pm 4.4 \ mb$

4. (L-független) + Rugalmas szórás + Rugalmatlan szórás + Optikai Theorem nincs luminozitástól való függés

$$\sigma_{tot} = \frac{16\pi}{(1+\rho^2)} \frac{(dN_{el}/dt)_{t=0}}{(N_{el}+N_{inel})}$$

 $\sigma_{TOT} = 98.1 \text{ mb} \pm 2.4 \text{ mb}$

2012.10.03. CERN 20 MTA

Teljes hatáskeresztmetszet : Összegzés

Ez a TOTEM cikk bekerült a "Best of 2011" EPL válogatásba 2012.10.03. CERN 20 MTA

Sziklai János

2012.10.03. CERN 20 MTA

Előreszögű töltöttrészecske pszeudorapiditás sűrűség mérése a T2 detektorral

dN_{ch}/dη az 5.3 < η < 6.5 tartományban a \sqrt{s} = 7 GeV LHC energián

Adatminta: kis luminozitású események alacsony pile-up-al, T2-vel triggerelve Kiválasztás: legalább egy részecskenyom rekonstruálása Primér részecske definiciója: töltött részecskék $\tau > 0.3 \times 10^{-10}$ s élettartammal és p_t > 40 MeV/c transzverz impulzussa

Primér részecske kiválasztása:

 primér/másodlagos diszkrimináció a primér vertex rekonstrukció alapján

Primér részecske nyom rekonstrukciós hatásfok

- a részecske nyom η és a multiplicitás függvényeként kiértékelve
- 80% hatásfok
- primér részecske nyomok töredéke a 75% 90% (η függő) vágásokon belül
 2012.10.03. CERN 20 MTA
 Sziklai János

dN_{ch}/dη a T2-ben : eredmények

TOTEM mérések különféle MC jóslatokkal hasonlítva

TOTEM mérések a többi LHC kísérlet eredményeivel kombinálva

EPL 98 (2012) 31002

2012.10.03. CERN 20 MTA

Adatgyűjtés 2012-ben a \sqrt{s} = 8 TeV LHC energián

β*=90m, 2 bunches (megtörtént)

rugalmas szórás és hatáskeresztmetszet

β*=90m, 156 bunches (megtörtén, együtt a CMS-sel)

diffraktív 2 jet események tesztjei kemény diffrakció, 2 jet ($p_t > 20$ GeV) és protonok proton lefedettség: ξ teljes tartományára , -t > 0.02 GeV² integrált luminozitás: $6nb^{-1}/h$, 10 órás adatgyültés több millió esemény

β*=0.6m, ~1400 bunches, teljes luminozitás (néhány run a CMS-sel) diffraktív 2 jet események tesztjei nagy luminozitáson proton lefedettség: ξ > 2-3%, t teljes tartományára a jövő szempontjából fontos tesztek kemény diffrakció, 2 jet (p_t > 20 GeV) és protonok

β*~1000m

t > 5 •10⁻⁴ GeV² a ρ paraméter megmérése

p A run-okat 2013. év elejére tervezzük

2012.10.03. CERN 20 MTA

ρ paraméter mérése: Rugalmas Szórás alacsony |t| tartomány

A o mérése a Coulomb – Nukleáris interferencia tartományban

Ez elérhető a β* ~1000 m értékével még 2012 folyamán!

2012.10.03. CERN 20 MTA

Köszönetnyilvánítás

Köszönet az OTKA 74458, NKTH HA07-C OTKA NK 73143 (2008-2011) OTKA NK 101438 (2012-) pályázati támogatásokért

Köszönet Prof. Glauber-nek a kitartó támogatásért

Backup Slides

2012.10.03. CERN 20 MTA

Diffraktív folyamatok

2012.10.03. CERN 20 MTA

Szimpla diffrakció, alacsony $\xi = \Delta p/p$

2012.10.03. CERN 20 MTA

Dupla POMERON kicserélődés

run: 37250009, event: 14125

2012.10.03. CERN 20 MTA

Sziklai János

Szimpla diffrakció, nagy $\xi = \Delta p/p$

run: 37280006, event: 9522

2012.10.03. CERN 20 MTA

Sziklai János