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Abstract. This article describes a computational model
of the hippocampus that makes it possible for a
simulated rat to navigate in a continuous environment
containing obstacles. This model views the hippocampus
as a ‘“‘cognitive graph”, that is, a hetero-associative
network that learns temporal sequences of visited places
and stores a topological representation of the environ-
ment. Calling upon place cells, head direction cells, and
“goal cells”, it suggests a biologically plausible way of
exploiting such a spatial representation for navigation
that does not require complicated graph-search algo-
rithms. Moreover, it permits “latent learning” during
exploration, that is, the building of a spatial represen-
tation without the need of any reinforcement. When the
rat occasionally discovers some rewarding place it may
wish to rejoin subsequently, it simply records within its
cognitive graph, through a series of goal and sub-goal
cells, the direction in which to move from any given start
place. Accordingly, the model implements a simple
“place-recognition-triggered response’’ navigation strat-
egy. Two implementations of place cell management are
studied in parallel. The first one associates place cells
with place fields that are given a priori and that are
uniformly distributed in the environment. The second
one dynamically recruits place cells as exploration
proceeds and adjusts the density of such cells to the
local complexity of the environment. Both implementa-
tions lead to identical results. The article ends with a few
predictions about results to be expected in experiments
involving simultaneous recordings of multiple cells in the
rat hippocampus.

1 Introduction

The discovery of place cells in areas CA3 and CA1 of the
rat hippocampus (O’Keefe and Dostrovsky 1971) — cells
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that discharge selectively when the rat is in restricted
regions of the environment (their place fields) — led to the
idea that the hippocampus functions as a cognitive map
of space (O’Keefe and Nadel 1978). Cells that fire as a
function of the animal’s orientation in space, head
direction cells, have also been evidenced in various other
regions of the rat brain [e.g. postsubiculum (Taube et al.
1990)]. Thus, representations of position and orienta-
tion, necessary for any navigation system, are present in
the rat brain. Here we propose a computational model
of rat navigation that calls upon such representations.

The hippocampus is usually considered as an auto-as-
sociative network that learns, stores, and recalls specific
episodes, that is, individual events or configurations of
stimuli. According to such a view, the hippocampus learns
the relationships between different stimuli that all char-
acterize the same situation or event. At the time of recall,
partial cues can be completed and the whole episode can
be retrieved (Rolls 1991). However, there is another, in-
creasingly popular view, according to which the hippo-
campus rather functions as a hetero-associative network
that learns, stores, and recalls the relationships between
neighboring places (spatial relationships, e.g., Schmajuk
and Thieme 1992; Muller et al. 1996) or between succes-
sive events (temporal relationships, e.g., Jensen et al.
1996; Wallenstein and Hasselmo 1997). At the time of
recall, the representation of a place (respectively of an
event), associated with the intention of some action, leads
to the prediction of the next place (respectively of the next
event).

The spatial and the temporal domains are quite similar
from a navigation point of view. Indeed, we can consider
the fact of going from place A to place B and then to place
C as the temporal sequence of being at A, at B, and then at
C. If each of these places are represented by place cells
within the rat hippocampus, the movement of the rat
through these three places is represented by the successive
activations of the corresponding place cells.! Conversely,

"Space is continuous, and so is time. The delays between the
activations of the three place cells depend on how much the cor-
responding place fields overlap and how far they are from one
another.
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predicting that a certain movement from place A will lead
to place B and then place C is equivalent to “planning” a
trajectory from A to C.

The computational model that we propose in this
article capitalizes on such considerations. It is evaluated
within the context of the navigation task of a simulated
rat, that is, a variety of animat (Meyer and Wilson
1991), that lives in a continuous environment populated
with various obstacles. Basically, it considers that the rat
hippocampus stores sequences that can be used to pre-
dict the consequences of a considered action and it calls
upon the following principles:

e Exploration is a process by which the rat experiences
sequences of places.

e The hippocampus learns these temporal sequences as
a topological graph by transforming a temporal re-
lationship into a spatial relationship.

e This topological graph can be used to learn all the
trajectories leading to a specific goal.

e The rat navigates according to what we called a
“place-recognition-triggered  response”  strategy
(Trullier and Meyer 1997a; Trullier et al. 1997).

As we will show, this model is based on biologically
plausible mechanisms. In particular, because it imple-
ments a low-level strategy, it avoids using the unnatural
planning algorithms that characterize most hippocampal
models of navigation.

In the following, we will first describe the experi-
mental and the theoretical evidence supporting the idea
that the rat hippocampus functions as a memory for
sequences. Then, we will present the architecture and the
mechanisms of our computational model. We will show
that the model can cope with continuous environments
and can be used to avoid obstacles.

PF1 PF2

0° 360°
early early early early
middle middle middle middle
late late late late

Fig. 1. Phase shift in place cell firing during the rat’s movement, as
discovered by O’Keefe and Recce (1993). The horizontal axis
represents both space (fop, rat’s movement) and time (bottom, theta
cycles and spikes). When the rat is at A (it runs from left to right
in this overhead view), the place cell corresponding to place field
PF1 fires late in the theta cycle (spikes shown as vertical bars). In B,

2 The hippocampus as a memory for sequences

One specific property of hippocampal place cells is the
specific temporal relationship between the discharge of
place cells and the overall theta rhythm, a sinusoidal
EEG oscillation between 4 Hz and 10 Hz observed in
the rat hippocampus when the animal is engaged in
locomotor behaviors (O’Keefe and Recce 1993; Skaggs
et al. 1996). As the rat runs through a place field, the
corresponding place cell discharges first at a late phase
and progressively at earlier phases of the theta cycle
(Fig. 1). Thus, the discharge of a place cell indicates that
the rat is within the corresponding place field, while the
phase of the discharge indicates whether the rat is
entering the place field (the place field is in front of the
animal) or leaving the place field (the place field is
behind the animal). This property is referred to as
“phase precession” or “phase coding’.

Several computational models were proposed to ac-
count for this phenomenon (Jensen and Lisman 1996;
Tsodyks et al. 1996; Samsonovich and McNaughton
1997; Wallenstein and Hasselmo 1997). All of them are
based upon similar principles: within each oscillation of
the theta rhythm (a theta cycle), activities from place
cells corresponding to the current position of the rat
would propagate, through the recurrent connections of
the CA3 region, to other place cells whose place fields
would be located in front of the rat. The farther from the
current position a place field is, the later in the theta
cycle the corresponding place cell would be activated by
this propagation. As the rat moves forward, this place
field gets nearer and the place cell would fire earlier and
earlier.

The connections that enable this propagation of ac-
tivities have to account for the layout of the place fields.

rat’s movement over time

relation between firing and position

spikes of the place cell associated with PF1
spikes of the place cell associated with PF2

hippocampal EEG
theta rhythm (transformed in a spatial scale)

this cell fires at the middle phase and, when in C, at the early phase
of the theta cycle. C also corresponds to the point of entry into
place field PF2 with respect to the heading direction. The corre-
sponding place cell fires late in the theta cycle. [Schematized on the
basis of data from O’Keefe and Recce (1993) and from Skaggs
et al. (1996)]
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Fig. 2. Phase precession explained by sequence learning. Each bin in
this grid-like world corresponds to a unique place. The rat has learned
the sequence of places from A to J. It subsequently moves from A to J
(top): when it is in A, it recalls the sequence from A to G (bottom);
when it is in B, it recalls the sequence from B to H; and so on. Each

In most models, this is achieved through learning, that
is, connections corresponding to neighboring cells get
strengthened while the other connections get weakened.
As mentioned above, such learning can be thought of as
the learning of sequences (of places).

Learning of sequences is what is thought to occur in
the hippocampus. Indeed, phase coding compresses
temporal sequences by storing events that can be
hundreds of milliseconds apart into successive gamma
sub-cycles that are 10-20 ms apart. This latter time
separation seems to be the ideal timing for learning to
occur (Skaggs et al. 1996). Moreover, phase coding
maintains the correct ordering of place cell firing and
thus enables asymmetric learning of the connections that
can take into account the orientation of the animat and
how it moved from one place to the other.

For instance, Jensen et al. (1996) proposed a neural
network model of short-term memory and of sequence
learning based on a biophysically plausible mechanism.
It exploits the superposition of high-frequency gamma
oscillations (20-60 Hz) on top of a low-frequency theta
oscillation (5-8 Hz) to segment time into cycles that are
divided into discrete sub-cycles. Such a network is able
to learn sequences of up to 7 =+ 2 items. Neurons of this
network, each representing a new event, maintain their
activity through an intrinsic mechanism (a specific ac-
tivity-dependent depolarizing current) and discharge
within one gamma sub-cycle at each theta cycle. Sub-
sequent events are represented by other neurons that
discharge at subsequent gamma sub-cycles. Thus, within
each theta cycle, successive gamma sub-cycles code for
successive events and the whole sequence is stored in the
correct temporal order. Thus, neurons that fire within a
sub-cycle all correspond to the same particular event and
ensembles of neurons that fire within successive sub-
cycles correspond to two successive events. A simple
Hebbian learning rule, applied to the connections from
the first ensemble to the second one, enables the asso-
ciation of one event with the next in the sequence.

As evidence that the hippocampus might actually
function as a memory for sequences, Jensen and Lisman
(1996) subsequently showed that their model could ac-
count for the phase precession of hippocampal place
cells. Their model learns sequences of places and sub-

movement and each prediction phase takes a full theta cycle. Thus, the
representation of the current place starts a new theta cycle and the
prediction of place E comes earlier and earlier in the cycle (dotted
arrow), that is the phase of firing of the place cell corresponding to E
diminishes

sequently recalls them within a theta cycle. In other
words, it predicts future positions from the current one.
When the rat is at a certain position, the corresponding
place cell discharges at the beginning of a theta cycle
and, during the rest of the theta cycle, the hippocampus
predicts the seven places ahead of the animal that it will
traverse if it keeps on moving. A step later, the animat is
one place further and thus the places it predicted at the
previous step are closer and the corresponding place
cells fire earlier in the theta cycle (Fig. 2).

3 The model

The global architecture of our model (Fig. 3, top) is a
simplified version of a previous model (Trullier and
Meyer 1997b) that closely emulated the architecture of
the rat hippocampus. Each of its four layers has a
specific and distinct function but only the last two are
simulated here.

3.1 Place cells

In a first version of the model, we begin by assuming
that place fields are uniformly distributed in the
environment. As the animat moves in a continuous
manner within the environment, only a subset of its
place cells is active, in accordance with experimental
data. Such a process, which keeps the total activity
within the hippocampus very low, is thought to involve
inhibitory interneurons, both through feedforward and
feedback pathways, that are not explicitly modeled here
(Marr 1969; Sharp 1991).

In practice, five place cells, defined as those whose
place field centers are closest to the current position of
the animat (Fig. 4a), emit a spike.

We have previously suggested that the role of dentate
gyrus is to act as a short-term memory of the sequence of
visited places and consequently to activate place cells in
the CA3 region of the hippocampus through the strong
mossy fiber synapses (Trullier and Meyer 1997b). Here,
we do not explicitly simulate the dentate granular cells
but we assume that place cells fire at specific phases with
respect to the theta rhythm as the result of the activation
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Fig. 3. Architecture of the proposed model. Top We assume that the
entorhinal cortex sends information about the spatial configuration of
landmarks to the dentate gyrus and to the CA3 region through the
perforant path. The dentate granular cells store this information as a
short-term memory, in the correct temporal order corresponding to
the temporal sequence of visited places (not explicitly simulated in this
article). This information is forced onto the CA3 pyramidal cells (large
triangles) through the strong mossy fibers. These CA3 place cells then
send projections (presumably through CAl and subiculum) to

by the dentate gyrus, that is, in the same temporal order
as the sequence of visited places. In other words, if a
place cell starts firing after a silent period (i.e. the animat
enters the corresponding place field), we assign it the
latest phase in the theta cycle. If it fires again at the next
simulated time step (i.e. the animat has not moved out of
the place field yet), its phase is decreased. This simulates
phase precession and the fact that place cells fire within
each theta cycle in the order of the experienced place
sequence (Fig. 4b). Each simulated timestep, that is,
each movement of the animat, corresponds to one theta
cycle (as in the model of Burgess et al. 1994).

In a parallel version of the model, we introduced a
mechanism by which the animat could recruit place cells
according to the local complexity of the environment.
Such a possibility has already been considered by Poucet
(1993) and similar functionalities have been imple-
mented by Touretzky and Redish (1996). In this ap-
proach, they enabled us to save computation time by
simulating only the needed place cells.

We first assume that the animat uses wall corners as
landmarks and that, although there may be many such
landmarks in the environment, the animat is able to
recognize them individually. Place cells’ activities now
depend on the distances to a certain number of these
landmarks. In our simulations, we used the following
activation function:

putative goal cells. Small triangles are plastic synapses and small
arrows on some synapses indicate that these synapses are gated by
head-direction information. Bottom When the rat moves from place A
to place B, as it is heading North (left), place cell A and place cell B
fire in order (right, filled triangles). At the same time, the connection
from place cell A to place cell B, gated by North head-direction
information (small filled triangle with labeled arrow) is reinforced.
(North is arbitrary and refers to a reference direction within the head-
direction representation system.)

n di —d* 2
act:Hexp<—7( 021)>
=1

where 7 is the number of landmarks associated with
the place cell, d; is the transform of the distance between
the current position of the animat and landmark i
(d; = exp(—actual distance) so that 0 < d; < 1), d; is the
same transform but for the distance between the location
where the place cell has been recruited and landmark i,
and o is a parameter that grossly determines the size of
the resulting place fields. When a landmark is not visible,
d; is arbitrarily set to —0.1. The place cells with activities
above a given threshold are then allowed to emit a spike,
in the limit of the five most activated place cells. In
practice, wall corners in the simulation are assigned
unique IDs and at each simulated timestep, the animat
gets the list of IDs corresponding to the visible
landmarks, along with their respective distances to the
animat’s position.

When there are fewer than five place cells with ac-
tivities above the threshold, a new place cell is recruited
to better represent the current location (Fig. 5). This
new place cell “learns” the distances between the animat
and the visible landmarks.

No difference in performance was found between the
two models that only differ in the way place cells are
simulated (Fig. 6). As a consequence, we will inter-



(c) Learned connections

0.8 [

0.6 |

Fig. 5. Recruiting a new place cell and associating it with visible
landmarks. When there are not “enough” place cells to represent the
current location (fewer than five place cells have their activities above
a certain threshold), a new place cell is recruited. This new place cell
“learns” the distances (dotted lines) between the current position of the
animat (black dot) and each of the visible landmarks (wall corners)
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Fig. 4a—c. Activation of a subset of place cells
for a given position of the animat and synaptic
learning. Each circle represents the preferred
position of a place cell (position of peak
activation). a At each timestep, #, ¢ + 1 and

t + 2, five place cells (grey circles) emit a spike.
These five cells are those for which the preferred
positions are closest to the current position of the
animat (arrow). The big circle is for illustration;
its radius has been adjusted, so that it includes
five place field centers. b These activated place
cells (circles with continuous lines) are associated
with specific phases of firing (numbers within the
circles). The phase arbitrarily precesses from 3 to
b 1. ¢ Synaptic weights of connections between
cells that emit a spike at successive phases are
enhanced. Those of connections between pairs of
cells in which only one has been active are

depressed
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Fig. 6. Comparison of the way places are represented in our two
models. Left Place fields are uniformly distributed in the environment,
regardless of possible obstacles. Right Place cells are recruited as the
animat explores the environment. At the end of the exploration, place
fields are distributed almost uniformly. Their positions depend on the
complexity of the environment (obstacles), that is, on where the
landmarks are visible
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changeably use figures corresponding to the results of
both models in the remainder of the article.

Also, simulating the fact that place cell activities de-
pend upon distances to visible landmarks was done for
illustrating how place cells could be recruited as the
animat explores the environment and studying how the
resulting representation depended upon the local com-
plexity of the environment. As a consequence, no effort
was made to take into account problems such as sensory
aliasing or the orientation-dependence of the views.
These points will be dealt with in future work, involving
a real mobile robot. However, we believe that the
number of landmarks will be large enough to enable
identification or measurement errors on a few land-
marks.

3.2 Topological representation

The CA3 region of the hippocampus has a dense
recurrent connectivity with plastic synapses (Rolls
1995). Like Schélkopf and Mallot (1995), we assume
that these synapses can be gated by head-direction
information and that the propagation of activity from a
pre-synaptic cell to a post-synaptic cell, as well as
synaptic modification of the connection, occur only if
the animat is oriented in the direction corresponding to
the gating head-direction information. Thus, as the
animat explores its environment, synapses connecting
place cells corresponding to place fields it traverses are
modified. Synaptic weights are enhanced (long-term
potentiation or LTP) if both pre- and post-synaptic cells
are active at successive phases (Fig. 3, bottom, Fig. 4c).
They are depressed (long-term depression or LTD) if
either the pre- or the post-synaptic cell is active while the
other is silent. Accordingly, they progressively stabilize
at a value that reflects the overlap between place fields, if
the place fields are oriented in the appropriate direction.
For instance, the connection gated by the “northward”
information between place cell a and place cell b in
Fig. 7 has been enhanced during exploration because the
animat went from place field A, corresponding to a, to
place field B, corresponding to b, as it was moving

(2

physical space

neural space

Fig. 7. The modified connection between two place cells in neural
space corresponds to the facts that the corresponding place fields are
neighbors and that the place field of the post-synaptic cell is in the
direction corresponding to the head-direction that modulates the
connection, with respect to the place field of the pre-synaptic cell

northward. Similarly, the connection gated by the
“eastward” information between place cell a and place
cell ¢ has been enhanced. However, the connection gated
by the “northward” information between a and ¢ has
almost not been enhanced (if it were, it would be because
the animat traversed through the overlapping region
between place fields A and C while facing north) and all
connections between place cell a and place cell d have
been depressed because place fields A and D are too far
apart from each other.

In the end, the population of CA3 place cells with
their recurrent synapses can be viewed as a directed
graph, where nodes are places and links represent the
fact that nodes are adjacent — such links being labeled by
head-direction information. In other words, it is a to-
pological representation of the environment (Fig. 8a).

3.3 Goal representation

Such a topological representation can be used to predict
the places that can be reached from the current place,
when moving in a certain direction. Propagation of
activity through a topological graph is a mechanism that
has been used (e.g. Matari¢ 1991 and Schmajuk and
Thieme 1992) for path planning. However, in such
approaches, either the signal propagates back from the
goal, which implies that there’s a mechanism triggering
the place cell that represents the goal place (which seems
not to be the case according to experimental data), or
the signal propagates forward from the current place,
but there must be a mechanism to detect that the goal
place has been reached by the prediction (a mechanism
for which there is also no experimental support).?
Alternatively, Burgess et al. (1994) hypothesized the
existence of so-called goal cells, downstream of the
hippocampus, that would code for the animat’s position
with respect to the goal, based on the information
coming from the place cells. For instance, the “East”
goal cell would fire when the animat is to the east of the
goal. In the model they proposed, Burgess et al. used
phase coding to reinforce the connections from specific
place cells to the goal cells. To learn a specific location it
will need to return to later on (a goal location), their
animat, upon finding such a location, looks about in all
directions. In each of these directions, modification of
the connections between place cells and the corre-
sponding goal cell is forced to occur at the end of the
theta cycle. As a consequence, only the place cells that
fire at a late phase, that is, place cells that have place
fields lying in front of the animat, are involved in the
process. The “place field” of a goal cell can then be
defined as the sum of the place fields of the associated
place cells — cells from which the connections have been
reinforced — and indeed lies in the direction the animat is
facing, with respect to the goal location. However, each
of these place cells that fire at a late phase must have

2For a discussion on the biological plausibility of these models
and of others, as opposed to ours, the reader is referred to Trullier
and Meyer (1997b) and to Trullier et al. (1997).



their place fields containing the goal location (when
theta rhythm is present, a place cell only fires if the
animat is within the corresponding place field). In other
words, the “place fields” of goal cells cannot extend at a
great distance from the goal because the size of place
fields is limited. As a consequence, navigation abilities
are extremely dependent upon the size of the place fields
and the environment has to be small enough. This is
because the model of Burgess et al. does not encode any
spatial relationship between places and cannot predict
all the places that lie ahead of the animat. Furthermore,
no mechanism for dealing with obstacles is proposed.

In this work, we propose to combine the mechanism
of signal propagation with the existence of goal cells. As
in the model of Burgess et al. (1994), the animat, upon
finding a goal location, looks about in all directions. In
each of these directions, the activity of the place cell
representing the goal location — where the animat cur-
rently is — is propagated within the CA3 network,
through the connections that are gated by the current
head-direction information and for which the synaptic
weights are above a certain threshold. The later condi-
tion ensures that synaptic weights that have been mod-
ified through erroneous or noisy learning are not taken
into account. (Fig. 8b, Fig. 9). All the place cells that
represent locations in the direction the animat is facing
are thus activated. They represent, as an ensemble, the
corresponding region with respect to the goal (West in
Fig. 8b), regardless of distance from the goal. The con-
nections from these activated place cells to the respective
goal cell are enhanced through a Hebbian learning rule,
at each iteration of the propagation phase. As a conse-
quence, the synaptic weight between a given place cell
and a given goal cell is an inverse function of the dis-
tance from the goal to the preferred location of the place
cell. A certain form of metric information is thus present
in the model. For instance, in Fig. 9, the propagation
phase takes 38 steps (at the 39th step, no other non-
activated place cell is triggered). Thus, the connections
from the place cells representing the goal location and
the “East” goal cells are enhanced 38 times, while the
connections from the place cells representing the North-
East corner of the environment are enhanced only once
or twice.

>

Fig. 8a—c. Summary of the principles of our model. The simulations
are decomposed into three phases, corresponding to exploration (a),
association with a goal location (b), and exploitation (c). a As the
animat moves randomly, connections between place cells are modified
to reflect the topological organization of the corresponding place
fields. Direction information is also included. b At a goal, the
information corresponding to the current place is propagated through
the head-direction gated synapses. All the place cells lying in a specific
direction with respect to the current goal location are triggered and
are then associated with one goal cell. ¢ Each place cell triggers the
firing of the appropriate goal cells. These goal cells code, as a
population, the direction to follow to return to the goal. (We used a
grid-like world for illustration purposes. Also note that place cells are
not topographically organized in the rat hippocampus. They are
placed topographically here to ease the visibility of the learned
connections.)
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We say that the activated place cells, from which the
connections to the goal cell have been modified, are
associated with the goal cell. Subsequently, any of the
associated place cells becomes able to trigger the firing of
the goal cell. In other words, the firing of the place cell
corresponding to the location of the rat will activate the
appropriate goal cells that will represent where the ani-
mat is with respect to the learned goal. For instance,
Fig. 8c shows a place cell that has been associated with,
and thus activates, the “South” and the “South-West”
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(f) after 38 iterations

Fig. 9a—f. Signal propagation from the goal location
towards the east. a Initially, five place cells corre-
sponding to the current position of the animat
(arrow) are active. The first figure illustrates the
extent of the combined place fields of these five cells,
around the goal location. (b—f) The signal from these
place cells propagate through the recurrent connec-
tions that are gated by the current head-direction
information (East in this case) and for which the
synaptic weights are above a certain threshold. At
each iteration of this propagation phase, the currently
active cells trigger neighboring connected cells. The
successive figures illustrate the extent of the combined
place fields after 5, 10, 20, 30, and 38 iterations. At
the 39th iteration, no other non-active place cell was
triggered. As a consequence, the propagation phase
stops

goal cells. This means that the animat is at the South-
South-West of the goal.

Rats, upon finding a reward, often look all around, as
if to learn the configuration of cues visible from there.
They might also propagate the information corre-
sponding to where they are in the cognitive graph, in
different directions. When the rat is not moving, hip-
pocampal activity usually goes into another mode, called
LIA (large-amplitude irregular activity) where many
more cells fire at the same time. This mode is usually
associated with a “recall mode” (Buzsaki 1989). Our

animat is supposed to learn the connections between
place cells and goal cells during such periods.

4 Navigating with a cognitive directed graph

The animat moves in a continuous manner in a
continuous environment containing obstacles. Its move-
ment is specified by its constant velocity and the
maximum angle by which it can rotate at each simulated
time step. An obstacle avoidance mechanism based on



the use of optical flow (Duchon 1996) is also called upon
when the animat is too close to a wall. Figure 10 shows
an example of the exploratory trajectory of the animat.

In practical simulations, the animat is assumed to be
equipped with a 120° field of view. It measures the dis-
tance to obstacles, within a certain range, in 49 direc-
tions (every 2.5° between —60° and + 60°). The limit on
the range of the measurement ensures that only close
obstacles are taken into account. Following Duchon
(1996), we use an approximation of the optical flow at
these 49 points by ignoring the rotational component
and taking the translational component. The optical
flow is thus expressed as follows:

|4 sin 8

d

where f is the angular speed, / the speed of the animat
(movement is considered to be collinear to the optical
axis), f§ is the angle with respect to the optical axis where
the optical flow is sampled, and d is the distance to the
obstacle in the direction of . The optical flow is zero if
no obstacle is detected.

The local navigation strategy proposed by Duchon
(1996) consists in trying to equate the average magnitude
of optical flow measured on each side of the optical axis
(the movement direction). If there are nearby obstacles
on one side, they will generate more optical flow, and
they will force the animat to turn away.

When there are nearby obstacles on both sides, it
means the animat cannot turn to avoid them. The ani-
mat should then turn around 180°. Duchon (1996)
proposed to implement a ‘“tau-reflex””, a mechanism
triggered when the time-to-collision, usually named z
(Lee 1976), is too low. The time-to-collision can be ap-
proximated by t & /. When the local obstacle avoid-
ance mechanism is not called upon, the animat turns by
a random angle drawn from a uniform distribution be-
tween —30° and + 30°.

Once the topological representation is acquired (the
animat has explored for a fixed length of time), the ani-
mat looks for reward. When it finds one, it recruits a set

0 ) I I 1
0 0.2 0.4 0.6 0.8

Fig. 10. An example of the exploratory behavior
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of goal cells to learn the goal location. Figure 11 illus-
trates the result of the propagation of the signal from the
goal location in the eight directions. The theoretical ac-
tivity field of a goal cell has a conical shape (Fig. 8b). In
practice, the way the signal propagates strongly depends
on the distribution of the place fields and the degree of
accuracy of the topological representation (the synaptic
weights fluctuate as exploration goes on and some
weights can be erroneous due to the lack of exploration
or due to the wrong activation of some place cells).

As illustrated by Fig. 8c, a set of goal cells code the
direction to the goal. This type of coding is called
“population coding” (Georgopoulos et al. 1986). The
activity of each goal cell is proportional to the sum of
the synaptic weights of the connections coming from all
the associated place cells that are active. The direction
indicated by the set of the goal cells is a weighted av-
erage of the preferred directions:

8
o = arg, <Z GC; * 3,)

i=1

where « is the direction coded by the set of goal cells,
GC; is the activity of goal cell i and d; is the direction
opposite to the label of the corresponding goal cell i (e.g.
South for the North goal cell).

However, as can be deduced from the working prin-
ciple of Fig. 8, the information from a goal location
propagates in a restricted range of directions (within 45°
around the direction the animat is facing) and can only
partially skirt around obstacles (Fig. 9). In the example
of Fig. 12, where the vector field illustrates for every
position in the environment the direction coded by the
set of goal cells, we can see that the animat would be lost
if put at location A. None of the eight goal cells would
fire when the animat is in A and the system would be
clueless as to the direction pointing towards the goal.

We thus introduce the notion of sub-goal. When the
animat is trying to reach the goal, it can be in two
modes. If some goal cells are firing and provide the di-
rection towards the goal, it follows this direction; if no
goal cell fires, the animat starts moving randomly to
look for information. At the location where it finds in-
formation, it recruits a new set of goal cells (sub-goal
cells) and learns the connections from the CA3 place
cells to these sub-goal cells in the same way it learned the
connections from the place cells to the first set of goal
cells. It then proceeds and follows the direction coded by
the first set of goal cells. If it succeeds in reaching the
goal, it validates the set of sub-goal cells. If it moves
again into a region without information, it removes the
newly recruited set and starts looking for information
again. Figure 13 illustrates this process: when the animat
is at position A, the first set of goal cells does not pro-
vide any information. The animat thus moves randomly
in search of information (trajectory 1). When it finds
information, it recruits a new set of (sub)goal cells. It
then proceeds and follows the direction indicated by the
first set of goal cells (trajectory 2). This brings the ani-
mat back to a region where the first set of goal cells is
silent. This means that the sub-goal is inefficient. The
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animat thus discards it and looks for information again
(trajectory 3). It finds some, recruits a set of (sub)goal
cells and succeeds in reaching the goal (trajectory 4).
This latter sub-goal is validated.
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Fig. 11a-h. Activity fields of
eight goal cells. Each goal cell is

02 1  connected to all the place cells
and the synaptic weights are
0 ' ' ’ ; initially set to zero. When the
0 0.2 0.4 0.6 08 1

animat learns the goal location,
the signal from the place cells
corresponding to the goal loca-
tion is propagated in eight di-
rections and the synaptic weights
03 are modified so that place cells
whose place fields lie in a given
direction with respect to the goal
location are associated with the
corresponding goal cell. As a
consequence, the activity field of
a goal cell is equivalent to the
combined place fields of the
associated place cells. Each of
the eight figures illustrate the
extent of the activity fields of the
eight goal cells
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If the environment contains more obstacles, the ani-
mat will have to recruit other sets of sub-goal cells. As a
consequence, at any given position in the environment,
more than one set of (sub)goal cells can be active, for the
same goal (this is, for instance, the case at the upper-left
corner of the environment in Fig. 13 where the set of
goal cells and the set of sub-goal cells are both active).
The animat has to choose which direction to follow.
Thus, we introduce yet another mechanism. When the

<

Fig. 12. Vector field generated by the goal cells learned at the goal
location. This vector field is generated by virtually putting the animat
in each position within the environment and computing the direction
it would follow by measuring the output of the goal cells. The limit
between the region where there is information (arrows) and the region
where there is none is not a straight line because place fields are
scattered randomly and have a certain extent, and because synaptic
weights have been learned with some noise. For instance, a place cell
whose place field is at B received the information from the goal
location when the animat was facing North-East but its place field
extends behind the corner. As a consequence the place cell
corresponding to place C was also activated, and so on
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Fig. 13. a Four successive tra-
jectories in the process of creat-
ing a sub-goal. At the end of
path 1, the animat recruits a set
of sub-goal cells but this turns
out to be inefficient, since path 2
leads the animat back into the
“silent” zone. The animat re-
cruits another set of sub-goal
cells at the end of path 3, which
proves successful, since path 4
leads to the goal (G). b Vector
field illustrating the directions
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animat is lost and looking for information, it recruits a
new set of sub-goal cells as soon as one of the existing
sets is active. We will say that the new set is associated
with this active set. For instance, the first sub-goal will
be associated with the goal, the second sub-goal with the
first, and so on. Some kind of distance information is
implicitly coded in this association. The set of goal cells
leads to the goal and is at distance 0 from the goal. The
first set of sub-goal cells leads to a position where the set of
goal cells will be active, so the first sub-goal is at (topo-
logical) distance 1 from the goal. The second sub-goal is
thus at (topological) distance 2 from the goal, and so on.

At the position where a new set of (sub)goal cells is
recruited, the associated set of (sub)goal cells provides
some kind of distance information. The activities of the
(sub)goal cells depend on the synaptic weights of the
connections from the associated place cells, which are
proportional to the inverse of the number of iterations it
required the signal from the (sub)goal to reach the cor-
responding place cells. In other words, the activities of
the (sub)goal cells indicate how far the animat is from
the (sub)goal. Thus, we use a “symbolic” mechanism by
which a newly recruited set of (sub)goal cells stores the
distance information to the goal as the combination of
two terms: the distance information provided by the
associated set of (sub)goal cells (zero for the first set of
goal cells) and the distance from the associated (sub)goal
to the current location where the new set is recruited,
computed from the activities of the (sub)goal cells of the
associated (sub)goal.

For instance, in the example of Fig. 13, the distance
from the goal (G) to the sub-goal (S) is 12 iterations, as
can be deduced from Fig. 9 [S is situated somewhere
between the area covered by the propagation at iteration
10 (Fig. 9¢) and the area covered by the propagation at
iteration 20 (Fig. 9d)]. The correspondence with the
activities of the goal cells at position S must take into
account the maximum number of iterations (38 in this
case), because the synaptic weights from the place cells
at position S to the east goal cell have grown by an
amount of 26 (38 — 12) step increases.

indicated by the set of (sub)goal
cells that were recruited at posi-
(b) tion S and that proved efficient
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Fig. 14. Resulting trajectory during exploitation

Figure 14 shows how our model performs in the ex-
ample environment we have been using so far. Note that
the trajectories are not straight to the goal. This is due to
the scale of the place cell representation, to the fact that
exploration is never quite exhaustive, and to the fact that
all connections are not stabilized at their theoretical
values. Figure 15 shows other examples of environments
that require several sub-goals.

5 Discussion

There is no comprehensive theory of the hippocampus
yet and there are still many controversies on apparently
contradictory experimental results (probably stemming
from differences in the paradigms and the protocols
used). It seems, however, that there is some agreement as
to the idea that the hippocampus is involved in different
kinds of memory processes, one of which being spatial
memory (O’Keefe and Nadel 1978; Nadel 1991).

We have followed Muller et al. (1996) in speaking of
the hippocampus as a ““cognitive graph” instead of as a
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Fig. 15. Trajectories during ex-
ploitation within two other en-
vironments (a, ¢) and the
respective positions of the re-
cruited sub-goals (b, d). The
dotted lines indicate where the
corresponding set of (sub)goal
cells (label near the line) stops
being active. Note that in the
second environment containing
an inversed U-shaped obstacle,
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the animat has recruited four
ensembles of goal cells (G, 1, 2,
(b) and 3). The region where the
ensemble of sub-goal cells 1 is
active extends to both sides of

the region covered by the en-
semble of goal cells G. As a
consequence, both sub-goals 2
and 3 were associated with sub-

goal 1. When the animat is in the
North-West corner of the envi-
ronment (A), it moves towards
sub-goal 3 and then to sub-goal
1, instead of using a theoretically
shorter path to the other side of
the obstacle. Indeed, its internal
spatial representation indicates
that d; + d5 is shorter than

d; + d». This distance informa-
tion is approximate and is given
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“cognitive map”’, which is used more often. This allows
us not to assume an underlying metric representation
that would resemble a ‘“‘map-in-the-head” (Kuipers
1982), thus contradicting the viewpoint of Touretzky
and Redish (1996), which states that place cells are at-
tached to a Cartesian coordinate system. However, we
took from these authors the idea of recruiting place cells
as the animat explores its environment. We also con-
tradict the theory proposed by Samsonovich and
McNaughton (1997) according to which connections
between place cells are defined a priori (charts) so that
the population activity of place cells can propagate from
place cell to place cell in relation with the animal’s
movements (path integration). In this latter view, the
sensory information associated with each place is
learned only on top of this strict predefined spatial
representation.

We believe that the hippocampus simultaneously
learns two things:

1. The relationships between the different stimuli that
form a configuration (a situation or an episode) and a
specific time or a specific place

by the numbers of iterations the
propagation phases took from
each sub-goal and in each direc-
(d) tion (see text for detail)

2. The temporal as well as spatial relationships between
different configurations

The model presented here focused on the second aspect,
and the first aspect was quickly dealt with through the
mechanism by which place cells are recruited during
exploration.

5.1 Other computational models of the hippocampus

Simultaneously building a place representation and a
spatial representation (relationships between places)
raises a coherency problem that no other computational
model, to our knowledge, has tackled yet. Basically, the
problem stems from the fact that connections between
place cells, which have been established at a given
exploratory stage, may need to be modified at a later
stage, if new places and new topological links are
discovered in the environment (Fig. 16). In this work,
this problem has been solved by the fact that each
position is represented by several place cells (as in the
real hippocampus), by the fact that each connection has
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Fig. 16. Interference and coherence problem between the elaboration
of a place representation and the learning of the corresponding
topological representation. The place representation can evolve during
exploration (top left and top right). Place fields can move with respect

to one another, new ones can appear, or others disappear, for
instance, through a competition mechanism among the place cells. As

a small influence on the overall process, and by the use
of learning processes that gradually weaken or streng-
then place cell connectivity.

The model of Matari¢ (1991) and that of Kuipers and
Byun (1991) rely on stereotyped low-level behaviors
(wall-following, guidance strategies) to define what a
place is (left-wall, right-wall, corridor). Thus, although
their animats are building a place representation during
exploration, along with a topological or metric spatial
representation, there is no chance that such representa-
tion will change during the exploratory process. In these
models, any learned connection between two place cells
corresponds to topological links between places in the
environment that will never get questioned later on.
Likewise, in the model of Touretzky and Redish (1996),
place cells are recruited during exploration but there is
no need for a spatial representation to be learned since
an underlying Cartesian coordinate system defines all
spatial relationships between places.

Wallenstein and Hasselmo (1997) proposed an at-
tractive model of the hippocampus as a memory for
sequences. Although not a complete model of animal
navigation, the model suggests how place cells might be
“recruited” in a biologically plausible way and how se-
quences might be simultaneously learned. In their
model, pyramidal cells in the CA3 region of the hippo-
campus spontaneously discharge at a very low frequency
(15% of all pyramidal cells are active at any one time).
As a consequence, when a sequence of items is presented
through a direct stimulation of specific pyramidal cells,
other cells, discharging spontaneously, get associated
with the former cells through a classical Hebbian
learning mechanism (LTP of the synaptic connections).
These latter neurons then discharge persistently during
specific portions of the sequence. If the sequence corre-
sponds to a linear trajectory of the rat, specific portions
correspond to place fields. This might explain how place
fields develop during exploration. However, Wallenstein
and Hasselmo (1997) reported that phase precession
could only be found in the simulated place cells that
were directly stimulated, not in the ones that developed,
although the latter were necessary for the recall process.

o
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a consequence, the connections that were learned during the early
stage of exploration (bottom left) can become erroneous (bottom right,
dashed arrows), while new connections have to be learned (bottom
right, solid arrow). This implies that the animat has to explore the
environment extensively

There are, to our knowledge, only two other models
based on hippocampal place cells that can cope with
continuous environments with obstacles. Gerstner and
Abbott (1996) proposed a model where the activity of
place cells is modulated by the animat’s position and by
the goal location. This implies that each place cell gets
information about where the goal is. This is not what is
thought to happen in the rat hippocampus. Speakman
and O’Keefe (1990) have indeed shown that place cell
activity is independent of goal locations. By contrast,
our model, like the one by Burgess et al. (1994), exhibits
latent learning. It does not need the presence of any re-
inforcement to build a spatial representation of the en-
vironment, which is, by essence, independent of goal
locations. Then, the animat can recruit as many sets of
(sub)goal cells as needed to be able to return to as many
goals as needed, without ever changing the underlying
spatial representation.

The other model that is based on hippocampal place
cells and can cope with continuous environments with
obstacles is the one by Muller et al. (1996). It learns
what Muller et al. also called a “cognitive graph™, from
distinct but overlapping places. In this model, the ani-
mat moves around in the environment and reinforces the
synaptic connections between simultaneously active
place cells. These synaptic weights reflect the degree of
overlap between place fields (the inverse of the distance
between place field centers). However, learning is sym-
metric (correlational learning) because it relies on si-
multaneously active place cells and there is no difference
in the resulting representation between a movement
from place A to place B from a movement from place B
to place A. The model thus cannot be used to predict the
animat’s future positions from the current position. As a
consequence, for the animat to return to a goal while
avoiding obstacles, Muller et al. had to introduce a bi-
ologically unrealistic graph-search algorithm stemming
from artificial intelligence research on path planning.
We proposed in our model a biologically plausible
mechanism to “‘read out” the cognitive graph, a mech-
anism that is modified and extended from the original
idea of Burgess et al. (1994).
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Besides these two models, several others among the
existing computational models of animal navigation
(Trullier et al. 1997) consider the hippocampus as a
hetero-associative network in the spatial domain, that is,
a network that learns how places are connected to one
another and thus corresponds to a topological repre-
sentation of the environment. We already briefly men-
tioned the models by Matari¢ (1991) and by Schmajuk
and Thieme (1992).

5.2 Biological plausibility and experimental predictions

This model, together with its extended version (Trullier
and Meyer 1997b), relates more closely to the rat
hippocampal architecture and to physiological mecha-
nisms than previous models. As we previously suggested
(Trullier and Meyer 1997b), we can make several
experimental predictions.

We first propose that phase precession in the CA3
region is forced by dentate gyrus and enables sequence
learning. This hypothesis implies that phase precession
also occurs in the dentate gyrus, which it does (Skaggs
et al. 1996). But it also implies that, if we simultaneously
record several dentate granular cells and several CA3
pyramidal cells, we should be able to see that place cells
whose place fields overlap those of the dentate granular
cells fire just after the granular cells, a correlation sup-
porting the idea that the recorded granular cells force the
discharge of the recorded place cells.

We also propose that the learning of the goal location
occurs during another state of hippocampal activity,
namely LIA, observed in particular during awake im-
mobility of the rat, and which is usually associated with
“recall” by the hippocampus of previously learned epi-
sodes (Buzsaki 1989). During such a state, a large
number of pyramidal cells in the CA3 region are acti-
vated (but far from all). We thus propose that this state
is the result of a signal propagation within the CA3 re-
gion that activates all the place cells whose place fields lie
ahead of the animat. If we simultancously record a lot of
CA3 (not CA1l) place cells during LIA, we should be
able to see a tendency of the activation to be limited to
specific place cells.

In the spatial domain, Redish (1997) also suggested a
role for LTA. According to his theory, the hippocampus
is not necessary for the ongoing process of navigation
but is involved in the definition and the retrieval of the
spatial context. In other words, the hippocampus is used
to recognize a specific familiar environment, but not to
navigate. More specifically, Redish suggested that dur-
ing LIA, the hippocampus is in a self-localization pro-
cess. Many place cells would discharge at first,
corresponding to many different hypotheses as to where
the animal actually is. Then, a pseudo-winner-take-all
mechanism between place cells would lower the global
activity, keeping only a “‘coherent” population of place
cells active in a kind of relaxation process. Such a theory
does not provide a way of exploiting such a spatial
representation for the rat to navigate. What we pro-
posed is that LIA allows the spatial information to be

transferred from the hippocampus to downstream of the
hippocampus, by defining where the goal is with respect
to each known place.

Apart from place cells that code for locations in an
absolute reference frame, our model does not include
representations for objects or specific places. In particu-
lar, obstacles are not represented internally but obstacle
avoidance emerges from the fact that some pairs of place
cells are not connected because of the obstacles. The po-
sitions of sub-goals are also not represented explicitly. The
animat seems to move from sub-goal to sub-goal, closer
and closer to the goal, but does not actually “‘recognize”
that a sub-goal has been reached. This is the result of the
competition between sets of goal cells. In fact, our model
does not actually perform “path planning”: it does not
have to choose among a certain number of different paths.
Consequently, our model rather belongs to the category of
navigation models that we called ‘“place-recognition-
triggered response” (Trullier et al. 1997).

Our current model is not meant to cope with dy-
namically changing environments. Once a set of goal
cells is learned, the animat exploits the information this
set provides, without comparing with new sensory in-
formation. Real animals, on the contrary, constantly
update their internal representations. In particular, if
obstacles move, disappear or appear, they restart a new
phase of exploration. We are currently looking into this
kind of process to improve our model.

6 Conclusion

We have proposed a new model of the rat hippocampus
based on several ideas from different models previously
published by others in the literature. We have been able
to show that such a model can successfully navigate in
continuous environments containing obstacles. We also
have shown that our model is based on biologically
plausible architecture and mechanisms. Furthermore, we
made several experimental predictions based on our new
way of interpreting the roles of the different structures in
the rat hippocampal formation. We are still working,
however, on ways to include other mechanisms, so that
our model can cope with dynamically changing envi-
ronments.
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