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ABSTRACT: This paper presents a model of how hippocampal place
cells might be used for spatial navigation in two watermaze tasks: the
standard reference memory task and a delayed matching-to-place task. In
the reference memory task, the escape platform occupies a single location
and rats gradually learn relatively direct paths to the goal over the course
of days, in each of which they perform a fixed number of trials. In the
delayed matching-to-place task, the escape platform occupies a novel
location on each day, and rats gradually acquire one-trial learning, i.e.,
direct paths on the second trial of each day. The model uses a local,
incremental, and statistically efficient connectionist algorithm called
temporal difference learning in two distinct components. The first is a
reinforcement-based ‘‘actor-critic’’ network that is a general model of
classical and instrumental conditioning. In this case, it is applied to
navigation, using place cells to provide information about state. By itself,
the actor-critic can learn the reference memory task, but this learning is
inflexible to changes to the platform location. We argue that one-trial
learning in the delayed matching-to-place task demands a goal-indepen-
dent representation of space. This is provided by the second component of
the model: a network that uses temporal difference learning and self-
motion information to acquire consistent spatial coordinates in the
environment. Each component of the model is necessary at a different
stage of the task; the actor-critic provides a way of transferring control to
the component that performs best. The model successfully captures
gradual acquisition in both tasks, and, in particular, the ultimate develop-
ment of one-trial learning in the delayed matching-to-place task. Place
cells report a form of stable, allocentric information that is well-suited to
the various kinds of learning in the model. Hippocampus 2000;10:1–16.
r 2000 Wiley-Liss, Inc.
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INTRODUCTION

There is an apparent discrepancy in the rodent
hippocampal literature, between the putative involve-
ment of hippocampal principal neurons in navigation,
and the limited navigational correlates of neuronal
activity actually observed during electrophysiological
recording from these neurons. Consider a hippocampal
place cell, so called because it fires when the animal
occupies a restricted portion of an environment, known
as its place field (O’Keefe and Dostrovsky, 1971; O’Keefe
and Nadel, 1978; Wilson and McNaughton, 1993). The
cell’s spatial tuning suggests a role in spatial learning, in
agreement with hippocampal lesion studies (Morris
et al., 1982; Sutherland et al., 1983; Barnes, 1979).
However, the activity of the cell, or even of a collection
of such cells, simply individuates different locations—it
does not directly tell the animal where it is, or where it
ought to go. More complex navigational activity has
been suggested, such as the replaying of long-range
navigational sequences or possible navigational routes
(e.g., Levy, 1996), but such activity has not been
observed across more than only a few place cells at a
time, and is not known to be predictive in nature
(O’Keefe and Recce, 1993; Skaggs et al., 1996).

The paradox is this: how can place cells be important
for navigation, but at the same time not embody all the
spatial information required to navigate from one place
to another? To put it another way, what might be the use
for navigation of a group of cells whose firing simply
divides up an environment into place fields, rather than
computing specific spatial quantities like distance or
direction to a goal? Two types of model of rodent
navigation have attempted to make use of place cells
while not assuming hitherto unobserved properties of
them. However, each of these types of model has
encountered a fundamental problem.

One type of model assumes that place cells provide
the ideal representation for reward-based learning. Thus,
when a rat encounters a goal such as hidden food in an
environment, some kind of reinforcement signal enables
the place cell firing near the goal to be associated with
the actions which the rat took immediately prior to
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attaining the goal (Burgess et al., 1994; Brown and Sharp, 1995).
The problem with this hypothesis is that there is no simple way of
dealing with the fact that most locations within an environment
are typically very far from the goal location, compared to the
length of a place field. The rat will have no direct information as to
the direction in which to move if it starts at a location far from the
goal where none of the place cells associated with appropriate
actions is active. We call this the distal reward problem. It has been
dealt with in different ways, e.g., by postulating very large place
fields covering the entire environment, although these are rarely
observed (Burgess et al., 1994), or by making use of a memory
trace, for which there is no evidence over the kinds of distances
required, and which in any case leads to a rather inefficient
learning algorithm (Brown and Sharp, 1995).

The second type of model assumes that place cells become
associated with metric coordinates for locations within environ-
ments (Wan et al., 1994; Redish and Touretzky, 1997; Blum and
Abbott, 1996; Gerstner and Abbott, 1996). A natural basis for
learning the coordinates in the first place is the self-motion (or
‘‘dead reckoning’’) information which an animal has available.
The problem with this hypothesis is that self-motion information,
while suitably metric, is only relative in nature. Simply performing
path integration on this information runs into trouble as soon as
the animal loses track of its origin, as must happen during
laboratory navigation tasks in which an animal is often picked up
from the goal location at the end of one trial, and started again
from an unpredictable starting location. If the animal path-
integrates from each new starting position, it will quickly acquire
inconsistent coordinates over the environment as a whole. We call
this the problem of global consistency.

The motivation for the present work is the observation that a
recently developed neural network learning rule, temporal differ-
ence (TD) learning (Sutton, 1988), can solve both the distal
reward problem and the global consistency problem. Following
Dayan (1991), this paper investigates a model of spatial learning
in two navigational tasks, combining TD learning with a place cell
representation to learn about rewards and coordinates. We pose
the question: can TD learning bridge the computational gap
between the observed activity of place cells and the goal-directed
navigational behavior for which place cells are thought to be
important?

TEMPORAL DIFFERENCE LEARNING

Temporal difference (TD) learning (Sutton, 1988; Barto et al.,
1990; Bertekas and Tsitsiklis, 1996; Sutton and Barto, 1998) is a
form of error-driven learning used in feed-forward neural net-
works in which input patterns (e.g., patterns of place cell activity)
are to be associated with output values (e.g., an expectation of how
close the goal is), but where additionally there is information to be
had in the sequence in which input patterns and output values
present themselves.

Conventional error-driven learning rules (such as backpropaga-
tion) are usually referred to as ‘‘supervised’’ because they use an
error based on the difference between the network output and a
desired, or ‘‘teaching’’ value. As a consequence, these learning rules
require a teaching value all the time. TD learning, by contrast,
uses an error based on the difference between successively occur-
ring output values—a sensible strategy when a consistent relation-
ship between these values is expected. For example, in this paper
we consider the problem of a rat trying to learn an expectation of
reward that increases smoothly as it follows a path towards a goal.
Irrespective of where the goal is, there should be a certain temporal
gradient, or ‘‘temporal difference,’’ between values of this expecta-
tion at successive locations. TD learning uses the reward informa-
tion directly available at the goal to learn where the greatest
expectation of reward should be, but also uses the temporal
gradient information to learn appropriate expectations everywhere
else.

The use of local consistency information makes TD learning
considerably more efficient than supervised learning alternatives.
Consider one such alternative, the trace memory learning rule in
Brown and Sharp (1995). A place cell very far from the goal can
learn an expectation of reward simply by maintaining a trace
memory of its activation which decays so slowly that when the
animal gets to the goal, a residual trace will remain. However, this
is inefficient because an animal’s paths will be extremely variable
during learning: early on in training, the animal sometimes gets to
the goal quickly, and sometimes not, and the residual value of a
particular place cell’s trace will likewise be extremely variable from
trial to trial. Unfortunately, it is these residual values that the
learning rule of Brown and Sharp (1995) must average over. By
contrast, TD learning considers a generally less variable quantity,
the difference between successive estimates of the quantity being
learned. Because of this, TD learning both converges faster and
produces better predictions than supervised learning (Sutton,
1988).

TD learning has provided a simple but powerful model of
associative learning in classical conditioning, effectively extending
the Rescorla-Wagner rule to the temporal domain (Sutton and
Barto, 1987). In particular, TD provides an explanation for
second-order conditioning, whereby a conditioned stimulus (CS)
that has acquired predictive value can itself condition another
preceding CS. This process is similar to the dissemination of
reward information through an environment in a TD model of
navigation: place cells, acting as CSs, can become predictive of
reward, even when they are not directly followed by reward, but
instead followed by other CSs, which have themselves become
predictive of reward. Furthermore, a neural basis for the involve-
ment of TD learning in classical and instrumental conditioning
was recently proposed, following the discovery in the primate
ventral tegmental area of neurons whose firing during condition-
ing tasks is consistent with the main error term which forms the
basis for TD learning (Schultz et al., 1997; Montague et al.,
1996).
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THE BEHAVIOR TO BE MODELED

We have chosen to model two behavioral tasks that are highly
sensitive to hippocampal lesions and represent the kind of
navigational problems for which TD learning, used in conjunc-
tion with place cells, might provide a solution.

Reference memory in the watermaze (RMW) involves placing
rats into a circular tank of water in which there is a hidden escape
platform towards which they are highly motivated to swim
(Morris, 1981). The tank itself affords no local cues as to the
position of the platform, and the use of a different starting
location on each trial renders useless the strategy of replaying a
series of motor commands that worked previously. The rats must
learn to navigate to the platform location from any possible
starting position. Normal rats show more or less direct paths to the
platform after 20 trials, as implied by their short escape latencies
(Fig. 1a, days 5–7). If the platform is then moved to a new
location, performance is disrupted and animals take several trials
before they show direct paths to the new platform location (Fig.
1a, days 8 and 9).

RMW has been modelled as an instance of conventional
reward-based learning using place cells (Brown and Sharp, 1995).
However, the task presents a distal reward problem. We examine a
simple TD-learning based ‘‘actor-critic’’ model of learning (Barto
et al., 1983, 1990), in which a set of place cells is associated with a
representation of reward expectation, and also with a representa-

tion of action choice. Critically, the TD learning rule is used to
predict rewards.

Delayed matching-to-place (DMP) is a new protocol for the
watermaze (Steele and Morris, 1999), though similar tasks have
been explored (Morris, 1983; Panakhova et al., 1984; Whishaw,
1985, 1991). As in RMW, rats are given several trials per day with
a platform that stays in the same location throughout the day. The
critical difference is that the platform is at a new and different
location on each day. Within each of the first few days, normal rats
show a gradual decrease in the time taken to reach the platform
(see Fig. 1b, days 1–5). A different pattern of escape latencies
emerges by about day 6. Rats by then show ‘‘one-trial learning,’’
i.e., near-asymptotic navigational performance on the second trial
of the day to a novel platform position.

DMP is computationally more demanding than RMW. Unlike
RMW, this task involves altering actions after only one trial of
experience. It does not, however, only involve rapid learning, as is
demanded in a standard delayed match-to-sample task. DMP in
the watermaze is a complex navigation task in which a whole
sequence of navigational actions has to be inferred from the single
learning experience. This suggests that rats learn a representation
of space that is goal-independent, which we model as a metric
coordinate system, learned from self-motion information. How-
ever, previous attempts at modeling coordinate learning using
self-motion information encountered a global consistency prob-
lem (Wan et al., 1994; Redish and Touretzky, 1997). In our

FIGURE 1. Performance of rats on (a) reference memory (RMW),
N 5 12, and (b) delayed matching-to-place (DMP), N 5 62. For
both, escape latency (time taken to reach platform) is plotted across
days (RMW task: 4 trials/day, fixed platform location, days 1–7;
reversal to new platform location, days 8–9; DMP task: 4 trials/day,
new platform location each day). Note 1) asymptotic performance in
RMW task, 2) one-trial learning in DMP task, and 3) difference in
escape latency on second trial of day 8, between the two tasks. Trial 1
performance differs from day to day, due to platform position. It was

observed that platforms nearer the center of the pool, or near to a
starting position, were easier to find under random search than
others. (b) is from Steele and Morris (1999); data for (a) were
obtained in the same apparatus and using the same methods as those
described for the DMP task by Steele and Morris (1999), with
permission, except that: 1) the platform remained in the same
location across days, until moved to the opposite quadrant on day 8;
and 2) the intertrial interval was always 15 s.
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model, TD learning is used, in association with a stable place cell
representation, to develop consistent coordinates directly.

The paper begins by presenting the reward-based component of
the model, demonstrating that this component alone captures
some aspects of spatial learning, but not all. In particular, it does
not capture the flexible way in which rats can learn about novel
goal locations. The second component of the model, the learned
coordinate system, is then described, along with a simple way in
which the components can be made to work together. Simulation
results are presented which capture performance in both RMW
and DMP tasks. The discussion addresses the role of place cells
within the model, what can be inferred from the model about the
nature of the two tasks, and the relationship of the model to
experimental data and to other models of hippocampal function.
Finally, a set of novel experimental predictions is presented.

REWARD-BASED NAVIGATION

Consider a simulated animal in an environment with control of
its own actions. At any given time t, the animal is able to choose
an action. Also at any given time t, the environment provides the
animal with a reward Rt. If the animal moves onto the platform (a
certain region of the environment) at time t, Rt 5 1; otherwise
Rt 5 0. The difficult problem is to learn correct actions given such
a sparse reward signal.

To solve this problem we use an ‘‘actor-critic’’ architecture. A
computational unit called the actor continually produces actions,
taking a simulated animal around an environment. While it does
so, a second computational unit called the critic continually
criticizes the actions taken. The actor adapts its action choices
using the critic’s information. The critic also adapts in the light of
the changing actor. The critic’s role is as a go-between, between
the actions on one hand, and the reward information on the other,

the latter being too sparse and uninformative to criticize the actor
directly.

Our implementation of the actor-critic has three parts (Fig. 2a):
1) an input layer of place cells, 2) a critic network that learns
appropriate weights from the place cells to enable it to output
information about the value of particular locations, and 3) an
actor network that learns appropriate weights from the place cells
which enable it to represent the direction in which the rat should
swim at particular locations.

Hippocampal Place Cells

Following experimental data (O’Keefe and Burgess, 1996), the
activities of place cells are modelled as Gaussian functions of
location in the maze (Fig. 2b). If the rat is at position p, then the
activity of place cell i 5 1 . . . N is given by:

fi(p) 5 exp 12 \p 2 si \
2

2s2 2 (1)

where si is the location in space of the center of cell i’s place field,
and s is the breadth of the field, equivalent to the radius of the
circular contour where firing is 61% of the maximal firing rate.
We consider an ensemble of place cells (N 5 493) with place
fields distributed in an overlapping manner throughout the maze,
each with width s 5 0.16 m.

Although clearly idealized, these place cells illustrate the
limitations pointed out in the Introduction: they are not intrinsi-
cally informative about spatial or navigational quantities such as
distance or direction from a distant goal. However, such units
form a basis function representation (e.g., Poggio and Girosi,
1990) of location. As such, they would support the representation
and learning of functions which vary (usually smoothly) with
location. This paper explores this hypothesis, that hippocampal
place cells play the limited but nonetheless critical role of
providing a particular representational substrate.

FIGURE 2. The actor-critic system. a: An input layer of place
cells projects to the critic cell, C, whose output is used to evaluate
behavior. Place cells also project to eight action cells, which the actor

uses to select between eight possible directions of movement from any
given location. b: An example of a Gaussian place field (x and y axes
represent location, z axis represents firing rate).
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The Critic

The critic has a single output cell, whose firing rate at a location
p is given by a weighted sum of the firing rates of place cell inputs
fi(p):

C(p) 5 o
i

wi fi (p) (2)

where wi is the weight from place cell i.
The standard approach is for the critic to attempt to learn what

is called a value function over location, V(p), which is really an
evaluation of the actions currently specified by the actor. The
value function is usually defined as, for any location p, the
discounted total future reward that is expected, on average, to
accrue after occupying location p and then following the actions
currently specified by the actor. If pt is the location at time t, we
may define the value as:

V(pt) 5 7Rt 1 gRt11 1 g2Rt12 1 · · · 8 (3)

where g is a constant discounting factor, set such that 0 , g , 1,
and 7·8 denotes the mean over all trials. Three features can be noted
about this quantity. First, if we call the time at which each
watermaze trial ends T (noting that the value of T will vary from
trial to trial), then because this is the only time at which there is
any reward, the value simplifies to:

V(pt) 5 7gT2t 8. (4)

Second, because the constant discounting factor g is set such that
0 , g , 1, V(pt) is a monotonic measure of the average time it
takes to get to the platform from p. Third, V(pt) can actually
suggest improvements to the actions of the actor, since an action
which leads to a large increase in value is guaranteed to take the
animal closer to the platform. Therefore, a good strategy for the
actor is to try several actions at each location, with the aim of
choosing the action which involves the largest increase in value.

However, the value function is not given; the critic must learn it
using TD learning, i.e., the weights wi must be adapted so that
C(p) 5 V(p). TD works by enforcing consistency between
successive critic outputs. Specifically, from Equation 3, the
following relationship holds between successively occurring val-
ues, V(pt) and V(pt11):

V (pt) 5 7Rt8 1 gV(pt11). (5)

If it were true that C(p) 5 V(p), then a similar relationship should
hold between successively occurring critic outputs, C(pt) and
C(pt11):

C (pt) 5 7Rt8 1 gC (pt11). (6)

TD uses the actual difference between the two sides of equation 6
as a prediction error, dt, which drives learning:

dt 5 Rt 1 gC(pt11) 2 C(pt ) (7)

using the instantaneous sample Rt in place of the desired average
value 7Rt 8 which is, of course, unavailable. Note that the above
equation is more complex than it need be; in fact, Rt and C(pt11)
ought never to be both nonzero, since Rt 5 1 only on the

platform, and at this point a trial ends, so V(pt11) 5 0. We
therefore enforce this condition by making dt include either one
term or the other, but never both. TD reduces the error by
changing the weights wi from those place cells that are active:

Dwi ~ dt fi(pt). (8)

Under various conditions on the learning rate and on the
representation provided by the place cells, this rule is bound to
make C(p) converge to the value function V(p) as required.
Following standard reinforcement learning practice, we use a fixed
learning rate to avoid slow learning. The price to be paid is
residual error; however, the results show that this error is
insignificant.

The Actor

The actor is shown in Figure 2a. For convenience, the rat is
allowed to move in one of eight possible directions at each time
step (e.g., north, northeast, east), and so the actor makes use of
eight action cells aj, j 5 1 . . . 8. Just as in Equation 2, at position
p the activity of each action cell is

aj (p) 5 o
i

zji fi(p)

where zij is the weight from place cell i to action cell j. This activ-
ity is interpreted as the relative preference for swimming in the jth
direction at location p: the actual swimming direction is chosen
stochastically, with probabilities Pj related to these activities by:

Pj 5
exp (2aj)

o
k

exp (2ak)
. (9)

Following the logic described above, the actor should try various
actions at each location, with the aim of choosing an action which
produces the greatest increase in value. The stochastic action
choice ensures that many different actions are tried at similar
locations. To choose the best action, a signal is required from the
critic about the change in value that results from taking an action.
It turns out that an appropriate signal is the same prediction error
dt used in the learning of the value function. For example,
consider what happens when appropriate values have been learned
that are consistent with the actions specified by the actor
throughout the environment, i.e., when C(p) 5 V(p). At this
point, the currently specified actions should produce, on average,
zero prediction error, i.e., dt 5 0. However, other actions will
produce, on average, nonzero dt. In particular, if dt . 0, i.e.,
V(pt) , gV(pt11), then the new action is a better one. If dt , 0,
the new action is a worse one.

The actor weights zji are adapted according to:

Dzji ~ dt fi(pt)gj (t) (10)

where gj(t) 5 1 if action j was chosen at time t, and gj(t) 5 0
otherwise. This is a form of Hebbian learning modified by dt: the
connection between a place cell and an action cell is strengthened
if (1) they fire together, and (2) if what resulted from taking that
action at that place was an improvement in value. Likewise, the
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connection between a place cell and an action cell is weakened if
(1) they fire together, and (2) what resulted from taking that
action at that place was that the value got worse.

Learning Actor and Critic Simultaneously

So far, two separate mechanisms have been described. First, a
critic can develop a value function, which serves as an evaluation
of the current actions of the animal. However, the method was
presented as if the actor was constant, i.e., as if the specified
actions did not change. Second, an actor can use the critic’s value
function to improve the actions it specifies. However, this was
presented as if the value function was correct for the current
actions of the actor. Given that both mechanisms must work
together, it has been suggested that learning in the actor should
proceed much more slowly than in the critic (Witten, 1977).

In fact, the scheme is robust enough for learning to proceed
quickly in both actor and critic; thus, the actor is being criticized
by a critic which has not necessarily completely learned the
appropriate value function. The reason this ‘‘bootstrapping’’ can
work is because learning in the critic is characterized by what
might be called ‘‘graceful improvement:’’ even when poorly
learned, the critic’s value function can lead to improvements in the
actor, e.g., near the platform.

Theoretical guarantees are not available for this joint learning of
the actor and the critic (though they are, for closely related
algorithms). However, there is quite extensive empirical evidence,
in addition to the results we present here, showing that it works
well (Barto et al., 1990).

PERFORMANCE OF REWARD-BASED
NAVIGATION

Simulation Procedures

We simulated the swimming behavior of a rat in a 2-m-
diameter circular watermaze, which contained a 0.1-m-diameter
escape platform. These parameters are the same as those in Steele
and Morris (1999). The swimming speed of the rat was constant,
at 0.3 ms21. The walls were treated as reflecting boundaries: the
rat ‘‘bounced’’ off. Any move into the platform area was counted
as a move onto the platform. Space was treated as a continuous
variable; however, time was discretized into steps of 0.1 s.
Simulations with 0.01-s bins produced similar results to those
with the coarser discretization, and so show that this discretization
does not produce artifacts.

In reality, a rat cannot choose a different direction at the
fine-grained time steps of the temporally discrete simulation. To
model momentum, the direction the rat heads was given by a
mixture of control as specified by the actor, and the previous
heading, in the ratio 1:3. This restricts the turning curve of the rat,
and is particularly important early on, when the whole pool must
be searched fairly quickly. One technical concern about momen-

tum is that it means that the path to the goal from a location is
partly determined by the direction in which it was swimming
when it arrived at that location. This disturbs the formal theory,
although simulations demonstrate that it does not prevent good
performance by the simulated rats.

Following the experimental protocols, each trial began at one of
four starting locations located at the north, south, east, and west
edges of the pool, and ended when either the rat reached the
platform, or a time-out of 120 s was reached. For RMW, the
platform remained in the same location throughout the simula-
tion. In DMP, the platform was moved to a novel location after
every four trials.

The learning rate parameters, which determine the constants of
proportionality in Equations 8 and 10, were optimized.

Simulation Results

Figure 3 shows the gradual development of the value function.
For the first few trials, it is informative about only a small area
close the platform location. Later in learning, however, values have
spread out to all parts of the environment. This enables appropri-
ate actions to be learned, as reflected in ever shorter paths to the
platform.

The actor-critic model of Figure 2 was first applied to the
reference memory (RMW) task. Figure 4a shows that the
actor-critic captures learning in this task; path lengths reach
asymptotically low values as quickly as the latencies of rats shown
in Figure 1a. However, when the platform is moved during the
reversal phase of days 8 and 9, this model diverges from the
performance of rats.

Likewise, when applied to the delayed matching-to-place
(DMP) task, the results are strikingly different. Figure 4b
demonstrates that the actor-critic component of the model fails by
itself to capture the performance of rats in DMP, because the value
function that is learned confounds spatial and reward informa-
tion, and so neither the value function nor the policy are flexible
to changes in reward location. The model incorrectly predicts that
learning a new platform position is much slower because of
interference from previous days.

COORDINATE-BASED NAVIGATION

Learning Globally Consistent Coordinates From
Self-Motion Information

The actor-critic is a general solution to the problem of
navigating to a fixed goal location. Nothing is assumed about the
shape or topology of the environment, and short paths to the goal
would ultimately be learned even in the presence of complicated
barriers. However, the actor-critic model fails by itself to capture
the performance of rats in DMP for two reasons. First, it
incorrectly predicts that learning a new platform position is much
slower because of interference from previous days. Second, it
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provides no mechanism by which the experience of previous days
can provide any help with learning a new platform position.

One-trial learning by rats on DMP reveals that rats suffer
neither of these limitations. Under appropriate training condi-
tions, rats can not only avoid interference between training on
successive days, but can also generalize from experience on early

days to help performance on later days. To make this clear in
computational terms, consider trial 2 on day 6 of training (Fig.
1b). The starting position may be in an area of the environment
not explored on trial 1 of that day; nevertheless, the rat swims
immediately to the platform. Clearly, knowledge from previous
days is being used.

FIGURE 3. Learning in the actor-critic system in RMW. For each
trial, the critic’s value function C(p) is shown in the upper,
three-dimensional plot; at lower left, the preferred actions at various
locations are shown (the length of each arrow is related to the
probability that the particular action shown is taken by a logarithmic
scale); at lower right is a sample path. Trial 2: After a timed-out first
trial, the critic’s value function remains zero everywhere, the actions

point randomly in different directions, and a long and tortuous path
is taken to the platform. Trial 7: The critic’s value function having
peaked in the northeast quadrant of the pool, the preferred actions
are correct for locations close to the platform, but not for locations
further away. Trial 22: The critic’s value function has spread across
the whole pool and the preferred actions are close to correct in most
locations, and so the actor takes a direct route to the platform.

FIGURE 4. Performance of the actor-critic model. For each data
point, the mean and standard error in the mean are obtained from
1,000 simulation runs. (a) RMW task, in which the platform
occupies the same location. The actor-critic captures acquisition,
producing direct paths after around 10 trials. For the last eight trials,
however (days 8 and 9), the platform is moved to a different position
(reversal), and the model fails to adapt rapidly enough. These
simulation results can be compared to Figure 1a. (b) DMP task, in

which the platform remains in the same position within a day, but
occupies a novel position on each new day. The actor-critic model
captures acquisition for the four trials of day 1, for which the task is
indistinguishable from RMW. However, as a soon as the platform is
moved, the actor-critic not only fails to generalize to the new goal
location, but suffers from interference from the previous days’ goal
locations. Rats suffer neither of these limitations (Fig. 1b).
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Our model of coordinate learning is based on the observation
that the computations involved in the dead-reckoning abilities of
animals could subserve an all-to-all navigation system for open
spaces like a watermaze, if only the dead-reckoning coordinates
could be made to be consistent across separate trials, i.e., tied to an
allocentric representation of the environment. In effect, we
consider making a dead-reckoning system hippocampal-depen-
dent, i.e., dependent on input from the place cell system, and
show how such a system can be used to account for one-trial
learning in the DMP task.

Dead-reckoning abilities have been documented in (at least)
ants, bees, wasps, geese, gerbils, pigeons, rats, and humans
(Gallistel, 1990). These abilities are based on the availability of
instantaneous estimates of the animal’s self-motion, which can be
integrated in order to calculate the direction back to a starting
point. We will make use of this self-motion information, and the
simple geometrical processing required to calculate a heading
from the current position; however, we will not make use of path
integration. Instead, we will use place cell responses and a
predictive TD-based learning rule to acquire a coordinate system
in the maze which is defined allocentrically, i.e., independent of
the animal’s point of origin.

It is hard to acquire an appropriate coordinate system using
path integration information alone because of the problem of
consistency. When the rat is put in the maze in a new place, there
is no way of ensuring that the dead reckoning coordinates it
assigns are automatically consistent with those it has assigned

elsewhere in previous traversals of the maze. The essential task for
the model is learning this consistency (see also Wan et al., 1994).
Note that the problem of having a consistent report of head
direction (implicitly required in the model) is quite similar.
However, head direction generalizes over a much greater spatial
extent than does dead reckoning, and, in the experiments being
modeled, vestibular disorientation or other manipulations of the
head direction system were not used.

The problem for the rat is therefore to learn globally consistent
coordinates based only on local relative self-motion. The key
observation is that for every move that the rat makes, the
difference between its estimates of coordinates at the ending and
starting locations should be exactly the relative self-motion during
the move. This consistency condition can be used as the basis for a
TD learning rule for learning coordinates.

Figure 5 shows a simple model of learning and using coordi-
nates. The coordinate system consists of two networks, one which
learns X coordinates (as X(p) 5 Siwi

X fi(p)), and one which learns
Y coordinates (as Y(p) 5 Siwi

Y fi(p)), both using inputs from place
cells which act in exactly the same way as in the actor-critic model,
each producing a firing rate fi(p) as a function of location p. The
choice of X and Y coordinates, or even just two orthogonal
directions, is of course arbitrary, but the basic problem of making
coordinates consistent will exist whatever particular coordinate
system is used. The X and Y coordinates have been chosen for
simplicity, and to illustrate clearly the learning problem.

FIGURE 5. The combined coordinate and actor-critic model
incorporates both the actor-critic system and a coordinate system.
The coordinate system consists of three components: 1) a coordinate
representation of current position made up of two cells X and Y, the
firing of which is a function of place cell input; 2) a goal coordinate
memory consisting of two cells, X8 and Y8, whose firing reflects the

coordinate location of the last place at which the platform was found;
and 3) a mechanism which computes the direction in which to swim
to get from the current position to the goal. The output direction
from the coordinate system is integrated with that from the actor-
critic through the ‘‘abstract action,’’ marked acoord, which receives
reinforcement depending on its performance.
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As the rat moves around, the weights 5wi
X6 and 5wi

Y6, i 5
1, . . . , N that define the coordinates are adjusted according to:

Dwi
X ~ (Dxt 1 X(pt11) 2 X(pt)) o

k51

t

lt2kfi (pk) (11)

Dwi
Y ~ (Dyt 1 Y(pt11) 2 Y(pt)) o

k51

t

lt2kfi (pk) (12)

where Dxt and Dyt are the self-motion estimates in the x direction
and y direction, respectively. An interesting technical issue is the
use of a more general form of the TD algorithm, which leads to
the sums on the right of Equations 11 and 12. This form works by
enforcing consistency between coordinates not only across one
timestep, but across many. The parameter l determines to what
extent more distant timesteps are also considered. Theoretical
arguments suggest that since the terms Dxt and Dyt are likely to be
quite accurate, distant timesteps are useful, and therefore a high
value of l should make learning fastest (Watkins, 1989). Simula-
tions confirmed this, and so we set l to 0.9.

Using Coordinates to Control Actions

In dead reckoning, an animal computes, from its current
coordinate, a bearing back to a point of origin. In the model, a
coordinate controller computes, given its current allocentrically
defined coordinate, a bearing to whatever other coordinate is of
interest. This requires performing a simple vector subtraction,
which is just the same computation that dead reckoning also
requires (although we do not explicitly model the computation in
neural or connectionist terms). The additional, nontrivial require-
ment for the general coordinate system is some form of goal
coordinate memory, a point we will return to in the Discussion. At
certain times, however, there will be no remembered goal
coordinate: during the first trial, and, on DMP, every time the rat
reaches the position where it thinks the goal is, and finds it to be
moved. When there is no goal coordinate in memory, we make the
coordinate controller specify random, exploratory actions.

When coordinates have been learned, a coordinate controller
such as that described above is potentially extremely useful;
however, if coordinates are poorly learned, there are no guarantees
that the controller is at all useful. Early on, the controller will
produce paths which are not only indirect, but are even prone to
catastrophic loops (see results). The ability of the controller to
switch to random exploration can sometimes alleviate this problem,
but even then is guaranteed to produce highly suboptimal paths.

The solution adopted in this paper is to combine coordinate
control with the actor-critic architecture. One way to do this is
shown in Figure 5. Here, there is an additional action cell, acoord,
representing the rat’s preference for the swimming direction
offered by the coordinate system. This coordinate action can be
chosen stochastically, in competition with normal actions, rather
like the ‘‘abstract actions’’ of Singh (1992). The coordinate action
is reinforced by the critic in a similar manner to the other actions:
when the coordinate action is chosen, the weighting of the
coordinate action cell is changed by an amount proportional to

the prediction error provided by the critic. Unlike the normal
actions, preference for the coordinate action is independent of
location in the watermaze. A second difference is that when there
is no remembered goal coordinate—and the controller is specify-
ing random exploratory actions instead of actions based on its
coordinates—then the controller does not participate in learning,
i.e., acoord is not updated. The effect is that coordinate control
comes to be relied upon gradually, as it gives increasingly accurate
information about where both the animal and the goal are located.
Note that the coordinate system suggests appropriate actions
without suggesting values associated with these actions.

PERFORMANCE OF THE COMBINED
COORDINATE AND ACTOR-CRITIC

MODEL

Simulation Methods

The combined model was tested in simulated versions of the
RMW and DMP tasks, using the same simulation environment as
described for the actor-critic model. Learning rate parameters
(including those governing the constants of proportionality in
Equations 11 and 12 and Equation 10 for the abstract action)
were again optimized.

Simulation Results

Figure 6a shows the development of the X and Y coordinates
over days. Early on, e.g., day 2, trial 2, the coordinate surface is
uneven. By day 6, it is relatively smooth. Note that the coordinate
learning system receives no direct information about how the
coordinates should be centered. Three factors control the center-
ing: the boundary of the arena, the prior setting of the coordinate
weights (in this case, all were zero), and the position and prior
value of any absorbing area (in this case the platform). These
factors are arbitrary, and one might worry that the coordinates
could drift over time and thereby invalidate coordinates that have
been remembered over long periods. Consider, for example, a rat
that had learned coordinates throughout a maze but was then
confined for a period of time to a particular region of the maze. If
the rat was later released, but coordinates had drifted in the
meantime, navigation within the maze as a whole would be
affected. However, since the expected value of the prediction error
at timesteps should be zero for any self-consistent coordinate
mapping, such a mapping should remain stable. This is demon-
strated for a single run: Figure 6c,d shows the mean value of
coordinates X evolving over trials, indicating that there is little
drift after the first few trials.

The difficulty in using the coordinates by themselves to specify
actions is clear from the nature of the gradient of these functions
(Figure 7). Early on in learning, the coordinate functions are
highly irregular, and a direction specified on the basis of these
functions is worse than simply suboptimal, since catastrophic
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FIGURE 6. (a) The X and Y coordinate functions develop
gradually over days, at first being quite uneven (e.g., day 2), but
becoming quite smooth by day 6. (b) Below each coordinate are
examples of preferred actions, and paths, for trial 2 of a simulated run
of DMP using the full model. On the second trial of day 2,
performance is quite poor. By day 6, one-trial learning is evident.
(c) The centering of the X coordinates, as measured by the mean, does
not drift by the time coordinates are smooth. This is expected, since

as the coordinates become consistent, all weight changes tend to zero.
(d) Error in the X coordinates for the same simulation, measured as
the variance for each coordinate about its desired value relative to the
mean. The error stabilizes after a few trials. (e) As coordinates
improve, the weighting of the coordinate-based action increases.
Thus, the probability of taking the coordinate action, averaged over
all time points within a trial, and over all the trials of a day, is shown
to increase.
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loops are possible. This difficulty motivates the combination of
the coordinate control with the actor-critic, allowing the conven-
tional actions of the actor-critic to dominate early on, but
enabling coordinate control to come to dominate as its actions
prove more reliable than the conventional ones. This transfer of
control happens rapidly during the DMP task (Fig. 6e).

Figure 8a shows the performance of the combined model in the
RMW task. Like the actor-critic model discussed above, the
combined coordinate and actor-critic model successfully captures
the acquisition of this task. Moreover, this model can also account
for the rapid learning to the novel platform during the reversal
phase, as seen in Figure 1a. Figure 8b shows the performance of
the combined model in the DMP task. Just as in Figure 1b,
acquisition during early days is gradual, while by day 6, one-trial
learning is evident in the difference in performance between trials
1 and 2.

DISCUSSION

A model of hippocampally dependent navigation has been
presented that uses place cells as a representational substrate for
learning three different functions of position in an environment.
The actor-critic component of the model learns the temporal
proximity of locations to a single escape platform and also
appropriate actions that get there quickly. By itself, the actor-critic
model captures initial acquisition performance in RMW. How-
ever, its performance diverges from that of rats the moment the
platform is moved, failing to account for the good reversal
performance shown by rats, or for the even more striking one-trial
learning in DMP. A further component of the model learns X and
Y coordinates, a goal-independent representation of the environ-
ment, and this provides the flexibility necessary for DMP by

FIGURE 7. Gradient of the coordinate functions. The gradient is
a very sensitive measure of smoothness. On trial 4, coordinates are
still not at all smooth; navigation based on these functions alone
would be prone to catastrophic loops, i.e., would never reach the
platform. By comparison, the actor-critic scheme develops effective

values and actions for control by trial 4 (Fig. 3), and it is this control
that allows the rat to move through the environment, and so improve
its coordinate functions. By trial 36, coordinates are smoother and
the gradients reflect the X and Y directions.

FIGURE 8. Performance of the combined coordinate and actor-
critic model. For each data point, the mean and standard error in the
mean are obtained from 1,000 simulation runs. (a) RMW task, in
which the platform occupies the same location. The combined model
captures both acquisition, producing direct paths after around 10
trials, and reversal, producing rapid adaptation to the change in

platform position on day 8 (see Fig. 1a). (b) DMP task, in which the
platform remains in the same position within a day, but occupies a
novel position on each new day. The combined model captures the
acquisition of one-trial learning: the improvement within each day is
gradual early in training, but becomes a one-trial improvement by
day 6. The model provides a good match to the data (Fig. 1b).
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allowing navigation to arbitrary goals. The complete model
combines coordinates with the actor-critic architecture and
accounts for the performance of rats in the RMW task, including
the reversal, and in the DMP task.

The Contribution of the Model

The question posed at the beginning of the paper was: how
might place cell activity be useful for navigation, without
containing all the spatial information necessary for navigation?
We have shown that place cells provide an excellent representation
for learning values, actions, and coordinates. In the watermaze,
the overlap between adjacent place fields in the model supports
generalization because nearby places have similar optimal values,
coordinates, and correct actions. The point is particularly well-
illustrated by the performance of the actor-critic in the RMW
task. Reinforcement learning methods such as the actor-critic are
infamous for the large numbers of training trials required for
learning, which in most applications run to the thousands. With
place cells as an input representation, the actor-critic learns the
RMW task in about 10 trials.

As well as considering a somewhat standard application of TD
learning, i.e., the actor-critic, we have also presented a novel
application of TD learning in the form of a network that learns
consistent coordinates in an environment. This learning is found
to be extremely fast, with smooth coordinates acquired after about
16 trials. Moreover, the coordinates learned are stable, despite
being learned from relative information. The problem of global
consistency is a general one that affects all navigating systems
which use self-motion information to build map-like representa-
tions. The solution presented here partners a statistically efficient
learning algorithm, TD learning, with the stable, allocentrically
defined representation of the environment that hippocampal place
cells provide.

What does the model tell us about the spatial tasks themselves?
First, since the actor-critic component can capture acquisition
performance of rats in RMW, this acquisition does not provide
evidence for a ‘‘cognitive map’’ (Morris et al., 1982). The
actor-critic is not the first model to provide a nonmapping
account of the task (Zipser, 1986; Wilkie and Palfrey, 1987;
Burgess et al., 1994; Brown and Sharp, 1995; Blum and Abbott,
1996). It is, however, the first to incorporate a principled solution
to the distal reward problem, the critical component of which is
the temporal difference (TD) learning rule. This solution is quite
general, since nothing is assumed about the topology of the
environment (beyond the structure implicit in the place cell
representation), and so the actor-critic has the potential to learn in
more complex environments, such as environments with barriers.

Second, the model demonstrates that it may be dangerous to
conclude, as in a recent review of models of navigation by Trullier
et al. (1997), that metric navigation methods subsume topological
navigation methods. The DMP task can be solved using metric
information supplied by the learned coordinates, but the model
knows very little about the topological structure of the environ-
ment, and this is its principal weakness. Likewise, other demonstra-
tions of navigational ability, such as execution of paths in the dark

(Collett et al., 1986) or shortcuts (Menzel, 1973; Gallistel, 1990),
provide evidence for the use of metric information, but not
necessarily for the learning or use of topological information
about environments. Few spatial tasks demand even coordinates,
and a challenge for the future is to explore whether rats use still
more sophisticated (i.e., topologically richer) representations of
space.

Our work contains several simplifications. A way by which the
coordinate controller might suggest a value to the critic was not
included, and so the critic itself becomes inaccurate as one-trial
learning is established. This may be justified on the grounds of
parsimony: there is little evidence to constrain the choice of
mechanism either for this, or for the closely related issue of
learning ‘‘set,’’ i.e., the information about the task that a rat
acquires as it finds the platform changing position each day.
Furthermore, ‘‘set’’ learning is clearly incomplete, since on the first
trial of each new day, normal rats continue to revisit the position
of the platform on the previous day, even though this is always
incorrect (Steele and Morris, 1999). We have also not addressed
the problem of learning to navigate to goals in many different
environments, or the formation of place fields themselves, nor the
possibility that place fields change during either task. An impor-
tant related issue is the possibility of transfer between environ-
ments, such as enhanced learning in one watermaze after pretain-
ing in a different one of a similar size and shape, and to a similar
task (Whishaw, 1991; Bannerman et al., 1995; Saucier and Cain,
1995). The key representational role played by place cells in our
model implies that following a complete redistribution of place
fields, coordinates in particular would have to be relearned. It is
hard to make a strong prediction about transfer, however, because
it is not known exactly how place fields come to form in a novel
environment, and to what extent they might show regularities
with previously experienced environments that have relevance to
the current behavioral situation. Additionally, the search strategy
of the simulated rats was based on a random walk, commencing at
the starting point and ending at the platform. A better strategy
would be to search all areas of the pool more uniformly, and this
may indeed be what the experimental rats did. The key difference
between the two strategies lies in not returning to previously
searched areas. In fact, the actor-critic has the potential to learn
such a strategy, if punishments are associated with moves which do
not take the rat onto the platform. In this case, novel areas will
appear more attractive than previously searched areas.

Relationship to Experimental Data

The hippocampus

In the model, place cells in the hippocampus provide a
representation of the current position of the rat, i.e., its current
state in the control task. This representation has almost ideal
properties for learning the actor and critic because nearby places,
which will have similar values, and require similar actions, are
represented similarly by the place cell system. Interestingly, where
this condition is violated, as for example in the case of nearby
places on opposite sides of a barrier, the place cell representation
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adapts accordingly: place fields which cross barriers do not
generally occur, and if a barrier is added to the environment so as
to split an extant place field, the field extinguishes, i.e., the cell
associated with the field ceases to fire (Muller et al., 1987). The
implication is that proximity is defined by the task, not purely by
space. Activity-dependent changes in place fields’ shape and
centering have been observed (Mehta et al., 1996), and these can
be interpreted in terms of improving the state representation for
use by learning systems such as the actor-critic (Dayan, 1993).

A straightforward generalization from this role in navigation is
that hippocampal neurons provide a state space representation
appropriate to whatever task is at hand, so that nonspatial tasks
might lead to nonlocation-based representations of the environ-
ment. This is supported by physiological evidence for the
nonspatial tuning of rodent hippocampal cells (Wiener, 1996;
Eichenbaum, 1996; Wood et al., 1999) and of cells in the primate
hippocampus (O’Mara et al., 1994), and is in line with a number
of current theories of hippocampal function (McClelland and
Goddard, 1996; Rudy and Sutherland, 1995). This hypothesis is
not at odds with the possibility that animals learn specialized
representations of the environment, like the coordinates of the
model, in order to solve particular problems. As suggested by
various theories, it is also quite possible that the representations
are present in the hippocampus for only a limited time, and are
ultimately consolidated into the cortex.

In the model, weight changes due to navigational learning
occur downstream of hippocampal place cells. Consonant with
this, Steele and Morris (1999) found that, after 9 days of
pretraining on DMP, animals can, at short memory delays,
continue to perform one-trial learning to novel platform positions
during pharmacological blockade of N-methyl-D-aspatate
(NMDA) receptors in the hippocampus. However, 9 days is long
enough to learn a coordinate system, and so the experiment of
Steele and Morris (1999) does not distinguish between models in
which coordinate-like information is stored inside the hippocam-
pus, and models in which it is stored outside.

An interesting issue raised by the model concerns the explicit
memory for current goal location, demanded by the coordinate
model. Evidence suggests that goal memory may be a dissociable
computational factor in navigation. Steele and Morris (1999)
found that, after 9 days of pretraining, animals in which
hippocampal synaptic plasticity has been blocked by an NMDA
antagonist show a delay-dependent impairment during DMP, i.e.,
trial 2 performance in DMP is impaired if, and only if, the delay
between trials 1 and 2 is long (20 min or 2 h; short delay was 15 s).
Within the framework of the model, this impairment corresponds
to a selective disruption of the goal coordinate memory. Moreover,
the data suggest that the normal operation of this goal memory is
dependent on hippocampal NMDA receptors. The important
question of what happens to place cells themselves if hippocampal
synaptic plasticity is blocked has only recently begun to be
addressed. Pioneering studies using NMDA antagonists suggest
that hippocampal synaptic plasticity is necessary for the long-term
stability of place fields within an unfamiliar environment, but not
necessary if the environment has become familiar during a period
of preoperative training (Kentros et al., 1998). By this account,

place fields ought to have been stable throughout all stages of the
DMP task conducted by Steele and Morris (1999).

The actor-critic

The actor-critic is a general learning scheme that has been used
to model phenomena in classical and instrumental conditioning
that are likely to be largely independent of the hippocampal
formation. For example, Montague et al. (1996) built an actor-
critic model of rewarded conditioning behavior based on electro-
physiological evidence on the activity of cells in the dopamine
system (Schultz et al., 1997). In this model, neurons in the ventral
tegmental area and the substantia nigra pars compacta report the
prediction error term dt in Equation 7, and the dorsal striatum
plays the role of the actor. Both the ventral and dorsal striatum of
the rat receive outputs from the CA1 hippocampal subfield, an
area where place cells are found (Wiener, 1996). However, little is
currently known about the activity of these systems during
navigation, or how or where the values may be stored.

The coordinates

There is no evidence as yet for the neural implementation of the
coordinate representation. However, the phenomenon of dead
reckoning is well-documented in many animals, and strongly
suggests both that a coordinate representation of some sort exists,
and that neural mechanisms exist to perform simple vector
subtraction. The particular X and Y coordinate representation we
have used is extremely simple; we have used it to demonstrate
clearly the problem of building globally consistent coordinates
from relative self-motion information, which will be present for
any coordinate system. The key feature of the model is to make
the coordinate representation hippocampally dependent, in the
sense of relying upon information from place cells, and the model
demonstrates both that place cells provide an appropriate represen-
tation from which to learn coordinates, and that, with the TD
learning rule, coordinate learning can be extremely fast.

Relationship to Other Models

The two key issues separating models of navigation are, from a
neural perspective, the extent to which the hippocampus itself
solves the navigation problem, and, from a computational
perspective, the generality of the suggested control scheme. Both
actor-critic and coordinate components use the hippocampus
only for a representation of state (i.e., place). The actor-critic is a
completely general control mechanism, working in environments
with arbitrarily complicated shapes and reward contingencies, but
is fairly inflexible. The coordinate model is flexible, but specialized
to navigation in a restricted class of environments.

The model of Blum and Abbott (1996) (see also Abbott and
Blum, 1995; Gerstner and Abbott, 1996) is very closely related to
dynamic programming, the control mechanism underlying TD
rules. They proposed that place cells express a decodable popula-
tion code for position, and that subtle changes in the population
code, due to the operation of temporally asymmetric Hebbian
synaptic plasticity between place cells in field CA3 while the rat is
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swimming, can be interpreted as reporting at each location the
average swimming direction that takes the rat to the goal. This
essentially performs one step of the dynamic programming
technique of policy improvement, starting from a random policy.
However, for general control problems, just one step of policy
improvement is inadequate; even in the RMW task which they
modeled, it was necessary to include a reinforcement process
which modulated the Hebbian plasticity, in a manner similar to
that of Brown and Sharp (1995).

Gerstner and Abbott (1996) extended the model of Blum and
Abbott (1996) to the case of navigation to multiple goal locations.
In their model, the (remembered) position of the goal modulates
the activities of place cells, allowing the connections between the
single set of place cells that are active in an environment to store
the swimming direction appropriate to the multiple goals. Having
learned synaptic weights appropriate for a few goals, navigation to
novel goals is possible by interpolation. The model might use this
feature to solve DMP, even in the face of the pharmacological
blockade. However, there are various counts against the model.
First, the modulation of place cell activity by goal position is not
observed; indeed, there is evidence against it (Speakman and
O’Keefe, 1991). Second, both versions of this model embed the
whole problem for navigation in the hippocampus proper, in the
connections between CA3 cells. This is hard to reconcile with the
results of Bannerman et al. (1995) and Saucier and Cain (1995),
which suggest that plasticity in this region may not be necessary to
learn a watermaze task in a novel environment. Third, one of the
key computational operations in the models is population decod-
ing of the position of the rat that is encoded in the activities of the
place cells. Calculating this requires knowledge of something
equivalent to coordinates in the environment, i.e., a priori
knowledge of the location (in some coordinate system) of the
center of each place field. Some additional, unspecified scheme for
learning these coordinates consistently across the environment is
essential.

Like the actor-critic system, Burgess et al. (1994) and Brown
and Sharp (1995) also suggested schemes in which place cells play
the more limited role of providing a reliable code for space. Both
papers considered an RMW-like task which presents a distal
reward problem. Burgess et al. (1994) used the output of place
cells to construct subicular cells with extended place fields, which
in turn were used to learn postulated goal cells, which fired across
the extent of an entire environment, performing a job like the
actor. Learning of the goal cells only happens when the animal
actually reaches the goal, but this is sufficient because the extended
range of the goal cells means, in effect, that there is no longer a
distal reward problem. If by some means the firing of goal cells for
different goals could be distinguished, it is possible that the model
could also address the DMP task, by having a subicular cell for
every possible goal. However, the use of large firing field
representations in this manner raises a number of issues. First, if
the subicular cells that fire when the animal is at the goal do not
cover the whole environment, there will be places for which the
animal will not learn appropriate actions. Second, the mechanism
which generates large subicular fields can be expected to learn
more slowly than TD learning methods, since it attempts to

produce a smooth, monotonic function of distance in the
subicular cells by essentially averaging over place cell activity traces
for each subicular cell (i.e., for each potential goal). Third, the
model does not use a general learning scheme for control, and so
can only accomplish tasks such as avoiding obstacles by making
detours that are significantly larger than necessary and which, for
inconveniently located barriers, may not work at all. Brown and
Sharp (1995) presented a simpler model in which place cells are
associated with responses, and in which learning is gated by
reward. However, as noted in the Introduction, the model relies
on a trace-like learning rule which is likely to be a very inefficient
way of learning predictions compared to the TD learning rule
used in the actor-critic model. The model does, however, suffer
the same limitations as the actor-critic with respect to the learning
of a DMP task.

The problems involved in learning a coordinate system have
been addressed by Wan et al. (1994). In their model, coordinates
are represented by an extrahippocampal path integration module
that operates more conventionally, representing coordinates with
respect to some current point of origin. Their model demonstrates
how place cell firing might come through learning to be
independent of sensory information, at least for a short while,
relying instead on input from the path integrator. It also addresses
the inverse problem of what happens when the path integrator
becomes invalid, as for example on each new trial of a watermaze
task, because the path integrator learns to set itself by the output
of place cells. In a completely novel region, a new origin is selected
and new coordinates laid down. However, if previous experience is
of value to the animal, it must return to areas of the environment
where place cells can correctly set the path integrator; hence, for
example, trial 2 of a watermaze task could not produce any
learning until a familiar area was traversed, thus throwing away
potentially valuable experience, as well as constraining the ani-
mal’s search. The TD-based model of this paper avoids both
shortcomings by directly tackling the problem of inconsistent
coordinates.

Finally, a quite different view of hippocampal function from
that taken by the models discussed so far is that the hippocampus
is directly involved in some forms of flexible processing, e.g.,
manipulating sequences of mnemonic or spatial information
(Levy, 1996) or performing complicated computations, as in the
demonstration of transitive inference (Bunsey and Eichenbaum,
1996). Although direct experimental support for this view is
lacking, it is not possible, on the basis of current evidence, to rule
it out. However, transitive inference may be a case in point,
because working out a global order from local relationships is a
similar task to calculating globally consistent coordinates from
local dead-reckoning information. It is possible that the hippocam-
pus computes the inference directly; it is also possible that
downstream systems make the computation, but rely on the
hippocampal representation to do so. With regard to navigation
tasks, we have demonstrated that although the observed activity of
place cells appears limited, it makes sense if used in the right
system with the right learning rule. Indeed, according to the
model presented here, the very characteristics that make place cell
activity seem so redundant (namely, localization, directional
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independence, and stability) contribute most to their suitability
within a navigational learning context.

Predictions of the Model

On the basis of the model, the following three predictions can
be made.

1. Placement trials should support DMP, once rats have acquired
one-trial learning. After a certain amount of training, rats should
have a system that specifies the coordinates of any location they
occupy. This implies that, by this stage of learning, mere
placement on a platform in a novel position might be sufficient to
allow asymptotic performance of the next trial. This prediction
would, however, depend on the learning set behavior of the rats in
terms of knowing the appropriate response, having just been
placed on a platform.
2. Rats for which hippocampal synaptic plasticity is blocked, but
only after place fields have been established in an environment,
should be unimpaired in learning a RMW task. The model
suggests that the actor-critic is located outside of the hippocampal
formation, and just uses information from place cells as a
representation of state. Therefore, provided the place cells have
been established (e.g., during a latent learning period of some
sort), actor-critic learning should progress normally. The compli-
cation again is learning set behavior: if blocking hippocampal
plasticity prevented the animals from learning the nature of the
task, this too would have to be ensured during a pretraining
period.
3. Rats for which hippocampal synaptic plasticity is blocked, but
only after place fields have been established in an environment,
might also be unimpaired in learning a DMP task. If this was
found to be true, it would suggest that the coordinate system (in
particular, cells X and Y in the model) is located outside the
hippocampus. An impairment, on the other hand, would suggest
that coordinates are located within the hippocampus. The experi-
ment of Steele and Morris (1999) did not distinguish between the
two alternatives, because synaptic plasticity was blocked only after
extensive pretraining (which provided the one-trial learning data
which we have modeled). The same considerations apply for this
prediction as for the previous one, in terms of establishing place
fields, and acquiring the learning set.
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