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Abstract. A computational model of hippocampal ac-
tivity during spatial cognition and navigation tasks is
presented. The spatial representation in our model of the
rat hippocampus is built on-line during exploration via
two processing streams. An allothetic vision-based
representation is built by unsupervised Hebbian learning
extracting spatio-temporal properties of the environ-
ment from visual input. An idiothetic representation is
learned based on internal movement-related information
provided by path integration. On the level of the
hippocampus, allothetic and idiothetic representations
are integrated to yield a stable representation of the
environment by a population of localized overlapping
CA3-CALl place fields. The hippocampal spatial repre-
sentation is used as a basis for goal-oriented spatial
behavior. We focus on the neural pathway connecting
the hippocampus to the nucleus accumbens. Place cells
drive a population of locomotor action neurons in the
nucleus accumbens. Reward-based learning is applied to
map place cell activity into action cell activity. The
ensemble action cell activity provides navigational maps
to support spatial behavior. We present experimental
results obtained with a mobile Khepera robot.

1 Introduction

As the complexity of the tasks and the perceptual
capabilities of biological organisms increase, an explicit
spatial representation of the environment appears to be
employed as a cognitive basis to support navigation
(O’Keefe and Nadel 1978). In rodents, hippocampal
place cells exhibit such a spatial representation property.
Recordings from single place cells in the rat hippocam-
pus (O’Keefe and Dostrovsky 1971; O’Keefe and Nadel
1978) show that these neurons fire as a function of the
rat’s spatial location. A place cell shows action poten-
tials only when the animal is in a specific region of the
environment, which defines the place field of the cell.
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Place cells have been observed in the hippocampus
proper (CA3 and CAIl pyramidal cells) (O’Keefe and
Dostrovsky 1971; Wilson and McNaughton 1993), and
in other extra-hippocampal areas such as the dentate
gyrus (Jung and McNaughton 1993), the entorhinal
cortex (Quirk et al. 1992), the subiculum (Sharp and
Green 1994), and the parasubiculum (Taube 1996).

In addition, recent experimental findings show the
existence of head-direction cells, neurons whose activity
is tuned to the orientation of the rat’s head in the azi-
muthal plane. Each head-direction cell fires maximally
when the rat’s head is oriented in a specific direction,
regardless of the orientation of the head with respect to
the body, and of the rat’s spatial location. Thus, the
ensemble activity of head-direction cells provides a
neural allocentric compass. Head-direction cells have
been observed in the hippocampal formation and in
particular in the postsubiculum (Taube et al. 1990), in
the anterior thalamic nuclei (Blair and Sharp 1995;
Knierim et al. 1995), and in the lateral mammillary
nuclei (Leonhard et al. 1996).

Place coding and directional sense are crucial for
spatial learning. Hippocampal lesions seriously impair
the rat’s performance in spatial tasks (see Redish 1997
for an experimental review). This supports the hypoth-
esis that the hippocampus plays a functional role in
rodent navigation, and that it provides a neural basis for
spatial cognition and spatial behavior (O’Keefe and
Dostrovsky 1971; O’Keefe and Nadel 1978; McNaugh-
ton 1989; Wilson and McNaughton 1993).

Hippocampal place fields are determined by a com-
bination of environmental cues whose mutual relation-
ships code for the current animal location (O’Keefe and
Nadel 1978). Experiments on rats show that visual cues
are of eminent importance for the formation of place
fields (Knierim et al. 1995). Nevertheless, rats also rely
on other allothetic non-visual stimuli, such as auditory,
olfactory, and somatosensory cues (Hill and Best 1981).
Moreover, place cells can maintain stable receptive fields
even in the absence of reliable allothetic cues (e.g., in the
dark) (Quirk et al. 1990). This suggests a complex ar-
chitecture where multimodal sensory information is used
for learning and maintaining hippocampal place fields.
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In the dark, for instance, idiothetic information (e.g.,
proprioceptive and vestibular stimuli) might partially
replace external cues (Etienne et al. 1998).

We present a computational model of the hippo-
campus that relies on the idea of sensor-fusion to drive
place cell activity. External cues and internal self-gen-
erated information are integrated for establishing and
maintaining hippocampal place fields. Receptive fields
are learned by extracting spatio-temporal properties of
the environment. Incoming visual stimuli are interpreted
by means of neurons that only respond to combinations
of specific visual patterns. The activity of these neurons
implicitly represents properties like agent-landmark
distance and egocentric orientation to visual cues. In a
further step, the activity of several of these neurons is
combined to yield place cell activity. Unsupervised
Hebbian learning is used to build the hippocampal
neural structure incrementally. In addition to visual in-
put we also consider idiothetic information. An extra-
hippocampal path integrator drives Gaussian-tuned
neurons modeling internal movement-related stimuli.
During the agent-environment interaction, synapses
between visually driven cells and path-integration neu-
rons are established by means of Hebbian learning. This
allows us to correlate allothetic and idiothetic cues to
drive place cell activity. The proposed model results in a
neural spatial representation consisting of a population
of localized overlapping place fields (modeling the ac-
tivity of CA1 and CA3 pyramidal cells). To interpret the
ensemble place cell activity as spatial location we apply a
population vector coding scheme (Georgopoulos et al.
1986; Wilson and McNaughton 1993).

To accomplish its functional role in spatial behavior,
the proposed hippocampal model must incorporate the
knowledge about relationships between the environ-
ment, its obstacles, and specific target locations. As in
Brown and Sharp (1995), and in Burgess et al. (1994),
we apply reinforcement learning (Sutton and Barto
1998) to enable target-oriented navigation based on
hippocampal place cell activity. We focus on a specific
neural pathway, namely the fornix projection, connect-
ing the hippocampus (in particular the CAl region) to
the nucleus accumbens. The latter is an extra-hippo-
campal structure that is probably involved in reward-
based goal memory and in locomotor behavior (Brown
and Sharp 1995; Redish 1997). Place cell activity drives a
population of locomotor action neurons in the nucleus
accumbens (Brown and Sharp 1995). Synaptic efficacy
between CA1 cells and action cells is changed as a
function of target-related reward signals. This results in
an ensemble activity of the action neurons that provides
a navigational map to support spatial behavior.

To evaluate our hippocampal model in a real context,
we have implemented it on a Khepera miniature mobile
robot (Fig. 6b). Allothetic information is provided by a
linear vision system, consisting of 64 photoreceptors
covering 36° of azimuthal range. Eight infrared sensors
provide obstacle detection capability (similar to whis-
kers). Internal movement-related information is pro-
vided by dead-reckoning (odometry). Robotics offers a
useful tool to validate models of functionalities in neuro-

physiological processes (Pfeifer and Scheier 1999).
Artificial agents are simpler and more experimentally
transparent than biological systems, which makes them
appealing for understanding the nature of the under-
lying mechanisms of animal behavior.

Our approach is similar in spirit to earlier studies
(Burgess et al. 1994; Brown and Sharp 1995; Gaussier
et al. 1997; Mallot et al. 1997; Redish 1997; Redish and
Touretzky 1997; Trullier and Meyer 1997). In contrast
to Burgess et al. (1994), we do not directly use metric
information (i.e., distance to visual cues) as input for the
model. Rather, we interpret visual properties by learn-
ing a population of neurons sensitive to specific visual
stimulation. Moreover, there is no path integration in
the model of Burgess et al. In contrast with their model,
we consider, along with vision, the path integrator as an
important constituent of our hippocampal model. This
allows us to account for the existence of place fields in
the absence of visual cues (e.g., in complete darkness)
(Quirk et al. 1990). Redish and Touretzky (Redish 1997;
Redish and Touretzky 1997) have put forward a com-
prehensive theory of the hippocampal functionality
where place fields are important ingredients. Our
approach puts the focus on how place fields in the CA3-
CA1 areas might be built from multimodal sensory in-
puts (i.e., vision and path integration). Gaussier et al.
(1997) propose a model of the hippocampal function-
ality in long-term consolidation and temporal sequence
processing. Trullier and Meyer (1997) build a topolog-
ical representation of the environment from sequences
of local views. In contrast to those two models, tem-
poral aspects are, in our approach, mainly implicit in
the path integration. In contrast to Mallot et al. (1997),
who construct a sparse topological representation, our
representation is rather redundant and uses a large
number of place cells. Similarly to Brown and Sharp
(1995), we consider the cell activity in the nucleus ac-
cumbens to guide navigation. However, we do not
propose an explicit model for the nucleus accumbens.
Finally, similarly to Schultz et al. (Dayan 1991; Schultz
et al. 1997) we consider the role of dopaminergic
neurons in reward-based learning. However, we study
hippocampal goal-oriented navigation in a real agent-
environment context.

2 Spatial representation in the hippocampus
2.1 Biological background

Figure 1 shows the functional rationale behind the
model:

1. External stimuli (i.e., visual data) are interpreted to
characterize distinct regions of the environment by
distinct sensory configurations. This results in an al-
lothetic (vision-based) spatial representation consis-
tent with the local view hypothesis suggested by
McNaughton in 1989 (McNaughton 1989).

2. Internal movement-related stimuli (i.e., propriocep-
tive and vestibular) are integrated over time to pro-



vide an idiothetic (path integration-based) represen-
tation.

3. Allothetic and idiothetic representations are com-
bined to form a stable spatial representation in the
hippocampus (CA3-CA1 place fields).

4. Spatial navigation is achieved based on place cell
activity, desired targets, and rewarding stimulation.

Figure 2 shows the anatomical framework underlying
our computational model. The hippocampus proper (C-
shaped structure in Fig. 2) consists of the CA3-CAl
areas. The hippocampal formation consists of the hip-
pocampus proper, the dentate gyrus (DG), the entorhi-
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Fig. 1. Functional overview of the model. Allothetic and idiothetic
stimuli are combined to yield the hippocampal space representation.
Navigation is based on place cell activity, desired targets, and rewards
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Fig. 2. A simplified overview of the anatomical counterparts of the
constituents of our model. Glossary: PaHi parahippocampal cortex,
PeRh perirhinal cortex, poSC postsubiculum, LMN lateral mamm-
illary nuclei, ADN anterodorsal nucleus of anterior thalamus, mEC
medial entorhinal cortex, sEC superficial entorhinal cortex, DG
dentate gyrus, SC subiculum, N4 nucleus accumbens, V'7TA ventral
tegmental area, PP perforant path, FX fornix. The hippocampus
proper consists of the CA3-CAl areas. The hippocampal formation
consists of the hippocampus proper, the dentate gyrus, the entorhinal
cortex, and the subicular complex (Redish 1997; Burgess et al. 1999).
Adapted from Redish and Touretzky (1997), and from Burgess et al.
(1999)
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nal cortex (in particular, we consider superficial (sEC)
and medial (mEC) entorhinal regions), and the subicu-
lum (SC).

The hippocampus receives multimodal highly pro-
cessed sensory information mainly from neocortical ar-
eas, and from subcortical areas (e.g., inputs from the
medial septum via the fornix fiber bundle) (Burgess et al.
1999). We focus on neocortical inputs and in particular
on the information coming from the posterior parietal
cortex. Lesion data on humans and monkeys suggest
that parietal areas are involved in spatial cognition and
spatial behavior (Burgess et al. 1999). The posterior
parietal cortex receives inputs from visual, sensory-mo-
tor, and somatosensory cortices. This information
reaches the entorhinal regions, within the hippocampal
formation, via the parahippocampal (PaHi) and the
perirhinal (PeRh) cortices. Finally, the entorhinal cortex
projects to the hippocampus proper via the perforant
path (PP) (Burgess et al. 1999).

As previously mentioned, we consider the spatial
representation in the CA3-CA1l areas as the result of
integrating idiothetic and allothetic representations
(Fig. 1). The idiothetic representation is assumed to be
environment-independent. Recordings from cells in the
mEC show place fields with a topology-preserving
property across different environments (Quirk et al.
1992; Redish 1997). Thus, we suppose that the idiothetic
representation takes place in the mEC. A fundamental
contribution to build the idiothetic space representation
in the mEC comes from the head-direction system
(Fig. 2). The latter is formed by the neural circuit in-
cluding the lateral mammillary nuclei (LMN), the an-
terodorsal nucleus of anterior thalamus (ADN), and the
postsubiculum (poSC) (Blair and Sharp 1995; Redish
1997). Head-direction information is projected to the
medial entorhinal cortex (mEC) from the postsubiculum
(poSC).

On the other hand, we suppose that the allothetic
representation is formed in the sEC (Redish 1997).
Superficial layers of the entorhinal cortex receive
spatial information about allothetic landmarks (local
view) from the posterior parietal cortex and project
massively to the CA3 region via the perforant path
(Redish 1997).

The hippocampus proper projects its output (1) to the
subiculum and the deep layers of the entorhinal cortex
via the angular bundle, (2) to several subcortical areas
[e.g., the nucleus accumbens (NA)] via the fornix (FX).
In particular, we consider the output of CAIl cells that
reaches the nucleus accumbens via the fornix!. We
identify the NA as the area in which navigation control
is achieved by means of reward-based learning (Brown
and Sharp 1995; Redish and Touretzky 1997). We con-
sider the dopaminergic input that NA receives from the
ventral tegmental area (VTA). Indeed, dopamine neuron
activity codes for external rewarding stimulation
(Schultz et al. 1997).

! Actually, the fornix receives most of its inputs from the subic-
ulum. However, experiments show that CA1 cells also project into
it (Redish 1997)
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2.2 Learning place fields

The model system consists of a multi-layer neural
architecture that models high-dimensional continuous
sensory input by means of overlapping place fields.
Starting with no prior knowledge, the system grows
incrementally and on-line as the agent interacts with the
environment. Unsupervised Hebbian learning is used to
detect the low-dimensional view manifold representing
the visual input space. However, since distinct spatial
locations might provide identical visual stimuli, such a
view manifold might be singular (Mallot et al. 1997).
Hebbian learning is applied to correlate visual cues and
path integration to remove such singularities. The
combination of internal and external stimuli yields a
stable state space representation. On the one hand,
unreliable visual data can be compensated for by means
of path integration. On the other hand, reliable visual
information can be used to reset the path integrator
system.

2.2.1 Representation of visual input. We apply a simple
computational strategy to emulate the feature-extrac-
tion mechanism observed in the visual cortex. Moving
up the visual pathway, visual neurons become respon-
sive to stimuli of increasing complexity, from orienta-
tion sensitive cells, to neurons sensitive to more
complex patterns, such as faces (Rolls and Tovée
1995).

We model spatio-temporal relationships between
visual cues by means of neural activity. Incoming vi-
sual stimuli are interpreted by mapping images into a
filter-activity space (Fig. 3). We define several classes
of Walsh-like filters>. Each class corresponds to a
specific visual pattern. The set of filters in that class
corresponds to different spatial frequencies for that
pattern (which endows the system with a distance-
discrimination property). In total we define five dif-
ferent classes of filters, each containing filters at ten
different frequencies. Let F; be one of our Walsh fil-
ters, where 1 < k < 50 is the index of the filter, and let
[ be its length (i.e., number of pixels covered by the
filter). Given the input image x = (xo,...,xs3), the
response a; of filter F; is computed by convolution

li—1
ar = m’?x{ZFk(i) x,,+,} (1)

i=0

where 0 < n < 64 — [;. Since —1 < x; < 1 and F;(i) = £1
for all i, k, the relationship |a;| < /i holds.

Each neural filter F; responds to a particular pat-
tern. To detect more complex features, we consider a
layer of visual cells one synapse downstream the
neural filter layer. We call these neurons snapshot
cells. The idea is to represent each image by the
cluster of filters with the highest activation value, de-

2 Walsh filters are simple and permit effective and low-cost feature
detection in one-dimensional visual spaces. We are currently im-
plementing our model on a two-dimensional vision system by using
biologically inspired Gabor filters (Gabor 1946).
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Fig. 3. Linear images (fop) are mapped into a filter activity space
(bottom). Along the x-axis we have different Walsh-like filters,
Pi,---,Pn, €ach of which responds to a specific pattern. Along the
y-axis the spatial frequency of each pattern pj is varied to represent the
same pattern seen from different distances. Each image is encoded by
the cluster of filters that maximally responds to that image

fined by (1). Let C, =0.7-1I; be the threshold above
which a filter F; is considered as active. Given an
image x, the set of active filters projects one layer
forward to form a snapshot cell

SC:{FHak > Ck} (2)
The firing activity »; of a snapshot cell sc; is given by

Zkescj <%(ak - Ck)
rp= N (3)
J

where 3. sums over all the ; filters projecting to the
cell sc;, and # is the Heaviside function. The normal-
ization has been chosen so that 0 <r; < 1.

2.2.2 Allothetic representation. place fields in the super-
ficial entorhinal cortex. The activity of snapshot cells
depends on the current gaze direction and does not truly
code for a spatial location. To achieve spatial sensitivity,
we apply unsupervised Hebbian learning to create a
population of place cells one synapse downstream of the
snapshot cell layer. We suppose that the anatomical
counterpart for this neural layer is the superficial
entorhinal cortex (Fig. 2). We call these neurons sEC
cells.

Every time the robot is at a new location, all simul-
taneously active snapshot cells are connected to a newly
created sEC cell. Each new synapse is given a random
weight in (0,1). Let 7 and j be indices for sEC cells and
snapshot cells, respectively. If 7; is the firing activity of a
snapshot cell j, then
W}}ew = %(l"j — 6) I'Ild071 (4)
where € = 0.75 is the activity threshold above which a
snapshot cell is considered to be active. The firing rate r;
of a sEC cell 7 is given by the average activity #; of its
presynaptic neurons j
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Once synapses are established, their efficacy is changed
according to a Hebbian learning rule

AWij = I’j(l/‘i - Wij) (6)

(5)

v

where j is the index of the presynaptic neuron. If the
robot is visiting a spatial location, it first checks whether
there are already sEC cells coding for this location. New
connections from snapshot cells to new sEC cells are
created only if

Z%(n—e)<A (7)

that is, only if the number of sEC cells activated at that
location does not exceed a threshold A. Equation (7) is a
mere algorithmic implementation. We believe, however,
that in some way rodents must have a possibility to
detect novelty. Equation (7) allows the system to control
the redundancy level in the resulting spatial representa-
tion. We call the learning scheme defined by (4), (6), and
(7) an unsupervised growing network (see, for example,
Fritzke 1994).

By definition, each sEC cell is driven by a set of
snapshot cells whose activities code for visual features of
the environment. As a consequence, the activity of a sEC
cell depends on the combination of multiple visual cues.
This results in an ensemble sEC cell activity coding for
spatial locations. Figure 4 shows two examples of place
fields in the superficial entorhinal layer of the model.
The darker a region, the higher the firing rate of the cell.
Figure 4a shows that the cell is activated only if the
robot is in a localized region of the environment. Thus,
the robot may use the center of the field (the darkest
area) for the self-localization task. On the other hand,
Fig. 4b shows a cell with multiple subfields. The activity
of this sEC cell encodes an ambiguous visual input: the
multi-peak receptive field identifies different spatial lo-
cations that yield similar visual stimuli. About 70% of
the cells in our superficial entorhinal layer are of type
(a), and about 30% of type (b). As previously men-
tioned, a way to solve the ambiguities of cell-type (b) is

Fig. 4a,b. Two examples of receptive fields of cells in our superficial
entorhinal layer. The darker a region, the higher the firing rate of the
cell when the robot is in that region of the environment. a The visual
input is reliable, so that the maximal activity is confined to a localized
spot in the environment. b The receptive field has multiple peaks
indicating that similar visual stimuli occur at different locations
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to consider along with the visual input the internal
movement-related information provided by the path
integrator (i.e., dead-reckoning), which is the topic of
Sect. 2.2.3.

Place fields in our model of sEC are non-directional.
This is due to the fact that sEC cells bind together the
several snapshot cells that correspond to the north, east,
south, and west views. Experimental data show that
place cells tend to have directional place fields (i.e., their
firing activity depends on head direction) in very struc-
tured arenas [e.g., linear track mazes and radial narrow
arm mazes (McNaughton et al. 1983)]. On the other
hand, when the rat can freely move over two-dimen-
sional open environments (e.g., the arena of Fig. 6a),
place fields tend to be non-directional (Muller et al.
1994). To obtain directionally independent place fields in
our model, the system takes four snapshots corre-
sponding to the north, east, south, and west views at
each location visited during exploration (Burgess et al.
1994). Thus, cach visited location in the environment is
characterized by four snapshot cells, which are bound
together to form a non-directional local view. On the
other hand, in a linear track maze the rat always runs in
the same direction. If we modeled this by taking a single
view only, then we would get directionality.

2.2.3 Idiothetic representation: place fields in the medial
entorhinal cortex. In this article we do not present an
explicit model for the path integrator system (Droulez
and Berthoz 1991). We simply define extra-hippocampal
neurons, namely path-integration cells (PI cells), whose
activity provides an allocentric spatial representation
based on dead-reckoning (McNaughton et al. 1996).
Thus, as the robot moves, the activity of the PI cells
changes according to proprioceptive stimuli and the
robot’s orientation provided by the head-direction
system. The firing rate r, of a PI cell p is taken as a
Gaussian

. . 2
ry= exp( (pdgo-2 pp) ) (8)

where pyg, is the position estimated by dead-reckoning, p,
is the center of the field of cell p, and ¢ is the width of the
Gaussian field. In the current implementation, the value
of the dead-reckoning position py, is evaluated by direct
mathematical integration of the movement signals
(wheel turns). The activity of the PI cells is environ-
ment-independent, that is, place fields of PI cells do not
change from environment to environment (Redish and
Touretzky 1997). We suppose that the spatial represen-
tation provided by the PI place fields takes place in the
mEC (Quirk et al. 1992) (Fig. 2).

Our PI cell assembly could be interpreted as one of
the charts of the multichart path integrator proposed by
McNaughton et al. (1996). A chart is an imaginary
frame of reference appropriately mapped into the envi-
ronment where each cell is located at the center of its
place field. In the model of McNaughton et al. several
charts are stored in the same recurrent network. Addi-
tional spatial reference cues trigger which chart to pick



292

so that different charts are mapped into different envi-
ronments. Our system would correspond to one finite
chart. Since in this study we concentrate on a single
environment only, we have not implemented how the
system would switch to a new chart if it leaves the ref-
erence frame (Redish 1997).

2.2.4 Hippocampal representation: place fields in the CA3
and CAl regions. Allothetic and idiothetic representa-
tions converge onto the hippocampus proper to form a
spatial representation based on CA3-CAl place fields.
The sEC cells project to CA3-CA1 neurons by means of
downstream synapses that are incrementally created by
applying our unsupervised growing network scheme
(Egs. 4, 6, 7). Simultaneously active sEC cells are
connected to create new CA3-CAl place cells. If i and
j represent CA3-CA1 place cells and sEC cells, respec-
tively, synapses are created according to (4) and they are
changed on-line by Hebbian learning (6). The firing rate
of each CA3-CAl cell is a weighted average of the
activity of its presynaptic cells (5).

In addition, during the agent-environment interac-
tion, Hebbian learning is used to learn synapses between
PI cells and CA3-CA1 place cells. If i and p represent a
place cell in the hippocampus and a PI cell, respectively,
the synaptic weight w;, is established according to

Awip = rpri(1 — wip) )

As a consequence, the place cell activity in the CA3-CAl
layer depends on the activity of both sEC cells and PI
cells. This combination of internal and external stimuli
yields a rather stable spatial representation. Figure 5
shows a typical receptive field of a place cell in the CA3-
CA1 layer of our model. Again, the darker a region, the
higher the firing rate of the cell.

About 3% of our CA3-CA1 place cells show multiple
subfields. This is consistent with experimental single-unit
recordings data that show that about 5% of observed
cells have multiple subfields within a single environment
(Recce et al. 1991).

Fig. 5. A sample place field of a place cell in our CA3-CAl
hippocampal layer. When the robot is in the region of the black
spot the firing rate of the cell is maximal. Notice the Gaussian-like
tuning curve, which is compatible with single cell recordings from real
place cells

2.3 Population vector coding

The proposed model yields a spatial representation
consisting of a large number of overlapping place fields.
Figure 6a shows the square arena used for the experi-
ments with the mobile Khepera robot (Fig. 6b). Walls
are covered by random sequences of black and white
stripes of variable width. Combinations of these stripes
form the input patterns for the linear vision system.
During exploration (see Sect. 2.4) the robot tries to
cover the two-dimensional space uniformly and densely
with a population of CA3-CA1l place fields. Figure 7
shows the distribution of CA3-CAl place cells after
learning. Each dot represents a place cell, and the
position of the dot represents the center of the place
field. In this experiment the robot, starting from an
empty population, created about 800 CA3-CAl place
cells.

The ensemble place cell activity shown in Fig. 7 codes
for the robot’s location in Fig. 6a. The darker a cell, the
higher its firing rate. To interpret the information rep-
resented by the ensemble pattern of activity, we apply
population vector coding (Georgopoulos et al. 1986).
This approach has been successfully applied to interpret
the neural activity in the hippocampus (Wilson and
McNaughton 1993). We average the activity of the
neural population to yield the encoded spatial location.
Let us suppose that the robot is at an unknown location
s. If 7;(s) is the firing activity of a neuron i and x; is the
center of its place field, the population vector p is the
center of mass of the network activity:

Fig. 6. a The experimental setup: the 60 x 60-cm square arena with
the Khepera robot inside. Walls are covered by a random sequence of
black and white stripes of variable width, which form the visual input
patterns for the system. b The mobile Khepera robot equipped with a
linear-vision system. Eight infrared sensors provide obstacle detection
capability. Two motors drive the two wheels independently. Two
wheel encoders provide the dead-reckoning system. In this configu-
ration the robot is about 7 cm tall with a diameter of about 6 cm



Fig. 7. The learned population of CA3-CAl place cells. Each dot
denotes the center of a place field. The darker a dot, the higher the
firing rate of the corresponding place cell. The ensemble activity
corresponds to the robot’s location in Fig. 6a. The white cross
represents the center of mass of the population activity

-5

Notice that the encoded spatial position p is near, but
not necessarily identical to, the true location s of the
robot. The approximation p = s is good for large neural
populations covering the environment densely and
uniformly (Salinas and Abbott 1994). In Fig. 7 the
center of mass (10) coding for the robot’s location is
represented by the white cross.

Note that the place field center x; has been made
explicit for interpreting and monitoring purposes only.
Associated with each place cell i is a vector x; that rep-
resents the estimated location of the robot (based on
dead-reckoning) when it creates the cell i. While the
vector X; is used in (10) for the interpretation of the
population activity, knowledge of x; is not necessary for
navigation, as discussed later in Sect. 3.

(10)

2.4 Exploration and path integrator calibration

The robot moves in discrete time steps Az that determine
the frequency at which it senses the world, interprets
sensory inputs, and takes an action. Experiments on rats
show that, during motion, hippocampal processing is
timed by a sinusoidal EEG signal of 7-12 Hz, namely
the theta rhythm. The activity of hippocampal cells is
correlated to the phase of theta (O’Keefe and Recce
1993). We assume that each time step At corresponds to
one theta cycle of approximately 0.1 s; thus place cell
activity is updated with a frequency of 10 Hz (the real
movement of the robot is, of course, slower than this).

The robot uses a simple active-exploration technique
that helps to cover the environment uniformly. At each
time step, it chooses its new direction of motion based
on the activity in the CA3-CA1 layer. If a relatively large
number of neurons are currently active, it means that a
well-known region of the environment is being visited.
Then, a small directional change, A¢,, will increase the
probability of leaving that area. Conversely, a large
variability of the robot’s direction, A¢,, is associated to
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low CA3-CAl place cell activity, which results in a
thorough exploration of that region. In our experiments
A¢, and A¢; are randomly drawn from [—5,+5] and
[—60, 4+60], respectively.

Path integration is vulnerable to cumulative errors in
both biological and robotics systems (Etienne et al.
1998). As a consequence, to maintain the allothetic and
idiothetic representations consistent over time, we need
to bound dead-reckoning errors by occasionally reset-
ting the path integrator. Visual information may be used
to accomplish this aim (McNaughton et al. 1996).

The robot adopts an exploration strategy that emu-
lates the exploratory behavior of animals (Collett and
Zeil 1998; Etienne et al. 1998). It starts from an initial
location (e.g., the nest) and, as exploration proceeds, it
creates new place cells. At the very beginning, explora-
tion consists of short return trips (e.g., narrow loops)
that are centered in the nest and directed towards the
principal radial directions (e.g., north, north-east, east,
etc.). This overall behavior relies on the head-direction
system and allows the robot to explore the space around
the nest exhaustively. Afterwards, the robot switches to
a more open-field exploration strategy. It starts moving
in a random direction and it uses the above active-ex-
ploration technique to update its direction at each time
step. After a while, the robot ‘““feels” the need to re-
calibrate its path integrator. We do not propose a spe-
cific uncertainty model for the dead-reckoning system.
We simply assume that the “need of calibration” grows
monotonically as some function n(¢) of time ¢. When,
after a time 7., n(¢) overcomes a fixed threshold ng,, the
robot stops creating place cells and starts following the
homing vector (Collett and Zeil 1998; Etienne et al.
1998) to return towards the nest location. As soon as the
robot finds a previously visited location (not necessarily
the nest location), it tries to use the learned allothetic
spatial representation to localize itself.

We take the visually driven activity of sEC cells as the
signal for the calibrating process. Let p,.. be the center
of mass of the sEC cell activity and let ¢ be the variance
of the activity around it. To evaluate the reliability of the
sEC cell activity, we consider a fixed variance threshold
2. If ¢ is smaller than X, then the spatial location py. is
suitable for re-calibrating the robot (Fig. 8). More pre-
cisely, we define a weight coefficient

{ 1-2 o6<2X
o = p) .
0 otherwise

(11)

and then we use it to compute the calibrated robot
position p*

p* :apsec+(1_a)pdr (12)

where py. is the position estimated by the dead-
reckoning system. Equation (12) is an algorithmic
implementation. In the future, we would like to imple-
ment odometry calibration by applying associative
learning to correlate the sEC cell activity to the PI cell
activity.

Once the robot has calibrated itself, exploration is
resumed and it starts creating new place cells. This
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Fig. 9. Uncalibrated dead-reckoning error (curve a) versus calibrated
robot positioning using sEC cell activity (curve b)

technique allows the robot to explore the environment
by keeping the dead-reckoning error within a bounded
range. Figure 9 shows calibrated versus uncalibrated
path-integrator error during an exploration session of
about 350 time steps.

Even though this case has never occurred in our ex-
periments, during the homing behavior the robot might
reach the nest without having re-calibrated its path in-
tegration (i.e., without having found a location where
sEC activity is suitable to calibrate odometry). In this
case, the robot resorts to a spiral searching behavior
centered around the nest location. As soon as it finds a
calibration location, the open-field exploring behavior is
resumed.

3 Spatial behavior: learning navigation maps

The above hippocampal model allows the robot to self-
localize itself within its environment (Fig. 7). To provide
a cognitive support for spatial behavior, place cell
activity has to be used to guide navigation. We derive
navigational maps by applying reinforcement learning
(Sutton and Barto 1998) to map CA3-CAl ensemble
activity into goal-oriented behavior. The navigation part

has not been implemented on the robot yet but has been
done in simulation.

3.1 Reinforcement learning in continuous space

The nucleus accumbens has been thought to play an
important role in reward-based spatial learning (Brown
and Sharp 1995; Redish 1997). It receives place coding
information from the hippocampal formation (via the
fornix) as well as rewarding stimulation from dopamin-
ergic neurons (via the VTA) (Redish 1997).

We consider a population of action cells in the nu-
cleus accumbens whose activity provides directional
motor commands (Brown and Sharp 1995). For each
type of target (e.g., food or water), four action cells
(coding for north, south, west, and east allocentric ac-
tions) are driven by the population of CA3-CAl place
cells (Burgess et al. 1994). Synapses from hippocampal
place cells to action cells are modified to learn the con-
tinuous location-to-action mapping function in goal-di-
rected tasks. LTP occurs to associate spatial locations to
rewarding actions, otherwise LTD takes place (Fig. 10).

Learning an action-value function over a continuous
location space endows the system with spatial general-
ization capabilities. Thus, the robot may be able to as-
sociate appropriate actions to spatial positions that it
has never seen before. Overlapping localized place fields
in the CA3-CAl layer provide a natural set of basis
functions that can be used to learn such a mapping
function.

Let s be the robot’s location (state), and let a be
an action cell in the nucleus accumbens, with
a € o/ := {north, south, west, east}. Let us denote the
activation of a CA3-CAl place cell i by »;, and the
activity of an action cell a by r,. A robot position s is
encoded by the place cell activity r(s) = [ri(s),
72(8),...,r(s)], where n is the number of CA3-CAl
place cells. Let w* = (w?, . ,wz) be the synaptic pro-
jections from hippocampal place cells to the action cell a
(Fig. 10). The activity r, depends linearly on the robot’s
position s and on the synaptic weights w*:

Tharth Taouth wwest Teas

LN . ? ® _ . Action Cells in

il MNucleus Accurnbens

w'

CA3I-CA|

Place Cells

e 8 0 e P P ere

2 A e WS B Environment
Place Field a0 s =5 7

Fig. 10. CA3-CAl place cells project to action cells (four for each
target type) in the nucleus accumbens. Reinforcement learning is used
to find the function that maps continuous spatial locations to
locomotor actions



r(s) = (0)r(s) = > win(s) (13)

The learning task consists of updating w? to approxi-
mate the optimal goal-oriented function that maps states
s into action cell activity r,(s). To do this, we use the
linear gradient-descent version of Watkins’ Q-learning
algorithm (Sutton and Barto 1998). Given a robot
position s, we interpret the neural activity r,(s) as the
“expected gain” when taking action « at location s of the
environment.

During training, the robot behaves either to consoli-
date goal-directed paths (exploitation) or to find novel
routes (exploration). This exploitation-exploration
trade-off is determined by an e-greedy action selection
policy, with 0 < e < 1 (Sutton and Barto 1998). At each
time ¢, the robot takes the “optimal” action a; with
probability 1 — e (exploitation)
a; = arg maxr,(s) (14)

a
or, it might resort to uniform random action selection
with probability equal to e (exploration). At each time
step At, the synaptic efficacy of projections w* changes
according to (Sutton and Barto 1998)

Aw? = OC(S; €

(15)
The terms in (15) have the following interpretation:

1. The factor o, 0 < « < 1, is a constant learning rate.
2. The term 9, is the prediction error defined by

(16)

where R, is the actual reward delivered by an in-
ternal brain signal, and y, 0 <y <1, is a constant
discount factor. The temporal difference J, estimates
the error between the expected and the actual reward
when, given the location s at time ¢z, the robot takes
action a and reaches location s’ at time ¢ + 1. Training
trials allow the robot to minimize this error signal.
Thus, asymptotically 6, ~ 0, which means that, given
a state-action pair, the deviation between predicted
and actual rewards tends to zero.
Neuro-physiological data show that the activity of
dopamine neurons in mammalian midbrain encodes
the difference between expected and actual occurrence
of reward stimuli (Schultz et al. 1997). In particular,
the more reliably a reward is predicted, the more si-
lent a dopaminergic neuron. Thus, the temporal dif-
ference error o, used to update our synaptic weights
w? may be thought of as a dopamine-like teaching
signal.

3. During training paths, (15) allows the robot to
memorize action sequences. Since recently taken ac-
tions are more relevant than earlier ones, we need a
memory trace mechanism to weight actions as a
function of their occurrence time. The vector e,
called eligibility trace, provides such a mechanism
(Sutton and Barto 1998). The update of the eligibility
trace depends on whether the robot selects an ex-

Or = Repr 4y maxra(se1) = ra(s:)
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ploratory or an exploiting action. Specifically, the
vector e, changes according to

e = r(st) + {V/Letl if eXplOltlng (17)

0 if exploring

where 4, 0 < A<1, is a trace-decay parameter
(Sutton and Barto 1998), and r(s;) is the CA3-CAl
vector activity. We start with ey = 0.

3.2 Behavioral experiments

Given the experimental setup shown in Fig. 6, we define
a specific target region (e.g., a feeding location) within
the environment. We apply the above reward-based
learning scheme to build up a navigational strategy
leading the robot towards the target from any location,
while avoiding obstacles. In this work, we do not address
the problem of consolidating and recalling hippocampal
representations (Redish 1997). We simply assume that
entering a familiar environment results in recalling the
hippocampal chart associated with this environment
(McNaughton et al. 1996). To study robot behavior, we
adopt the same protocol as employed by neuro-etholo-
gists with rats (Redish 1997). Navigational maps are
learned through a training session consisting of a
sequence of trials. Each trial begins at a random
location and ends when the robot reaches the target.
At the beginning of each trial the robot retrieves its
starting location on the hippocampal chart based on the
allothetic (visually driven) representation (Sect. 2.2.2)
(McNaughton et al. 1996; McNaughton 1989).

During learning we consider a discrete set of four
actions .o/ = {north, south, west, east}. However, after
learning, population vector coding is applied to map .o/
into a continuous action space ./’ by averaging the
ensemble action cell activjty. Given a position s of the
robot, the action a'(s) ﬁcosqﬁ is a direction in the en-

. sing ) | .
vironment encoded by the acCtion cell activity in the
nucleus accumbens

> acy Aa(S)
> acs Ta(S)
1

where a, = (1), a; = (), aw = (). and a. = (}) are
the four principal directions. Equation 18 results in
smooth trajectories.

The experiments have been carried out with a learn-
ing rate o = 0.1, a discount factor y = 1.0, and a decay
factor 4 =10.9. The reward-signal function R(s) is
defined by

d(s) = (18)

1 if s = target state
R(s) =< —0.5 if s = collision state (19)
0 otherwise

where collision means contact with walls or obstacles.
We adopt a dynamically changing e-probability. The
idea is to increase the probability of exploring novel
routes as the time to reach the target increases. The e
parameter is defined by the exponential function



a b

Fig. 11. a A two-dimensional view of the environment with a feeder
location (dark grey square), and two obstacles (white rectangles), and
an example of robot trajectory induced by the action cell activity after
learning. b Vector field representation of the learned navigational map

k
e(t) = exp(f1) + ki (20)
ky
where f§ = 0.068, k; = 100, and &, = 1000, and where
t=20,1,2,... are discrete time steps. If we consider the

dynamic of € over a time window of 100 time steps, at
t = 0 the robot behaves according to a value € = 0.101
(i.e., enhancing exploitation), and at # = 100 it behaves
according to a value ¢ = 1.0 (i.e., enhancing explora-
tion). If at the end of the time, ¢t = 100, the target is not
reached yet, exploration is further enhanced by keeping
a fixed e=1.0 for another 100 time steps. Then,
exploitation is resumed by setting 1 = 0 and ¢ = 0.101.
Moreover, every time the target is reached the time
window 1is re-initialized as well, and € is set equal to
0.101. These are heuristic methods to ensure a sufficient
amount of exploration.

3.2.1 Experiment with a single target type (e.g.,
food). Figure 11a shows a two-dimensional view of the
arena of Fig. 6a. White objects are obstacles. Only
infrared sensors can detect obstacles, which are trans-
parent with respect to the vision system. Since obstacles
are not visible and have been added after learning, the
place fields in the model are not affected. The dark
square represents the feeder location. The target area is
about 2.5 times the area occupied by the robot (grey
circle). In Fig. 11b we show the navigational map
learned by the robot in about 920 time steps, which
correspond to 50 trials from random starting positions
to the target. The vector field representation of
Fig. 11b has been obtained by rastering uniformly over
the whole environment. Dots represent sampled posi-
tions and pointers indicate the direction calculated
from (18) at each position. Finally, the solid line shown
in Fig. 11a is an example of a robot trajectory from a
novel starting location using the learned navigational
map.

3.2.2 Moving the learned target. This experiment con-
sists of changing the location of a previously learned
target and allowing the robot to adapt its navigational
behavior consequently. The idea is to endow the system
with an internal reward-expectation mechanism.

R d Reward
S Expectation
T Cell
Wi
o e 0ee0®e (VA

Fig. 12. a The internal reward-expectation mechanism. The activity of
cell d depends on the CA3-CA1 place cell activity and on the external
reward signal R. b The arena and the previously learned target (dark
square), which has been moved to a new location. Solid lines represent
trajectories of the robot searching for the previously learned food
location. ¢ The re-adapted navigational map corresponding to the new
rewarding location

During training trials, the robot learns to correlate
the CA3-CAT1 place cell activity to the positive reward
signal, R = 1, which it receives at the food location. This
is achieved by considering a neuron d, which we call the
reward-expectation cell, one synapse downstream from
the place cell layer (Fig. 12a). Let i be an index over the
CA3-CAL1 cell population. Connections wy from place
cells to the reward-predicting cell are inhibitory synapses
and are initialized to random values within the interval
[—0.1,0]. The cell d receives as input the external re-
warding stimulus R as well. The activity r; of cell d is
non-linear and it is defined by

. f(Z[Wdiri)+R lfRZO
fa = { 0 otherwise (21)
where f(x) =tanh(x). Thus, the activity of cell d
depends on both the external reward R and the CA3-
CAI network activity.

To learn the desired correlation between the event
“positive reward” and the place cell activity, we apply
Hebbian learning and modify the inhibitory weights wy;
by an amount

Awg = rirg(wg — 1) (22)

The more correlated the activity 7,74, the more inhibitory
the synapses wy;.

As a consequence, before correlating the external re-
ward signal with internal spatial representation, cell d
responds maximally when the robot receives a positive
R = 1. Indeed, since weights wy; are initially close to
zero, the activity r; =& R = 1 (according to Eq. 21). As



training proceeds, the robot starts predicting the exter-
nal stimulus R by learning synapses w,;. Then, every time
the robot is near the target location, the cell d receives a
strong inhibitory input ) |, wz7; that compensates for the
excitatory reward R. Thus, when R is fully predicted,
even if the robot receives the R =1 signal the cell d
remains silent. On the other hand, if the fully predicted
reward signal fails to occur (i.e., the learned target has
been moved away), the activity of cell d is strongly de-
pressed (r; =~ —1), and an internal negative reward is
generated. When the number of collected negative in-
ternal rewards exceeds a fixed threshold D (e.g., D = 10),
the robot ““forgets” the previous target location and
starts looking for a new goal. Figure 12b shows the same
environment of Fig. 11a where the previously learned
target has been moved to another location. The robot is
attracted by the previous feeder position and it accu-
mulates internal negative rewards. Figure 12¢ presents
the navigational map re-adapted to the new food loca-
tion.

Our reward-expectation cell d finds its neuro-physi-
ological counterpart in dopaminergic neurons observed
in mammalian midbrain. The response of these neurons
is a function of the unpredictability of incoming stimuli
(Schultz et al. 1997). In particular, they respond posi-
tively to external rewards that occur unpredictably. In-
stead, they remain silent if a fully predicted stimulus
arrives. By contrast, when a fully expected reward fails
to occur, dopamine neurons respond negatively exactly
at the time at which the reward is expected (Schultz et al.
1997). Instead of (21), we could have also used the
prediction error 9, defined in (16) to monitor an unex-
pected target location.

3.2.3 Experiment with multiple target types (e.g., food
and water). The reward-based learning scheme de-
scribed in Sect. 3.1, Fig. 10, can also be applied to
multiple target types. Let T ={T},...,7,} be a set of
distinct target types (e.g., 71 could be a food location, 7,
a water location, etc.). For each given target 7; we
consider a set of location-to-action mapping functions
rli(s), and a set of synaptic weights w*’. We also
consider distinct rewarding signals R = {RT1| ... R},
Then, we adopt the above Q-learning algorithm to
approximate the r%i(s) functions.

In this experiment we consider two distinct types of
rewarding stimulations, 7} (food) and 75> (water). Fig-
ure 13a shows the two target locations (left and right
bottom squares) within the environment. The learning
session starts by focusing on the feeder location 7;. Thus
the primary task for the robot is to approximate the
rIi(s) functions. The navigational map learned during
about 1,300 time steps is shown in Fig. 13b.

Notice that when searching for food it might hap-
pen that the robot encounters the water location and
receives a positive reward signal with respect to 75,
R =1. This information can be exploited by the
robot by adjusting w” weights. That is, even if T» is
not the current target, the robot can partially learn a
navigational map leading to it. Figure 13¢ shows the
knowledge about the water location 7> acquired by

Fig. 13. a The arena with two distinct target types, T} (e.g., food) and
T, (e.g., water). The white rectangle is an obstacle. b The navigation
map corresponding to the food rewarding location T;. ¢ The partial
navigation map corresponding to the water location 75 learned by the
robot when focusing on food 7j. d The final map acquired by the
robot when focusing on water 7>

the robot while learning the optimal policy to reach
the food T;. Thus, when the robot decides to focus on
the water target (i.e., to approximate the r2(s) action
cell activity), it does not start from zero knowledge.
This results in a shorter learning time for 75 and
accelerates the robot’s progress. Figure 13d presents
the navigational map learned by the robot after about
440 time steps when looking for water.

4 Discussion

We have presented a computational model of the
hippocampus to study its role in spatial cognition and
navigation. Even though it relies on neuro-physiological
experimental data, the proposed neural architecture is
highly simplified with respect to biological hippocampal
circuitry.

In particular, we have stressed the importance of in-
tegrating external and internal stimuli to drive place cell
activity in CA3-CA1 regions (Quirk et al. 1990; Redish
and Touretzky 1997). An allothetic vision-based repre-
sentation is formed in a model of the superficial en-
torhinal cortex. Spatial properties of the environment
are extracted from visual inputs to characterize distinct
regions of the environment by combinations of visual
cues. On the other hand, an idiothetic representation
takes place in our model of the medial entorhinal cortex,
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integrating the internal movement-related information
provided by proprioception. Allothetic and idiothetic
representations converge onto CA3-CAl areas of the
hippocampus and form a rather stable place fields rep-
resentation. Allothetic and idiothetic charts are corre-
lated by associative learning. This induces a mutual
benefit in the sense that path integration may disambi-
guate visual singularities (Duckett and Nehmzow 1998)
and, conversely, visual information may be used for
resetting the path integration (McNaughton et al. 1996).
This process is done on-line during the development of
the hippocampal space representation (i.e., exploration).
A threshold mechanism is used to evaluate the reliability
of the visual input being used for dead-reckoning cali-
bration.

Unsupervised Hebbian learning is applied to build
the neural system incrementally and on-line. Redun-
dancy in the place cell activity is considered as a
crucial property to yield robustness. After learning,
the model has developed a spatial representation
consisting of a large population of overlapping place
fields covering the environment uniformly and
densely. To interpret the ensemble place cell activity
as spatial locations we apply population vector cod-
ing (Georgopoulos etal. 1986; Wilson and
McNaughton 1993).

The hippocampus projects to the nucleus accum-
bens, a subcortical structure involved in spatial be-
havior (Brown and Sharp 1995; Redish 1997). We
consider a population of locomotor action neurons
(Burgess et al. 1994) in the nucleus accumbens and we
apply reward-based learning to adjust synapses from
CA3-CAl cells to action cells (Brown and Sharp
1995). For a given target location, this results in
learning a mapping function from the continuous
space of physical locations to the activity space of
action cells. This allows us to accomplish goal-oriented
navigation based on the neural activity in the nucleus
accumbens. Navigation maps are derived by inter-
preting the ensemble action cell activity by means of
population coding (Burgess et al. 1994). Note, how-
ever, that while population vector decoding allows us
an interpretation of the place cell activity, this inter-
pretation is not necessary for action learning by re-
inforcement: for Q-learning, place cells are simply a
set of basis functions in the high-dimensional input
space. Burgess et al. (1994) have previously postulated
a goal-memory system consisting of a population of
goal cells (GC) driven by hippocampal place cells. The
goal cell activity encodes the animal’s position with
respect to the goal (i.e., north, east, south, west). In
his model, however, only the activity of hippocampal
cells whose place field contains the target is correlated
to the GC activity by Hebbian learning. This results in
GC of limited attraction radius, which impairs the
animal’s navigation at large distances from the target
and does not allow for detours around obstacles. In
addition, Burgess et al. (1994) do not propose any
re-learning mechanism to cope with targets whose lo-
cation might change.

A robotic platform has been used to validate our
computational model in real task-environment contexts.
There is, of course, a whole body of work on robot
navigation with neural networks (e.g., del R. Millan
1996; Duckett and Nehmzow 1998; Pfeifer and Scheier
1999), but only a few authors have previously imple-
mented hippocampal models on real robots (Burgess
et al. 1994; Gaussier et al. 1997; Mallot et al. 1997).
Understanding the underlying mechanisms of hippo-
campal place cell activity offers the attractive prospect of
developing control algorithms that directly emulate
mammalian navigational abilities. On the other hand,
the simplicity and the transparency of artificial agents
make them suitable for studying and understanding
neuro-physiological processes.

In the future, data analysis will be focused on the
dynamics of the robot behavior using the same meth-
odology as employed by ethologists for living animals.
In particular, we will evaluate our hippocampal model
through experiments concerning environment manipu-
lations (e.g., shrinking and stretching the arena, chang-
ing light conditions). We are interested in studying the
potential conflicts that might occur between allothetic
and idiothetic information (Etienne et al. 1998), and in
modeling the mutual relationships between path inte-
gration and visual stimuli. For example, a system that is
dominated by vision-based information will show stret-
ched place fields in a stretched environment, whereas a
system that mainly relies on path integration will not.
Hopefully, a systematic study of these effects will allow
us to make neuro-ethological predictions concerning
animals trained in controlled environments (Etienne
et al. 1998).
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