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THE SIGN OF THE PRINCIPAL COEFFICIENT
IN THE PARABOLIC EQUATION

In the main text considerations were restricted to bi-
naries comprised by individual black holes with speeds,
displacements and spins aligned parallel to the x, y and
z-axis, respectively (as indicated on Fig. 1) [1]. Foliating
then Σ by z = const level surfaces, and determining the
function

⋆
K by making use of (14) by a direct calculation

⋆
K can be seen to have the form

⋆
K = −z ·

+
K , (SM.1)

where
+
K is a strictly positive function. It is also follows

from the pertinent form of (3) that the sign of
⋆
K deter-

mines whether the parabolic-hyperbolic system evolves in
the positive or negative z-direction. Indeed, the coupled
system is known to propagate aligned (∂z)

i for positive
⋆
K, while anti-aligned for negative

⋆
K.

FIG. SMF.1. (color online).
⋆

K = const level surfaces are depicted
in the x < 0 half of the cube with edges 2A = 100. The parameters
of the relevant binary are: M [1]

= 1, d [1]
= 20, v [1]

= 0.5, a[1] = 0.6

and M [2]
= 2, d [2]

= −10, v [2]
= −0.25, a[2] = −0.8. The positive

and negative
⋆

K = const level surfaces are well separated by the

z = 0 plane that also coincides with
⋆

K = 0 level surface.

As an immediate consequence of (SM.1) we have that
⋆
K is positive everywhere below the z = 0 plane while
it is negative above that plane. This assertion is also

supported by Fig. SMF.1, where
⋆
K = const level surfaces

are plotted for a specific choice of physical parameters.

Notable, the absolute value of
⋆
K is increased the

⋆
K =

const level surfaces are more and more concentrated on
smaller and smaller neighborhoods of the (point-like or
ring-like) singularities that, for the considered class of
binaries, are confined to the z = 0 plane.

ON THE EXISTENCE OF UNIQUE C
2

SOLUTIONS ON THE CLOSURE OF THE
UNION OF Σ

+ AND Σ
−

As discussed in the main text, for the considered
class of binary black hole configurations the parabolic-
hyperbolic system (3)-(5) has to be solved as an initial-
boundary value problem on the disjoint domains, Σ+

and Σ−, located above and below the z = 0 plane.
Though the corresponding initial-boundary value prob-
lem is known to be well-posed locally [8] to verify that
(at least) C2 solutions exist on the closure of the union
of Σ+ and Σ− the followings have to be guaranteed:

(i) First, it has to be shown that solutions to the con-
sidered initial-boundary value problem exist on the
closure of Σ+ and Σ−, separately. This means that,
for the specific choice of the initial-boundary val-
ues, fields N̂ , ki and K

l
l exist (apart from singu-

larities that, in the present case, are confined to
the z = 0 plane) on disjoint domains comprised
by z = const level surfaces with 0 < z ≤ A or
−A ≤ z < 0, where A > 0, such that they also
satisfy the parabolic-hyperbolic system (3)-(5).

(ii) Second, it has also to be verified that the fields N̂ ,
ki and K

l
l, and at least their first two z-derivatives

match through the z = 0 plane. More specifically,
to guarantee the existence of at least C2 solutions
the constrained fields, along with their derivatives,
have to possess well-defined values (apart from sin-
gularities) in the z → 0 limit.

Verifying point (i)

The proof of the existence of global solutions to the
parabolic-hyperbolic system is centered on iterations. It
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is proved that solutions to the separated parabolic and
hyperbolic equations consistently determine a sequence
that, via a contraction mapping argument, converge to
a fixed point of the iteration that gives then a global
solution to the coupled parabolic-hyperbolic system.

In carrying out the indicated iteration process the
initial-boundary data for the constrained fields N̂ , ki

and K
l
l will be held fixed, as determined by (14). In

each iterative step first we solve the parabolic equation
(3), as an initial boundary value problem, for N̂ by re-
placing the variables ki and K

l
l by the solution of the

hyperbolic system (4)-(5) yielded by the previous level
of iteration, with the exception of the initial step where
they are replaced by ki and K

l
l derived from (14). The

iterative steps are completed by solving the hyperbolic
system (4)-(5), as an initial boundary value problem, for

ki and K
l
l with insertion of the solution N̂ just received

into (4)-(5).

The entire iteration process relays heavily on the global
existence of solutions to the initial boundary value prob-
lem of the Bernoulli type parabolic equation (3) with
given globally defined variables ki and K

l
l on Σ+ or Σ−,

respectively. To overcome the main technical difficulties
in solving (3) we generalize and extend known results
concerning the Bernoulli type parabolic equations cov-
ered by [2, 12] (see also [10]). In particular, it will be
argued below that (3) can be put into the form where
not only the existence of unique solutions for all positive
or negative z may be proven but, in addition, in the z → 0
limit (apart from singularities) N̂ ≡ 1 can be derived.

In doing so it is rewarding to introduce instead of z a
new independent variable ζ given as

ζ = z−1 . (SM.2)

This allows us to put (3), for the dependent variable

N

̂
(x, y, ζ) = N̂(x, y, z(ζ)), into the form of (4) in [12],

to which—by making use of results covered in [10]—the
desired global existence and uniqueness, and also suitable
asymptotic behavior results of [2, 12] can be applied.

To see this note that by applying the Leibnitz rule
∂zN̂ = ∂zζ · ∂ζN

̂
, along with (SM.2), we get −z · ∂zN̂ =

ζ · ∂ζN

̂
. It follows then from (SM.1) and from the latter

relation that the first term on the left hand side of (3)
can be written as

⋆
K · ∂zN̂ =

+
K · [−z · ∂zN̂ ] =

+
K · ζ · ∂ζN

̂
, (SM.3)

where
+
K is the strictly positive function in (SM.1).

Not also that as a result of the replacement (SM.2)
the second term on the left hand side of (3) picks up
only a factor z, or rather ζ−1, which tends to zero while
approaching the z = 0 plane.

Taking all the above observations into account and
by dividing the yielded equation by the strictly positive

function
+
K it is straightforward to verify that (3) indeed

takes the form of the Bernoulli type parabolic equation to
which existence and uniqueness of global solutions could
be deduced in [2, 12]. Note, however, that there are two
important additional technical issues to be handled here.

First, the z = const level surfaces possess non-empty
spatial boundary. This difficulty can be treated by ap-
plying results covered in [10] that allow to generalize
and extend global existence and uniqueness results of
[2, 12] to the case of level surfaces with spatial bound-

ary. The second issue is that
+
K, along with |A| and |B|,

tends to +∞ while approaching the singularities. This
means that suitable lower bounds of coefficient of the
two-dimensional Laplace operator, and upper bounds to
the coefficients |A|/

+
K and |B|/

+
K can only be given in the

complement of small neighborhoods of the singularities.
As these singularities are either pointlike or ringlike, and
they are confined to the z = 0 plane, boundedness of var-
ious expressions can be guaranteed in the complement of
sufficiently small ball-like or toroidal-like neighborhoods
of these singularities. As (14) is known to become ex-
tremely good approximation of a solution to Einstein’s
equations while approaching either of the singularities at
the boundaries yielded by the removal of the above men-
tioned sufficiently small ball-like or toroidal-like neigh-
borhoods the fields N̂ , ki and K

l
l derived from (14) are

suitable to be used as boundary data there. In order
to get a solution on both Σ+ and Σ− a shrinking se-
quence of neighborhoods and a sequence of solutions have
to be applied in verifying that the substitution z → ζ
replaces the z → 0 limiting behavior of N̂(x, y, z) by
the investigation of the ζ → ∞ asymptotic behavior of
N

̂
(x, y, ζ) = N̂(x, y, z(ζ)).

This, along with the use of a variant of (3), relevant for

the auxiliary variable m = r/2 (1 − N̂2), allows suitable
generalization and extension of the asymptotic behavior
results in [2, 12] that can be used to conclude that in the

z → 0 limit (apart from singularities) N̂ ≡ 1.

Note that the global existence of solutions to the ini-
tial boundary value problem in solving the hyperbolic
system (4)-(5) with a given globally defined function N̂
is much more straightforward. In this case one may refer
to the fact that the first order hyperbolic system (4)-
(5) is linear in the variables ki and K

l
l that allows the

use of energy estimate methods, and in turn, to show
that, unique smooth global (on Σ+ or Σ−) solutions ex-
ist to the considered initial-boundary value problem (see,
e.g. the argument on pages 198-200 in [5]).

In combining all the above partial results denote
first by ui the globally defined vector valued variable
(N̂ ,ki,K

l
l)
T comprised by globally existing fields yielded

in the i
th iterative step. These solutions ui can be seen

to belong to some Banach space B. Denote by T the
map T : B → B relating the succeeding elements of the
sequence {ui} as ui+1 = T (ui). If T is contracting then
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the sequence {ui} converges, i.e. it is a Cauchy sequence
in B. In this case u

∗ = limi→∞ ui is a fixed point of T ,
i.e. u∗ = T (u∗). This means that u

∗ possesses the same
smoothness properties as elements of the sequence {ui} in
B, and that it is also a solution to the couple parabolic-
hyperbolic system (3)-(5). Recall that the contraction
property can be demonstrated by using sufficiently small
domains. Therefore, as the initial-boundary value prob-
lem in case of the considered parabolic-hyperbolic system
(3)-(5) is locally well-posed [8] the contraction property
of the above defined map T follows.

Verifying point (ii)

Concerning the matching of fields and their derivatives
raised in point (ii) above, recall first that there is a sig-
nificant simplification ensured by the specific choice we
made for binary black hole systems—by requiting the
speeds, displacements and spins aligned parallel to the
x, y and z-axis, respectively—, and also by the choice we
made for the freely specifiable part of data by applying
(14). Indeed, for the considered class of binary black
hole configurations, the auxiliary metric (14) possesses a
z → −z reflection symmetry. This, in particular, guar-
antees that the physical fields hij and Kij satisfying the
constraint equations (1) and (2), along with their even
derivatives, will match at z = 0. Most importantly, us-
ing this symmetry all the scalar expressions derived from
hij and Kij , including N̂ and K

l
l, along with their even

derivatives, match at z = 0. Similarly, vector variables
such as N̂ i and ki, deduced from hij and Kij , do vanish

at z = 0 as they are odd in n̂i = N̂ (dz)i. This guaranties

then that the vector variables N̂ i and ki do match at the
z = 0 plane.

Accordingly, in order to show that (apart from singu-
larities that are confined to the z = 0 plane) at least C2

solutions exist the matching of the first z-derivatives of
N̂ , ki and K

l
l, along with the matching of the second

z-derivative of ki, on Σ has to be verified.

In doing so we shall apply what has been verified in
the proof of part (i) concerning the functional behavior

of N̂ , namely that (apart from singularities) N̂ ≡ 1 at

the z = 0 plane. Note also that the fields N̂ i,κ,
◦

Kij—
determined by (14)—vanish identically at z = 0. These
latter two observations imply that the Lie derivatives Ln̂

in (4) and (5) can be replaced by ∂z , and also that it
suffices to evaluate the second terms in (4) and (5) to
determine the z-derivative of ki and K

l
l, respectively, in

the z → 0 limit.

Then (5), along with the vanishing of ki at z = 0, gives
that ∂zK

l
l = 0 there, whereas from (4) ∂zki = 1

2∂iK
l
l

follows, in the z → 0 limit. Since K
l
l, as a scalar, is an

even function in z the derivative ∂zki is well-defined at
z = 0. An analogous argument gives then that ∂2

zki =

1
2∂i(∂zK

l
l) which, along with the vanishing of ∂zK

l
l at

z = 0, verifies that ∂2
zki = 0 also holds there. Finally,

by taking into account that
⋆
K is an odd function in z,

whereas all the terms on the right hand side of (3) are
of even parity functions in z, we get, in virtue of the
vanishing of N̂ i, in the z → 0 limit, that ∂zN̂ must also
vanish in approaching the z = 0 plane which completes
the proof that the considered solutions have indeed to
be at least C2. (The detailed proof will be published
elsewhere.)

GLOBAL ADM CHARGES

It is remarkable that the new proposal provides a con-
trol on the full set of global ADM charges. Indeed, the
ADM mass, center of mass, the linear and angular mo-
menta can be given in terms of the input parameters of
the construction.

To see this note first that though the superposed Kerr-
Schild metric (14) does not satisfy Einstein’s equations
it is an asymptotically flat metric, and also it was con-
structed by adding contributions of individual black hole
metrics to a Minkowski metric. As the ADM quantities
are linear in deviation from flat Euclidean space at in-
finity we get then, by the superposition principle, that
the global ADM mass, centre of mass, linear and angu-
lar momenta of the auxiliary system are determined by
the rest masses, velocities, spins and displacements of the
individual black holes. In particular, the relations

M
ADM

= γ[1]M [1] + γ[2]M [2] (SM.4)

M
ADM~d

ADM

= γ[1]M [1]~d [1] + γ[2]M [2]~d [2] (SM.5)

~P
ADM

= γ[1]M [1]~v [1] + γ[2]M [2]~v [2] (SM.6)

~J
ADM

= γ[1]
{
M [1]~d [1]× ~v [1] +M [1]a[1]~s

[1]
◦

}

+ γ[2]
{
M [2]~d [2]× ~v [2] +M [2]a[2]~s

[2]
◦

}

(SM.7)

hold, where ~d [n], ~v [n] and a[n]~s
[n]
◦ denote the centre of

mass, speed and spin of the individual black holes.

Consider now a solution to the parabolic-hyperbolic
system (3)–(5) with free data chosen as dictated by the
superposed Kerr-Schild metric (14), and with initial and
boundary data that is chosen at “infinity”, in accordance
with the asymptotic behavior of (14). This solution
is asymptotically flat in the sense that, beside the free
data N̂ i, γ̂ij ,κ,

◦

Kij , the constrained fields N̂ , ki and K
l
l

are also guaranteed to fall off sufficiently fast, and that
the associated fields hij and Kij do satisfy the Regge-
Teitelboim parity conditions which guarantee then that
well-defined ADM quantities exists for this solution like-
wise they exist for (14).
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It is of obvious interest to know then what is the rela-
tion between ADM quantities relevant for the true phys-
ical solution and for the auxiliary metric. This is the
second point where the choice we made for the free data
provides considerable payback. Indeed, as the leading
order behavior of the constrained fields N̂ , ki and K

l
l

and that of the corresponding auxiliary fields concur it
can be verified (for more details see [11]) that the two
sets of ADM quantities are also pairwise equal to each
other. This verifies then that the ADM mass, centre of
mass, linear and angular momenta of the true physical
solution of the constraints can also be given by (SM.4)–
(SM.7) which require the use of the input parameters of
the construction, such as the rest masses, displacements,
speeds and spins of the individual black holes.

It is important to be mentioned here that some of the
other initial data constructions determine at least some
of the ADM quantities. In particular, the proposal of
Bowen and York provides a control on the ADM linear
and angular momenta. Note, however, that it does not
allow any further control on the rest of the ADM quan-
tities as use of the Bowen-York method requires hij to
be conformally flat and the mean curvature to vanish
[3, 4]. It is also somewhat odd that these conditions are
so restrictive that they exclude even the Kerr black hole
solution from the outset [7, 9]. Notably by applying the
gluing techniques [6] one cannot either have a full control
of the ADM quantities apart from the extremal limit de-

manding the black holes to be infinitely separated [6, 11].
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