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Meta-slide: Why do | talk about this?

@ | think it’s interesting

@ Maybe the best chance to get something measurable out
of holography. .. (e.g. you don’t need a heavy ion collider)

@ very fresh

°
Sources: C.P. Herzog: arXiv:0904.1975 [hep-th]

S.A. Hartnoll:  arXiv:0903.3246 [hep-th]
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Outline

@ Quantum criticality
@ Holographic duals for finite T, B, 1 systems

@ Application: transport coefficients (conductivities and
Nernst effect)

@ Holographic superconductors

@ Conclusions: potential and limitations of the AdS/CFT
approach
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Why condensed matter?

@ strongly correlated (e~ -)systems; quantum criticality
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(weakly coupled qg.particles, classical order parameter)
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Why condensed matter?

@ strongly correlated (e~ -)systems; quantum criticality
— traditional approach
(weakly coupled qg.particles, classical order parameter)
does NOT work

@ there are many Hamiltonians!
engineering — experimental AdS/CFT?

@ insights on both sides (“Which one is more fundamental?”)
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Quantum criticality

General definitions
Examples

Quantum criticality

phase transitionat T =0

gN(g_gC) V?
A~ (g—gc)”

At g¢: t A%t

X — AX

@ Natural place to start: scale invariance, lack of g.particles
@ z = 1: Lorentz-invariance and spec. conform trf’'s
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Quantum criticality

General definitions
Examples

Quantum criticality

phase transitionat T =0

gN(g_gC) V?
A~ (g—gc)”

At g¢: t A%t

X — AX

@ Natural place to start: scale invariance, lack of g.particles
@ z = 1: Lorentz-invariance and spec. conform trf’s
@ mostly 2+1 D (layered superconductors)
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Quantum criticality

General definitions
Examples

Phase diagram
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Quantum criticality
General definitions
SETE

Example: Insulating quantum magnet
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Quantum criticality

General definitions
SETE

Example: Insulating quantum magnet
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g — 1: Néel-order, spin waves
g — oo : spin-singlet dimers, triplons
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Quantum criticality

General definitions
Examples

Example: Bose—Hubbard model with integer filling

Hen = —t >4 (b:be + b/Tb’) U2 (n = 1)
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General definitions
Examples

Example: Bose—Hubbard model with integer filling
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U(1) symmetry: b; — e/¢b;
U/t — oo : decoupled sites, < b; >= 0, insulator
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Quantum criticality

General definitions
Examples

Example: Bose—Hubbard model with integer filling

Hen = 155 (blby+ Bb;) + USSimi (ny = 1)
U(1) symmetry: b; — e/¢b;
U/t — oo : decoupled sites, < b; >= 0, insulator
U/t—0: <b;j>#0, superfluid

Classical vortices and wave
oscillations of the condensate

Dilute Boltzmann/Landau
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Quantum criticality

General definitions
Examples

QC in the real world
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Quantum criticality

General definitions
Examples

QC in the real world
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Nonconventional superconductors
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Quantum criticality

General definitions
Examples

QC in the real world
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Nonconventional superconductors
@ heavy fermion metals (Kondo lattice)
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Quantum criticality

General definitions
Examples

QC in the real world
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Nonconventional superconductors
@ heavy fermion metals (Kondo lattice)
@ high T, superconductors (?)
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AdS/CFT Scale invariant case
Finite T, B, p
Ads/CFT recipes

Scale invariant geometry

@ Realize the symmetries of the field theory as geometrical
symmetries

dz‘2 dxidx!  dr?
2
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@ The physics of our strongly coupled field theory in the large
N limit is captured by classical dynamics about this
background metric.
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AdS/CFT Scale invariant case
Finite T, B, p
Ads/CFT recipes

Scale invariant geometry

@ Realize the symmetries of the field theory as geometrical
symmetries

dz‘2 dxidx!  dr?
2

@ The physics of our strongly coupled field theory in the large
N limit is captured by classical dynamics about this
background metric.

@ For z =1 AdS space: more symmetries and solution of

S=55 /dd+1xﬁ<ﬁ+d(dL 1)>
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AdS/CFT Scale invariant case
Finite T, B, p
Ads/CFT recipes

Scale invariant geometry

@ Realize the symmetries of the field theory as geometrical
symmetries

dz‘2 dxidx!  dr?
2

@ The physics of our strongly coupled field theory in the large
N limit is captured by classical dynamics about this
background metric.

@ For z =1 AdS space: more symmetries and solution of
S = 1 /dd—HX /7 R—|— d(d 1)
2x2 L2

@ z # 1 also possible. ..
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AdS/CFT Scale invariant case
Finite T, B,
Ads/CFT recipes

Finite T at equilibrium

@ u, T break dilatation symmetry
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AdS/CFT Scale invariant case
Finite T, B,
Ads/CFT recipes

Finite T at equilibrium

@ u, T break dilatation symmetry
@ for large E scales it is restored
@ energy scale is an extra dimension = Asymptotically AdS!

Schwarzschild—AdS solution

L2

as? = (—f(r)dt2+ ar

2
i gy
1) + dx dx>

-1 (2)

M. Kormos Holography in cond-mat



AdS/CFT Scale invariant case
Finite T, B,
Ads/CFT recipes

Finite T at equilibrium

@ u, T break dilatation symmetry
@ for large E scales it is restored
@ energy scale is an extra dimension = Asymptotically AdS!

Schwarzschild—AdS solution

L2

as? = (—f(r)dt2+ ar

2
i gy
) + dx dx>

-1 (2)

Boundary at r — 0, horizon at r = ry
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Finite T at equilibrium

@ u, T break dilatation symmetry
@ for large E scales it is restored
@ energy scale is an extra dimension = Asymptotically AdS!

Schwarzschild—AdS solution

L2

as? = (—f(r)dt2+ ar

2
i gy
) + dx dx>

-1 (2)

Boundary at r — 0, horizon at r = ry
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AdS/CFT Scale invariant case
Finite T, B,
Ads/CFT recipes

Thermodynamics of the Schwarzschild—AdS black
hole

d

@ temperature: T = 77
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AdS/CFT Scale invariant case
Finite T, B,
Ads/CFT recipes

Thermodynamics of the Schwarzschild—AdS black
hole

o temperature: T = 72—
: P L9t Vg (4m)9L9t d—1
@ Euclidean action: Sg = 2@ T = 5 2gd Vg1 T
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AdS/CFT Scale invariant case
Finite T, B,
Ads/CFT recipes

Thermodynamics of the Schwarzschild—AdS black
hole

o temperature: T = 72—
: P L9t Vg (4m)9L9t d—1
@ Euclidean action: Sg = 2@ T = 5 2gd Vg1 T

o free energy: F = —TlogZ = TSe[g,] = —(4;“2;5:1 Vy_qT9
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AdS/CFT Scale invariant case
Finite T, B,
Ads/CFT recipes

Thermodynamics of the Schwarzschild—AdS black
hole

o temperature: T = 72—
: P L9t Vg (4m)9L9t d—1
@ Euclidean action: Sg = 2@ T = 5 2gd Vg1 T

o free energy: F = —TlogZ = TSe[g,] = SN LCaR VN &

2x2dd
oF 4r)9 91 d—1
@ entropy S = —57 = (zﬁgddq Vg 1T
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AdS/CFT Scale invariant case
Finite T, B,
Ads/CFT recipes

Finite chemical potential and magnetic field

@ Additional structure: global U(1)
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AdS/CFT Scale invariant case
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Ads/CFT recipes

Finite chemical potential and magnetic field

@ Additional structure: global U(1)

@ gauged U(1) in the bulk:
subgroup of large gauge trf’s act non-trivially on the
boundary — gives the global symmetry group for the FT
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AdS/CFT Scale invariant case
Finite T, B,
Ads/CFT recipes

Finite chemical potential and magnetic field

@ Additional structure: global U(1)

@ gauged U(1) in the bulk:
subgroup of large gauge trf’s act non-trivially on the
boundary — gives the global symmetry group for the FT

@ Einstein—Maxwell theory

S:/dd“x\/TQ [22@2 <R+ d(dL2—1)> _412,_-2]

M. Kormos Holography in cond-mat



AdS/CFT Scale invariant case
Finite T, B,
Ads/CFT recipes

Finite chemical potential and magnetic field

@ Additional structure: global U(1)

@ gauged U(1) in the bulk:
subgroup of large gauge trf’s act non-trivially on the
boundary — gives the global symmetry group for the FT

@ Einstein—Maxwell theory

S:/dd“x\/TQ [22@2 <R+ d(dL2—1)> _412,_-2]

for d = 3 consistent truncation of M-theory on AdS; x X’

M. Kormos Holography in cond-mat



AdS/CFT Scale invariant case
Finite T, B,

Ads/CFT recipes

for d = 3 B does not break isotropy —
dyonic Reissner—Nordstrdom—AdS black hole

3 4

fry =1 (14 P RB)) (N7 (Rt 4B ()T
72 I+ 72 r+
A:/z/[1—rr]dt+8xdy

o _ (d-1)gPL2 -

7= Td-2)k2
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AdS/CFT Scale invariant case
Finite T, B,

Ads/CFT recipes

for d = 3 B does not break isotropy —
dyonic Reissner—Nordstrdom—AdS black hole
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+ Y +

A=y [1 —rr] dt + Bx dy

o _ (d-1)gPL2 -
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AdS/CFT Scale invariant case
Finite T, B,

Ads/CFT recipes

for d = 3 B does not break isotropy —
dyonic Reissner—Nordstrdom—AdS black hole

(4 BB (N (B rtBP) (!
fry=1- 1+ + ,
72 I+ 72 r+
A=y [1 —rr] dt + Bx dy
2 _ (d-1)@PL i
7= Td-2)k2
. 1 r2u2 r4BZ
o T=g (8- -%7)
. L2 f2/,L2 3f432
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AdS/CFT Scale invariant case
Finite T, B,

Ads/CFT recipes

for d = 3 B does not break isotropy —
dyonic Reissner—Nordstrdom—AdS black hole

3 4
fry=1-(1+ (R + i B%) <r> + (e + 1B < ! ) :

o Iy 72 ry
r
2 _ (d-1)gL? i
7T (d2)R2

_ 1 u? B
°7-_47TI‘+<3_ 'yz - 72

12 A 3rtp?
° 0= 2&2& <1 + ~2 ~2

—_ 109 _ 22 pu __ 109 _ _22nB
op—_\/zau—,i2,+,yza m—_vza,g—_,{z 2
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AdS/CFT Scale invariant case
Finite T, B, p
Ads/CFT recipes

Operators, expectation values

Zouk|¢ — 0b(0)] = (exp <i ddX\/_g(0)5¢(0)O) )ET.

M. Kormos Holography in cond-mat



AdS/CFT Scale invariant case
Finite T, B, p
Ads/CFT recipes

Operators, expectation values

Zouk|¢ — 0b(0)] = (exp <i ddX\/_g(0)5¢(0)O) )ET.

If (d—2)/2 < A =dim[O] < d scalar, then ¢ near the boundary

gf)(r):(Z)dA¢(0)+(£>A¢(1)+... as r—0,
(Lm)? = A(A - d)
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AdS/CFT Scale invariant case
Finite T, B, p
Ads/CFT recipes

Operators, expectation values

Zouk|¢ — 0b(0)] = (exp <i ddX\/_g(0)5¢(0)O) )ET.
If (d—2)/2 < A =dim[O] < d scalar, then ¢ near the boundary

gf)(r):(Z)dA¢(0)+(£>A¢(1)+... as r—0,
(Lm)? = A(A - d)

_i5Zbu|k[¢(0)] Nooo 0S[¢@)) 24— d

0) =
9 39(0) 9(0) L ‘o

M. Kormos Holography in cond-mat



General technique
Conductivity at B = 0
Transport coefficients Conductivity at B # 0
Beyond the hydrodynamic regime
The Nernst effect

Linear response

Next step: time and space-dependent perturbations

Broken time reversal symmetry < irreversibility of falling
into a BH
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General technique
Conductivity at B = 0
Transport coefficients Conductivity at B # 0
Beyond the hydrodynamic regime
The Nernst effect

Linear response

Next step: time and space-dependent perturbations

Broken time reversal symmetry < irreversibility of falling
into a BH

5(0a)(w, k) = GG,05(w. k)308(0)(w, k)
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General technique
Conductivity at B = 0
Transport coefficients Conductivity at B # 0
Beyond the hydrodynamic regime
The Nernst effect

Linear response

Next step: time and space-dependent perturbations
Broken time reversal symmetry < irreversibility of falling

into a BH
6<OA>(W7 k) = G(@AOB(% k)(s(bB(O)(w? k)
So
R {Op) 2A 54— d 5¢>A(1)
Gor0s = 5 T L
¢B(0) | 550 ¢B(0)
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General technique
Conductivity at B = 0
Transport coefficients Conductivity at B # 0

Beyond the hydrodynamic regime
The Nernst effect

Thermal and electric conductivities (B = 0)

Generalised Ohm’s Law (nonzero net charge):

(a0 )= (a7 o7 ) (womyr )

where the heat currentis Qx = Ty — pdx
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General technique
Conductivity at B = 0
Transport coefficients Conductivity at B # 0
Beyond the hydrodynamic regime

The Nernst effect

Thermal and electric conductivities (B = 0)

Generalised Ohm’s Law (nonzero net charge):

(a0 )= (a7 o7 ) (womyr )

where the heat currentis Qx = Ty — pdx

_ CiG5, @) 10 0Aq)
B w N gszéAX(o) ’

o(w)

—iGB  (w) i
ow)T = —2= = 2 yio(w),

R(w)T = ~iGgq,(w)

L
. =~ tuow)
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Transport coefficients

General technique

Conductivity at B = 0
Conductivity at B # 0

Beyond the hydrodynamic regime

The Nernst effect

Electric conductivity for B = 0 from AdS/CFT
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Figure: The real and imaginary parts of the electrical conductivity
computed via AdS/CFT. The conductivity is shown as a function of
frequency. Different curves correspond to different values of the
chemical potential at fixed temperature. The gap becomes deeper at

larger chemical potential.
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General technique
Conductivity at B = 0
Transport coefficients Conductivity at B # 0
Beyond the hydrodynamic regime
The Nernst effect

Electric conductivity for B = 0 in graphene
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Figure: Experimental plots of the real and imaginary parts of the
electrical conductivity in graphene as a function of frequency. The
different curves correspond to different values of the gate voltage.
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General technique
Conductivity at B = 0
Transport coefficients Conductivity at B # 0
Beyond the hydrodynamic regime
The Nernst effect

Conductivities with B # 0

@ B # 0 = off-diagonal elements: o+ = oy, & iox etc.
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General technique
Conductivity at B = 0
Transport coefficients Conductivity at B # 0
Beyond the hydrodynamic regime
The Nernst effect

Conductivities with B # 0

@ B # 0 = off-diagonal elements: o+ = oy, & iox etc.
@ Ward identities

tayrTw=(BF pw)or —p,

+iriTw = <5:FM> at+Tw— ST+ mB
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General technique
Conductivity at B = 0
Transport coefficients Conductivity at B # 0
Beyond the hydrodynamic regime
The Nernst effect

Conductivities with B # 0

@ B # 0 = off-diagonal elements: o+ = oy, & iox etc.
@ Ward identities

tayrTw=(BF pw)or —p,

+iriTw = <5:FM> at+Tw— ST+ mB

@ atscales 1/T < | < 1/v/B momentum is approx.
conserved = magneto-hydrodynamics
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General technique
Conductivity at B = 0
Transport coefficients Conductivity at B # 0
Beyond the hydrodynamic regime
The Nernst effect

Conductivities with B # 0

o wlw iyt /)
X Q (w+ iv)2 — w3
_ _£—2i7w+72+w§

B (w+iy)2 — w?

Here
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General technique
Conductivity at B = 0
Transport coefficients Conductivity at B # 0
Beyond the hydrodynamic regime
The Nernst effect

Conductivities with B # 0

o wlw iyt /)
X Q (w+ iv)2 — w3
_ _£—2i7w+72+w§

B (w+iy)2 — w?

Here (sT)?
sT) 1
A T
o) 1 PR dS/CFT!
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General technique
Conductivity at B = 0
Transport coefficients Conductivity at B # 0
Beyond the hydrodynamic regime
The Nernst effect

Conductivities with B # 0

w(w + iy + iw? /7)
(w+i7)? — Wi

_B—Zi'yw + 2 4 w2

UXX :UQ

=78 (w+ i) — w3
Here (TR 1
oq = CiPEGE AdS/CFT!
oo = Bp ’ Y= JQB2
e+ P e+ P
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General technique
Conductivity at B = 0
Transport coefficients Conductivity at B # 0
Beyond the hydrodynamic regime
The Nernst effect

Special cases

e =0 B=0: oxx = 1/g% frequency-independent!
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General technique
Conductivity at B = 0
Transport coefficients Conductivity at B # 0
Beyond the hydrodynamic regime
The Nernst effect

Special cases

e =0 B=0: oxx = 1/g% frequency-independent!
@ DClimit (w=10): oxx =0, ox, =% Hall conductivity

M. Kormos Holography in cond-mat



General technique
Conductivity at B = 0
Transport coefficients Conductivity at B # 0
Beyond the hydrodynamic regime
The Nernst effect

Special cases

e =0 B=0: oxx = 1/g% frequency-independent!
@ DClimit (w=10): oxx =0, ox, =% Hall conductivity
e B=0Ilimit: Orx = 0Q + -Lpr 0

(c+P)w> Ixy =
with p # 0 diverges for w — 0
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General technique
Conductivity at B = 0
Transport coefficients Conductivity at B # 0
Beyond the hydrodynamic regime
The Nernst effect

Special cases

e =0 B=0: oxx = 1/g% frequency-independent!
@ DClimit (w=10): oxx =0, ox, =% Hall conductivity

with p # 0 diverges for w — 0
with w — w + i/7 becomes finite
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General technique
Conductivity at B = 0
Transport coefficients Conductivity at B # 0
Beyond the hydrodynamic regime
The Nernst effect

Beyond hydro: large B

Re(w) Im(w)
12 " 0 ",
! o -0} N
08 2 Rt L
06 "‘ -0.2 ..,‘ .-.I..
04 -03 best
02 - , 04 \
faener? h h
a) 02505075 1 12515 b) 025 05'075 1 125 15

Figure: Location of the cyclotron pole in the retarded Green'’s function
in the complex frequency plane as a function of the dimensionless
magnetic field and at a fixed charge density.
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Beyond hydro: S-duality

1
B—p, p—-B, og—— = oi(w)—>——
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General technique
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Transport coefficients Cond ity at B # 0
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The Nernst effect

Beyond hydro: S-duality
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Figure: A density plot of |o,| as a function of complex w. a) h =0 and
g=1,b)h=g=1/v2,c)h=1and qg=0.
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@ constant voltage in response to a temperature gradient
with no current
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The Nernst effect

@ constant voltage in response to a temperature gradient

with no current

0e0=-0"1.0a
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The Nernst effect

@ constant voltage in response to a temperature gradient
with no current

0e0=-0"1.0a

@ in typical metal: vanishing
in high T, superconductors: large! /2006/
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The Nernst effect

@ constant voltage in response to a temperature gradient
with no current

00=—-—0"a

@ in typical metal: vanishing
in high T, superconductors: large! /2006/

@ = effective d.o.f. are not particles/holes? (vortices?)
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General technique
Conductivity at B = 0
Transport coefficients Conductivity at B # 0

Beyond the hydrodynamic regime
The Nernst effect

@ hydrodynamical limit:

0. B fw
Y TlwtieR/r)P -3
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General technique
Conductivity at B = 0
Transport coefficients Conductivity at B # 0

Beyond the hydrodynamic regime
The Nernst effect

@ hydrodynamical limit:

E jw

T (w+ iwf/v)? — wi

Qxy:_

@ DC limit (w — 0) vanishes due to translation invariance
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General technique
Conductivity at B = 0
Transport coefficients Conductivity at B # 0

Beyond the hydrodynamic regime
The Nernst effect

@ hydrodynamical limit:

E jw

T (w+ iwf/v)? — wi

exy:_

@ DC limit (w — 0) vanishes due to translation invariance

. B 1/Tim
lim 6,y = — = P
SO T W g + R 1)+
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General technique
Conductivity at B = 0
Transport coefficients Conductivity at B # 0

Beyond the hydrodynamic regime
The Nernst effect

@ hydrodynamical limit:

E jw

T (w+ iwf/v)? — wi

exy - —
@ DC limit (w — 0) vanishes due to translation invariance

E 1/ Timp
T (1 /Tirnp + Wg/’Y)z + Wg

lim 6y, = —
w—0 X

@ captures the qualitative B and T dependence
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General technique
Conductivity at B = 0
Transport coefficients Conductivity at B # 0

Beyond the hydrodynamic regime
The Nernst effect

@ hydrodynamical limit:

E jw

T (w+ iwf/v)? — wi

exy - —
@ DC limit (w — 0) vanishes due to translation invariance

E 1/ Timp
T (1 /Tirnp + Wg/’y)z + wg

ul;iLno Ony = =
@ captures the qualitative B and T dependence

@ with more explicit holographic model: strong dependence
of Timp 0N B, p
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Holographic superconductors

@ describe a symmetry breaking phase transition
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Holographic superconductors

@ describe a symmetry breaking phase transition

@ traditional theories: charged q.particles glued together by
other g.particles
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Holographic superconductors Conductivity

Holographic superconductors

@ describe a symmetry breaking phase transition

@ traditional theories: charged q.particles glued together by
other g.particles

@ high T, anomalies — “superconductivity without
electrons”
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Instability of the BH

Holographic superconductors Conductivity

Ingredients

@ spontaneous breaking of U(1) symmetry by the
condensation of a charged operator
= need a charged scalar field in the bulk!
(or U(1) — SU(2))
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@ spontaneous breaking of U(1) symmetry by the
condensation of a charged operator
= need a charged scalar field in the bulk!
(0r u(1) — SU(2))

L= <R+d<d ”) a2 P2 = IVo —igAg2 — mP | — V(|9])

@ How to embed this into string theory? Now V is arbitrary. . .
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Holographic superconductors Conductivity

Ingredients

@ spontaneous breaking of U(1) symmetry by the
condensation of a charged operator
= need a charged scalar field in the bulk!
(0r u(1) — SU(2))

L= <R+d<d ”) a2 P2 = IVo —igAg2 — mP | — V(|9])

@ How to embed this into string theory? Now V is arbitrary. . .
@ to have T.: Reissner—Nordstrom BH
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Holographic superconductors

@ bulk scalar turns on continuously: instability of the BH
under perturbations of the scalar field
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Holographic superconductors

@ bulk scalar turns on continuously: instability of the BH
under perturbations of the scalar field
@ two effects:
o effective mass from interac’uon with the EM filed:

mé; = m? 4 g"AZ = mz_rTF“ r/ri)?
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@ bulk scalar turns on continuously: instability of the BH
under perturbations of the scalar field
@ two effects:

o effective mass from interac’uon with the EM filed:
mZe = m? + g"AZ = m? — r?p“ r/ri)?
@ near-horizon AdS, throat
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Holographic superconductors

@ bulk scalar turns on continuously: instability of the BH
under perturbations of the scalar field
@ two effects:

o effective mass from interac’uon with the EM filed:
mZe = m? + g"AZ = m? — r?p“ r/ri)?
@ near-horizon AdS, throat

@ (don’t need a ¢* term!)
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Holographic superconductors

@ bulk scalar turns on continuously: instability of the BH
under perturbations of the scalar field
@ two effects:

o effective mass from interac’uon with the EM filed:
mZe = m? + g"AZ = m? — r?p“ r/ri)?
@ near-horizon AdS, throat

@ (don’t need a ¢* term!)
@ Breitenlohner—Freedman bound —

g?7? > 3+ 2A(A - 3)
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Holographic superconductors

@ bulk scalar turns on continuously: instability of the BH
under perturbations of the scalar field
@ two effects:

o effective mass from interac’uon with the EM filed:
mZe = m? + g"AZ = m? — r?p“ r/ri)?
@ near-horizon AdS, throat

@ (don’t need a ¢* term!)
@ Breitenlohner—Freedman bound —

g?7? > 3+ 2A(A - 3)

e (mL)?>=A(A-3), 72 =29°L?/K?
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Holographic superconductors

Y4

Figure: The critical temperature T, as a function of charge and
dimension. Contours are labeled by values of 4 T;/u. The bottom
boundary of the plot is the unitarity bound at which T. diverges.
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Superconducting phase

in the superconducting phase the background is a BH with
scalar hair
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Holographic superconductors Conductivity

Superconducting phase

in the superconducting phase the background is a BH with

scalar hair
8
6 8
alo0 | vareosT ©
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00 0 04 06 08 10 00 02 04 06 08 10
T T
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a) T b)

Figure: The condensate as a function of the temperature for the case
A =1 (left) and A = 2 (right). In curve (a), from bottom to top,
~vq =1,3,6,12. In curve (b), from top to bottom, vg = 3,6, 12.
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Holographic superconductors

Conductivity
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Figure: The real (dissipative) part of the electrical conductivity at low
temperature in the presence of a A =1 and A = 2 condensate. The
curves with steeper slope correspond to larger vq.
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Conductivity

@ tends to the normal value for large w
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@ tends to the normal value for large w
@ delta at the origin (w = 0)
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Conductivity

@ tends to the normal value for large w
@ delta at the origin (w = 0)

@ gap at low frequencies w < wy
for normal SC:  wg/T; ~ 3.5
for high T; cuprates: wy/Tc~4—7
holographic SC (N-independent!): wy/Tc = 8 ! (in the probe limit)
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Holographic superconductors Conductivity

Conductivity

@ tends to the normal value for large w
@ delta at the origin (w = 0)

@ gap at low frequencies w < wy
for normal SC:  wg/T; ~ 3.5
for high T; cuprates: wy/Tc~4—7
holographic SC (N-independent!): wy/Tc = 8 ! (in the probe limit)

® wy z 2Ey Jo(w — 0) = e E/T/
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Conclusions: potential and limitations

Limitations:

@ theories that have weakly curved geometrical duals are
quite different from FT’s in cond-mat (like SUSY, large N)
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Conclusions

Conclusions: potential and limitations

Limitations:
@ theories that have weakly curved geometrical duals are
quite different from FT’s in cond-mat (like SUSY, large N)

@ the most precise experimental probes directly measure the
electron densities
— expectation values of ‘bare’ or ‘UV’ operators

@ probably, results for measurable quantities are at most
useful benchmarks
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@ models with AdS duals probably have generic features of
strongly interacting (e.g. quantum critical) FT’s
test and refine generic expectations
(real time transport boils down to solving ODE’s!)
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Conclusions

Potential:

@ models with AdS duals probably have generic features of
strongly interacting (e.g. quantum critical) FT’s
test and refine generic expectations
(real time transport boils down to solving ODE’s!)
first calculable example of hydrodynamic to collisionless
transition
very useful for the hydrodynamic calculations
cyclotron resonance beyond hydrodynamic regime

ﬂmp(ﬁa B)
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Conclusions

Potential:

@ models with AdS duals probably have generic features of
strongly interacting (e.g. quantum critical) FT’s
test and refine generic expectations
(real time transport boils down to solving ODE’s!)
first calculable example of hydrodynamic to collisionless
transition
very useful for the hydrodynamic calculations
cyclotron resonance beyond hydrodynamic regime
Timp(p; B)
@ explicit, calculable theories without g.particle description
to clarify which common assumptions fail
(e.g. charged bosons can be stable at T = 0,p > 0;
wg # 2Eg)

M. Kormos Holography in cond-mat



	Quantum criticality
	General definitions
	Examples

	AdS/CFT
	Scale invariant case
	Finite T,B,
	Ads/CFT recipes

	Transport coefficients
	General technique
	Conductivity at B=0
	Conductivity at B=0
	Beyond the hydrodynamic regime
	The Nernst effect

	Holographic superconductors
	Instability of the BH
	Conductivity

	Conclusions

