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Holographic duals for finite T ,B, µ systems
Application: transport coefficients (conductivities and
Nernst effect)
Holographic superconductors
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approach
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strongly correlated (e−-)systems; quantum criticality
→ traditional approach
(weakly coupled q.particles, classical order parameter)
does NOT work
there are many Hamiltonians!
engineering −→ experimental AdS/CFT?
insights on both sides (“Which one is more fundamental?”)

M. Kormos Holography in cond-mat



Quantum criticality
AdS/CFT

Transport coefficients
Holographic superconductors

Conclusions

Why condensed matter?

strongly correlated (e−-)systems; quantum criticality
→ traditional approach
(weakly coupled q.particles, classical order parameter)
does NOT work
there are many Hamiltonians!
engineering −→ experimental AdS/CFT?
insights on both sides (“Which one is more fundamental?”)

M. Kormos Holography in cond-mat



Quantum criticality
AdS/CFT

Transport coefficients
Holographic superconductors

Conclusions

Why condensed matter?

strongly correlated (e−-)systems; quantum criticality
→ traditional approach
(weakly coupled q.particles, classical order parameter)
does NOT work
there are many Hamiltonians!
engineering −→ experimental AdS/CFT?
insights on both sides (“Which one is more fundamental?”)

M. Kormos Holography in cond-mat



Quantum criticality
AdS/CFT

Transport coefficients
Holographic superconductors

Conclusions

General definitions
Examples

Quantum criticality

phase transition at T = 0

ξ ∼ (g − gc)−ν ,

∆ ∼ (g − gc)νz

At gc :
t → λz t ,
x → λx

Natural place to start: scale invariance, lack of q.particles
z = 1: Lorentz-invariance and spec. conform trf’s
mostly 2+1 D (layered superconductors)
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Example: Insulating quantum magnet

HAF =
∑
〈ij〉 JijSi · Sj , Jij = J or J/g

g → 1 : Néel-order, spin waves
g →∞ : spin-singlet dimers, triplons

S[Φ] =
∫

d3x
(

(∂Φ)2 + rΦ2 + u
(
Φ2)2

)
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General definitions
Examples

Example: Bose–Hubbard model with integer filling

HBH = −t
∑
〈ij〉

(
b†i bj + b†j bi

)
+ U

∑
i ni (ni − 1)

U(1) symmetry: bi → eiφbi

U/t →∞ : decoupled sites, < bi >= 0, insulator
U/t → 0 : < bi >6= 0, superfluid

g

T

gc

0

InsulatorSuperfluid

Quantum
critical

TKT

Classical vortices and wave 
oscillations of the condensate

U/t

CFT3 at T>0

Dilute Boltzmann/Landau 
gas of particle and holes
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General definitions
Examples

QC in the real world

Nonconventional superconductors
heavy fermion metals (Kondo lattice)
high Tc superconductors (?)
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Scale invariant case
Finite T , B, µ
Ads/CFT recipes

Scale invariant geometry

Realize the symmetries of the field theory as geometrical
symmetries

ds2 = L2
(
−dt2

r2z +
dx idx i

r2 +
dr2

r2

)
The physics of our strongly coupled field theory in the large
N limit is captured by classical dynamics about this
background metric.
For z = 1 AdS space: more symmetries and solution of

S =
1

2κ2

∫
dd+1x

√
−g
(

R +
d(d − 1)

L2

)
z 6= 1 also possible. . .
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Scale invariant case
Finite T , B, µ
Ads/CFT recipes

Finite T at equilibrium

µ,T break dilatation symmetry
for large E scales it is restored
energy scale is an extra dimension⇒ Asymptotically AdS!

Schwarzschild–AdS solution

ds2 =
L2

r2

(
−f (r)dt2 +

dr2

f (r)
+ dx idx i

)
f (r) = 1−

(
r
r+

)d

Boundary at r → 0, horizon at r = r+

T =
d

4πr+
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Scale invariant case
Finite T , B, µ
Ads/CFT recipes

Thermodynamics of the Schwarzschild–AdS black
hole

temperature: T = d
4πr+

Euclidean action: SE = − Ld−1

2κ2rd
+

Vd−1
T = − (4π)d Ld−1

2κ2dd Vd−1T d−1

free energy: F = −T log Z = TSE [g?] = − (4π)d Ld−1

2κ2dd Vd−1T d

entropy S = −∂F
∂T = (4π)d Ld−1

2κ2dd−1 Vd−1T d−1
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Scale invariant case
Finite T , B, µ
Ads/CFT recipes

Finite chemical potential and magnetic field

Additional structure: global U(1)

gauged U(1) in the bulk:
subgroup of large gauge trf’s act non-trivially on the
boundary −→ gives the global symmetry group for the FT
Einstein–Maxwell theory

S =

∫
dd+1x

√
−g
[

1
2κ2

(
R +

d(d − 1)

L2

)
− 1

4g2 F 2
]

for d = 3 consistent truncation of M-theory on AdS4 × X 7
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Scale invariant case
Finite T , B, µ
Ads/CFT recipes

for d = 3 B does not break isotropy −→
dyonic Reissner–Nordström–AdS black hole

f (r) = 1−

(
1 +

(r2
+µ

2 + r4
+B2)

γ2

)(
r
r+

)3

+
(r2

+µ
2 + r4

+B2)

γ2

(
r
r+

)4

,

A = µ

[
1− r

r+

]
dt + Bx dy

γ2 = (d−1)g2L2

(d−2)κ2

T = 1
4πr+

(
3− r2

+µ
2

γ2 −
r4
+B2

γ2

)
Ω = − L2

2κ2r3
+

(
1 +

r2
+µ

2

γ2 −
3r4

+B2

γ2

)
ρ = − 1

V2

∂Ω
∂µ = 2L2

κ2
µ

r+γ2 , m = − 1
V2

∂Ω
∂B = −2L2

κ2
r+B
γ2
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Operators, expectation values

Zbulk[φ→ δφ(0)] = 〈exp
(

i
∫

ddx
√
−g(0)δφ(0)O

)
〉F.T.

If (d −2)/2 < ∆ = dim[O] < d scalar, then φ near the boundary

φ(r) =
( r

L

)d−∆
φ(0) +

( r
L

)∆
φ(1) + . . . as r → 0 ,

(Lm)2 = ∆(∆− d)

〈O〉 = −i
δZbulk[φ(0)]

δφ(0)

N→∞
=

δS[φ(0)]

δφ(0)
=

2∆− d
L

φ(1)
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Linear response

Next step: time and space-dependent perturbations
Broken time reversal symmetry⇔ irreversibility of falling
into a BH

δ〈OA〉(ω, k) = GR
OAOB

(ω, k)δφB(0)(ω, k)

So

GR
OAOB

=
δ〈OA〉
δφB(0)

∣∣∣∣
δφ=0

=
2∆A − d

L
δφA(1)

δφB(0)
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Thermal and electric conductivities (B = 0)

Generalised Ohm’s Law (nonzero net charge):(
〈Jx〉
〈Qx〉

)
=

(
σ αT
αT κ̄T

)(
Ex

−(∇xT )/T

)
,

where the heat current is Qx = Ttx − µJx

σ(ω) =
−iGR

Jx Jx
(ω)

ω
=
−1
g2L

i
ω

δAx(1)

δAx(0)
,

α(ω)T =
−iGR

Qx Jx
(ω)

ω
=

iρ
ω
− µσ(ω) ,

κ̄(ω)T =
−iGR

Qx Qx
(ω)

ω
=

iε
ω

+ µ2σ(ω)

M. Kormos Holography in cond-mat



Quantum criticality
AdS/CFT

Transport coefficients
Holographic superconductors

Conclusions

General technique
Conductivity at B = 0
Conductivity at B 6= 0
Beyond the hydrodynamic regime
The Nernst effect

Thermal and electric conductivities (B = 0)

Generalised Ohm’s Law (nonzero net charge):(
〈Jx〉
〈Qx〉

)
=

(
σ αT
αT κ̄T

)(
Ex

−(∇xT )/T

)
,

where the heat current is Qx = Ttx − µJx

σ(ω) =
−iGR

Jx Jx
(ω)

ω
=
−1
g2L

i
ω

δAx(1)

δAx(0)
,

α(ω)T =
−iGR

Qx Jx
(ω)

ω
=

iρ
ω
− µσ(ω) ,

κ̄(ω)T =
−iGR

Qx Qx
(ω)

ω
=

iε
ω

+ µ2σ(ω)

M. Kormos Holography in cond-mat



Quantum criticality
AdS/CFT

Transport coefficients
Holographic superconductors

Conclusions

General technique
Conductivity at B = 0
Conductivity at B 6= 0
Beyond the hydrodynamic regime
The Nernst effect

Electric conductivity for B = 0 from AdS/CFT
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Figure: The real and imaginary parts of the electrical conductivity
computed via AdS/CFT. The conductivity is shown as a function of
frequency. Different curves correspond to different values of the
chemical potential at fixed temperature. The gap becomes deeper at
larger chemical potential.

M. Kormos Holography in cond-mat



Quantum criticality
AdS/CFT

Transport coefficients
Holographic superconductors

Conclusions

General technique
Conductivity at B = 0
Conductivity at B 6= 0
Beyond the hydrodynamic regime
The Nernst effect

Electric conductivity for B = 0 in graphene

Figure: Experimental plots of the real and imaginary parts of the
electrical conductivity in graphene as a function of frequency. The
different curves correspond to different values of the gate voltage.
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Conductivities with B 6= 0

B 6= 0 ⇒ off-diagonal elements: σ± = σxy ± iσxx etc.
Ward identities

±α±Tω = (B ∓ µω)σ± − ρ ,

±κ̄±Tω =

(
B
ω
∓ µ

)
α±Tω − sT + mB

at scales 1/T � l � 1/
√

B momentum is approx.
conserved⇒ magneto-hydrodynamics
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Conductivities with B 6= 0

σxx = σQ
ω(ω + iγ + iω2

c/γ)

(ω + iγ)2 − ω2
c

,

σxy = − ρ
B
−2iγω + γ2 + ω2

c

(ω + iγ)2 − ω2
c

Here

σQ =
(sT )2

(ε+ P)2
1
g2 AdS/CFT!

ωc =
Bρ
ε+ P

, γ =
σQB2

ε+ P
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Special cases

µ = 0, B = 0 : σxx = 1/g2 frequency-independent!
DC limit (ω = 0) : σxx = 0, σxy = ρ

B Hall conductivity

B = 0 limit : σxx = σQ + ρ2

(ε+P)
i
ω , σxy = 0

with ρ 6= 0 diverges for ω → 0
with ω → ω + i/τ becomes finite
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Beyond hydro: large B

Figure: Location of the cyclotron pole in the retarded Green’s function
in the complex frequency plane as a function of the dimensionless
magnetic field and at a fixed charge density.

M. Kormos Holography in cond-mat



Quantum criticality
AdS/CFT

Transport coefficients
Holographic superconductors

Conclusions

General technique
Conductivity at B = 0
Conductivity at B 6= 0
Beyond the hydrodynamic regime
The Nernst effect

Beyond hydro: S-duality

B → ρ , ρ→ −B , σQ →
1
σQ

=⇒ σ+(ω)→ −1
σ+(ω)
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Figure: A density plot of |σ+| as a function of complex ω. a) h = 0 and
q = 1, b) h = q = 1/

√
2, c) h = 1 and q = 0.
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The Nernst effect

constant voltage in response to a temperature gradient
with no current
θ = −σ−1 · α
in typical metal: vanishing
in high Tc superconductors: large! /2006/
⇒ effective d.o.f. are not particles/holes? (vortices?)
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hydrodynamical limit:

θxy = −B
T

iω
(ω + iω2

c/γ)2 − ω2
c

DC limit (ω → 0) vanishes due to translation invariance
ω → ω + i/τimp:

lim
ω→0

θxy = −B
T

1/τimp

(1/τimp + ω2
c/γ)2 + ω2

c

captures the qualitative B and T dependence
with more explicit holographic model: strong dependence
of τimp on B, ρ
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of τimp on B, ρ
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describe a symmetry breaking phase transition
traditional theories: charged q.particles glued together by
other q.particles
high Tc anomalies −→ “superconductivity without
electrons”
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Ingredients

spontaneous breaking of U(1) symmetry by the
condensation of a charged operator
⇒ need a charged scalar field in the bulk!
(or U(1)→ SU(2))

L = 1
2κ2

(
R + d(d−1)

L2

)
− 1

4g2 F 2−|∇φ− iqAφ|2−m2|φ|2−V (|φ|)

How to embed this into string theory? Now V is arbitrary. . .
to have Tc : Reissner–Nordström BH
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bulk scalar turns on continuously: instability of the BH
under perturbations of the scalar field
two effects:

effective mass from interaction with the EM filed:
m2

eff = m2 + gttA2
t = m2 − r2

f
q2

L2 (1− r/r+)2

near-horizon AdS2 throat

(don’t need a φ4 term!)
Breitenlohner–Freedman bound −→

q2γ2 ≥ 3 + 2∆(∆− 3)

(mL)2 = ∆(∆− 3) , γ2 = 2g2L2/κ2
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Figure: The critical temperature Tc as a function of charge and
dimension. Contours are labeled by values of γTc/µ. The bottom
boundary of the plot is the unitarity bound at which Tc diverges.
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Superconducting phase

in the superconducting phase the background is a BH with
scalar hair

Figure: The condensate as a function of the temperature for the case
∆ = 1 (left) and ∆ = 2 (right). In curve (a), from bottom to top,
γq = 1,3,6,12. In curve (b), from top to bottom, γq = 3,6,12.
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Conductivity

Figure: The real (dissipative) part of the electrical conductivity at low
temperature in the presence of a ∆ = 1 and ∆ = 2 condensate. The
curves with steeper slope correspond to larger γq.
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Conductivity

tends to the normal value for large ω
delta at the origin (ω = 0)
gap at low frequencies ω < ωg

for normal SC: ωg/Tc ≈ 3.5
for high Tc cuprates: ωg/Tc ≈ 4− 7

holographic SC (N-independent!): ωg/Tc ≈ 8 ! (in the probe limit)

ωg
?
= 2Eg /σ(ω → 0) = e−Eg/T /
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Conclusions: potential and limitations

Limitations:

theories that have weakly curved geometrical duals are
quite different from FT’s in cond-mat (like SUSY, large N)
the most precise experimental probes directly measure the
electron densities
↔ expectation values of ‘bare’ or ‘UV’ operators
probably, results for measurable quantities are at most
useful benchmarks
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Potential:

models with AdS duals probably have generic features of
strongly interacting (e.g. quantum critical) FT’s
test and refine generic expectations
(real time transport boils down to solving ODE’s!)

first calculable example of hydrodynamic to collisionless
transition
very useful for the hydrodynamic calculations
cyclotron resonance beyond hydrodynamic regime
τimp(ρ,B)

explicit, calculable theories without q.particle description
to clarify which common assumptions fail
(e.g. charged bosons can be stable at T = 0, ρ > 0;
ωg 6= 2Eg)
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