Summer school on AdS/CFT and its Applications, Tihany, August 24 - 28, 2009 **Scattering amplitudes in** $\mathcal{N} = 4$ **SYM** Z. Bajnok, TPRG of *HAS Budapest*

p₂

Kormos | appl. to cond mat:

 $\mathcal{N} = 4$ super Yang-Mills in 4d

Alternative descriptions:

Gluon scattering amplitudes: summary

Literature: Alday: 0804.0951, Alday-Roiban 0807.1889, Henn arXiv:0903.0522, +100 papers,

Motivation: tree level=QCD, higher levels: nice iterative structure+ helps in QCD, $f(\lambda)$

 $YM^{L=1} = (\mathcal{N} = 4)^{L=1} - 4(\mathcal{N} = 1)^{L=1} + (boson \, loop)^{L=1}$ relation to $\mathcal{N} = 8$ SUGRA

- Plan: 1. Four leg amplitude: $\mathcal{A}_{4}^{(L)}$ P_{1} P_{4} P_{4} P_{4} P_{4} P_{3} P_{4} P_{4} P_{4} P_{2} P_{2} P_{2}
- 2. Light-like Wilson loops
- 3. BDS conjecture: Bern-Dixon-Smirnov hep-th0505205

$$A_4^L(p_i,\epsilon) = A_4^{L=0}(p_i,\epsilon)\mathcal{M}_4^{(L)}(\epsilon)$$
 where

 $\mathcal{M}_{4}^{(L)}(\epsilon) = \exp_{s}\left[div.part\right] \exp_{t}\left[div.part\right] \exp\left[\frac{f(\lambda)}{8}\log^{2}\frac{s}{t}\right] \operatorname{cusp}$ anomalous dimension $f(\lambda)$

Gluon scattering amplitudes: definition

Asymptotic states: $|h, p_{\mu}, a\rangle$

 $h = \pm$ helicity p_{μ} light-like momentum $p_{\mu}p^{\mu} = 0$ a color index, in the adjoint of SU(n)

N-leg amplitude: "S-matrix"

Color structure: $A_n^L = g^{n-2}(g^2N)^L \sum_{S_{n-1}} \operatorname{Tr}(T^{a_{\rho_1}} \dots T^{a_{\rho_n}}) \mathcal{A}_n^L(\rho_1, \dots, \rho_n) + \text{multiple traces}$

't Hooft (planar) limit ($N \to \infty$):

single traces are dominant, \mathcal{A} does not depend on ρ

still non-trivial Lorentz and helicity structure

Helicity: $|++\ldots+\rangle = |-+\ldots+\rangle = 0$ (SuSy on $|\psi gg...gg\rangle$)

Simplest: Maximal Helicity Violating: $|--+\dots+\rangle$ MHV (4pt and 5pt the only ones).

4 gluon scattering amplitude

Tree level:
$$\mathcal{A}_4^{L=0}(s,t)$$
 where $s = (p_1 + p_2)^2$, $t = (p_2 + p_3)^2$

One loop:
$$\mathcal{A}_4^{L=1} = \mathcal{A}_4^{L=0} \left[1 - \frac{a}{2} st I_4 + O(a^2) \right]$$
; $a = \frac{g^2 N}{8\pi^2}$

$$I_4 = C \int d^4k \frac{1}{k^2(k-p_1)^2(k-p_1-p_2)^2(k+p_4)^2}$$

momentum conservation for onshell states $p_1 + p_2 + p_3 + p_4 = 0$, $p_\mu p^\mu = 0$

Divergences!	Soft $k_{\mu} = 0$
	collinear $k_\mu \propto p_\mu$

Dimensional regularization $4 \rightarrow D = 4 - 2\epsilon$ singularities $\mathcal{A}_n \propto \frac{1}{\epsilon^{2L}} + \dots$

dimension $C = \mu^{2\epsilon} e^{-\epsilon \gamma_E} (4\pi)^{2-\epsilon}$

Compute infrared safe quantities

Break conformal symmetry in a specific way

general form (valid for any MHV) $\mathcal{A}_{4}^{L}(h_{i}, \{p_{i}\}) = \mathcal{A}_{4}^{L=0}(h_{i}, \{p_{i}\})\mathcal{M}_{4}^{L}(\epsilon, \{p_{i}\})$

Dual superconformal symmetry

1-loop 4 leg amplitude: Tree level: $\mathcal{M}_4 \propto \int d^D k \frac{1}{k^2(k-p_1)^2(k-p_1-p_2)^2(k+p_4)^2}$

Dual coordinates (in momentum space)

$$p_1^{\mu} = y_1^{\mu} - y_2^{\mu} = y_{12}^{\mu}, \dots, p_4^{\mu} = y_4^{\mu} - y_1^{\mu} = y_{41}^{\mu} \text{ and } k^{\mu} = y_1^{\mu} - y_5^{\mu}$$

amplitude: $\mathcal{M}_4 \propto \int d^D y_5 \frac{1}{y_{15}^2 y_{25}^2 y_{35}^2 y_{45}^2}$ is conformal modulo Λ^{D-4} .

and looks like in coordinate space $\langle \Phi(x_1) \Phi(x_2) \rangle \propto rac{1}{x_{12}^2}$

$$\mathcal{M}_{4} \propto \int d^{D} y_{5} \frac{1}{y_{15}^{2} y_{25}^{2} y_{35}^{2} y_{45}^{2}} \propto \left[\frac{1}{\epsilon^{2}} (\frac{\mu^{2}}{-s})^{\epsilon} + \frac{1}{\epsilon^{2}} (\frac{\mu^{2}}{-t})^{\epsilon} + \frac{1}{2} \log^{2} \frac{s}{t} + 4\zeta_{2} + \dots\right]$$

Old wisdom: it is the same what appears in the Wilson loops

P₂

Wilson loop

on light-like polygon

$$p_1^{\mu} = y_1^{\mu} - y_2^{\mu} = y_{12}^{\mu}, \dots, p_4^{\mu} = y_4^{\mu} - y_1^{\mu} = y_{41}^{\mu} \text{ and } k^{\mu} = y_1^{\mu} - y_5^{\mu}$$

 $W(C) = \frac{1}{N} \langle 0 | \operatorname{Tr}(\mathcal{P} \exp\{ig \oint dx^{\mu}A_{\mu}\}) | 0 \rangle$

Weak coupling expansion: Tree $W(C) = 1 + \frac{(ig)^2}{2} \frac{N^2 - 1}{2N} \oint_x dx^{\mu} \oint_y dy^{\nu} \langle A^a_{\mu}(x) A^b_{\nu}(y) \rangle$ where $A_{\mu} = A^a_{\mu} t_a$ and $\langle A^a_{\mu}(x) A^b_{\nu}(y) \rangle = D_{\mu\nu}(x - y) \delta^{ab}$

Feynman gauge:
$$D_{\mu\nu}(x) = \eta_{\mu\nu} \left[-\frac{\Gamma(1-\epsilon)}{4\pi^2} (-x^2 + i0)^{-1+\epsilon} (\mu^2 e^{-\gamma_E})^{\epsilon} \right]$$

loop contributions

UV divergence, singular part: $W(C) = 1 + \frac{(ig)^2}{2} \frac{N^2 - 1}{2N} \left\{ -\frac{1}{2\epsilon^2} (-y_{24}^2 \mu^2)^{\epsilon} \right\}$

Regular part
$$\frac{(ig)^2}{2} \frac{N^2 - 1}{2N} \left[\log^2 \left(\frac{y_{13}^2}{y_{24}^2} \right) + \pi^2 \right]$$
 agrees if $\epsilon_{UV} = \epsilon_{IR}$ and $s = y_{13}^2$

BDS Ansatz

One loop 4 leg amplitude factorizes:

$$\mathcal{A}_{4}^{L=1} = \mathcal{A}_{4}^{L=0} \mathcal{M}_{4}^{L=1} = \mathcal{A}_{4}^{L=0} \left[1 - \frac{a}{\epsilon^2} (\frac{\mu^2}{-s})^{\epsilon} \right] \left[1 - \frac{a}{\epsilon^2} (\frac{\mu^2}{-s}) \right] \left[1 + a \left(\frac{1}{2} \log^2 \frac{s}{t} + 4\zeta_2 \right) \right] + O(a^2)$$

two loop result:

$$\mathcal{M}_{4}^{L=2}(\epsilon) = \frac{1}{2} (\mathcal{M}_{4}^{L=1}(\epsilon))^{2} + f^{(2)}(\epsilon) \mathcal{M}_{4}^{L=1}(2\epsilon) + C(\epsilon)$$

Conjecture: $\mathcal{M}_{4}^{(L)}(\epsilon) = \exp_{s} \left[div.part \right] \exp_{t} \left[div.part \right] \exp \left[\frac{f(\lambda)}{8} \log^{2} \frac{s}{t} \right]$ where

$$div.part = \frac{-1}{8\epsilon^2} f^{(-2)}(a(\frac{\mu^2}{s})^{\epsilon}) - \frac{1}{4\epsilon} g^{(-1)}(a(\frac{\mu^2}{s})^{\epsilon}) \text{ where } (x\partial_x)^2 f^{(-2)}(x) = f(x)$$

This can be derived from:

Dual conformal anomaly: $K^{\mu}W(C) = \frac{1}{2}f(\lambda) \sum y_{i,i+1}^{\mu} \log(\frac{y_{i,i+2}^2}{y_{i-1,i+1}}) \neq 0$ fixes the 4 and 5 point functions.

In general BDS:
$$\mathcal{M}_n^{(L)}(\epsilon) = \exp\left[\sum_L a^L f^{(L)}(\epsilon) \mathcal{M}_n^{(1)}(L\epsilon) + const\right]$$

where $f^{(L)}(\epsilon) = f_0^{(L)} + \epsilon f_1^{(L)} + \epsilon^2 f_2^{(L)}$

Conclusion

We calculated: One loop 4 leg amplitude using dual conformal symmetry

It agreed perturbatively with the VEV of a light-like Wilson loop (origin of the symmetry)

Dual conformal anomaly can be used to fix the 4leg and 5leg amplitudes and BDS works

On tree level original+dual conformal symmetry form a Yangian

No physical justification for the amplitude \leftrightarrow Wilson loop correspondence

BDS ansatz can be extended to higher MHV amplitudes but fails over 6legs,

still amplitude \leftrightarrow Wilson loop correspondence remains valid