Results from RHIC

Selected results from hydrodynamics and applications of AdS/CFT at RHIC T. Csörgő

Department of Physics, Harvard University, Cambridge, MA MTA KFKI RMKI, Budapest, Hungary

based on S. Gubser, arXiv:0907.4808 [hep-th] and works of R. Baier, M. Csanád, M.I. Nagy, S. Gubser, R. Vértesi and A. Ster

Tihany, 27/08/09

How well fluid dynamics works at RHIC?

Tihany, 27/08/09 M. Csanád, T. Cs. et al, Eur. Phys.J.A38:363-368,2008

Scaling predictions for (viscous) fluid dynamics

$$T'_x = T_f + m\dot{X}_f^2 ,$$

$$T'_y = T_f + m\dot{Y}_f^2 ,$$

$$T'_z = T_f + m\dot{Z}_f^2 .$$

 Elliptic flow is a universal function its variable w is proportional to transverse kinetic energy and depends on slope differences.

$$v_2 = \frac{I_1(w)}{I_0(w)}$$
 $w = \frac{k_t^2}{4m} \left(\frac{1}{T'_y} - \frac{1}{T_x}\right),$ $w = \frac{E_K}{2T_*}\varepsilon$

Inverse of the HBT radii increase linearly with mass analysis shows that they are asymptotically the same

Relativistic correction: m -> m_t

hep-ph/0108067, nucl-th/0206051, visc. in prep.

$$R'_{x}^{-2} = X_{f}^{-2} \left(1 + \frac{m}{T_{f}} \dot{X}_{f}^{2} \right),$$
$$R'_{y}^{-2} = Y_{f}^{-2} \left(1 + \frac{m}{T_{f}} \dot{Y}_{f}^{2} \right),$$
$$R'_{z}^{-2} = Z_{f}^{-2} \left(1 + \frac{m}{T_{f}} \dot{Z}_{f}^{2} \right).$$

Results

Simultaneous description of soft sector

Tihany, 27/08/09

including azymuthally sensitive HBT radii too

Simultaneous description of soft sector

Hydro works perfectly, utilizing scaling solutions, but ...

A. Ster, M. Csanád, T.Cs, B. Tomasik, in prep.

Tihany, 27/08/09

New, simple, exact solutions of rel. hydro

$$v = \tanh \lambda \eta,$$

$$p = p_0 \left(\frac{\tau_0}{\tau}\right)^{\lambda d \frac{\kappa+1}{\kappa}} \left(\cosh \frac{\eta}{2}\right)^{-(d-1)\phi_{\lambda}}$$

Possible cases (one row of the table is one solution):

Case	λ	d	κ	ϕ_{λ}
a.)	2	$\in \mathbb{R}$	d	0
b.)	$\frac{1}{2}$	$\in \mathbb{R}$	1	$\frac{\kappa+1}{\kappa}$
c.)	$\frac{3}{2}$	$\in \mathbb{R}$	$\frac{4d-1}{3}$	$\frac{\kappa+1}{\kappa}$
d.)	1	$\in \mathbb{R}$	$\in \mathbb{R}$	0
e.)	$\in \mathbb{R}$	1	1	0

Nagy, Cs.T., Csanád: nucl-th/0605070, arXiv:0709.3677v1, arXiv:0805.1562

New, accelerating, d dimension

→ Hwa-Bjorken, Buda-Lund type

→ Special EoS, but general velocity

If $\kappa = d = 1$, general solution is obtained, for ARBITRARY initial conditions. It is STABLE !

Pseudorapidity distributions

BRAHMS data fitted with the analytic formula of Additionally: $y \rightarrow \eta$ transformation

BRAHMS rapidity distribution

BRAHMS data fitted with the above analytic formula

Advanced energy density estimate

Fit result: $\lambda > 1$

Flows accelerate: 🔶 do work

initial energy density is higher than Bjorken's

$$\frac{\varepsilon_c}{\varepsilon_{Bj}} = (2\lambda - 1) \left(\frac{\tau_f}{\tau_0}\right)^{\lambda - 1}$$

Corrections due to work and acceleration. Ref:

$$\varepsilon_{Bj} = \frac{\langle m_t \rangle}{(R^2 \pi) \tau_0} \frac{dn}{dy}$$

For $\lambda > 1$ (accelerating) flows, both factors > 1

Advanced energy density estimate

Correction depends on timescales, dependence is:

With a tipical τ_f/τ_0 of ~8-10, one gets a correction factor of 2!

Conjecture: EoS dependence of ε_0

Four constraints

1) ε_{Bi} is independent of EoS ($\lambda = 1$ case)

2) $c_s^2 = 1$ case is solved for any $\lambda > 0.5$

$$\frac{\varepsilon_c}{\varepsilon_{Bj}} = (2\lambda - 1) \left(\frac{\tau_f}{\tau_0}\right)^{\lambda - 1}$$

Corrections due to respect these limits.

3) $c_{s}^{\ 2}$ dependence of $\epsilon(\tau)$ is known

4) Numerical hydro results

Conjectured formula – given by the principle of Occam's razor:

$$\frac{\varepsilon_{c_s^2}}{\varepsilon_{Bj}} = (2\lambda - 1) \left(\frac{\tau_f}{\tau_0}\right)^{\lambda - 1} \left(\frac{\tau_f}{\tau_0}\right)^{(\lambda - 1)(1 - c_s^2)}$$

Using λ = 1.18, $c_{_{S}}$ = 0.35, $\tau_{_{f}}/\tau_{_{0}}$ = 10, we get $~e_{_{CS}}/e_{_{Bj}}$ = 2.9

 $\epsilon_0 = 14.5 \text{ GeV/fm}^3$ in 200 GeV, 0-5 % Au+Au at RHIC

Perfect hydro conclusion

New exact, accelerating relativistic hydrodynamic sols. Analytic (approximate) calculation of observables Realistic rapidity distributions; BRAHMS data well described

No go theorem: same final states, different initial states

New estimate of initial energy density: $\epsilon_c / \epsilon_{Bj} \sim 2 @ RHIC$ dependence on c_s estimated, $\epsilon_c / \epsilon_{Bj} \sim 3$ for $c_s = 0.35$

A lot to gain ... advanced energy density estimate changes <u>completely</u> the s_{NN}^{1/2} or the centrality, where $\varepsilon_{crit,IQCD} \sim 1 \text{ GeV/fm}^3$ is reached

But again, how perfect is Quark Fluid?

CFT/AdS/gravity correspondence: black holes at RHIC?

Perfect Fluid- Gravity duality

Illustration:

[from M. Natsuume]

quasinormal modes: gravitational perturbation to a black hole and to a hydrodynamic system

What about equation of state?

Equation of State from AdS/CFT:

25% less e than that of ideal gas of massless quanta But perils!

energy density of QCD and SYM - via BH entropy

[from Myers and Vazquez 08]

Tihany, 27/08/09

What about shear viscosity?

near equilibrium: $\eta \simeq \epsilon \bar{v} \lambda_f$, entropy density $s \simeq \epsilon/m \rightarrow \frac{\eta}{s} \simeq m \bar{v} \lambda_f \simeq \hbar \frac{mean\ free\ path}{deBroglie\ wavelength}$

■ dilute system (QFT – > kinetic theory – > hydro): scale $\lambda_f \rightarrow \frac{\eta}{s} >> \hbar$, e.g. pQCD ($N_f = 0$)

$$\frac{\eta}{s} \simeq 3.8 \frac{1}{g^4 \ln(2.8/g)} \simeq O(1) \quad for \ g = 2.5$$

BUT with $\ln(2.8/g) \simeq O(1) : \frac{\eta}{s} \simeq 0.1 \rightarrow \text{sensitive to constant under the log }!$

[Arnold, Moore and Yaffe 03]

strongly coupled system (QFT – > hydro): scale $1/T \rightarrow \frac{\eta}{s} = \frac{\hbar}{4\pi} \simeq 0.08$

[Policastro, Son and Starinets 01]

But perils!

Conform hydro with shear viscosity 1

[Luzum and Romatschke 08]

Tihany, 27/08/09

Conform hydro with shear viscosity 2

elliptic flow

But perils!

[Luzum and Romatschke 08]

Tihany, 27/08/09

Comparision and some perils

QCD

n=4 sym

T=0

N_c=3=N_f, confinement, discrete spectrum, scattering, . . . N_c large, N_f/N_c small, deconfined, conformal, supersymmetric,

very different !!

T>T_c

strongly-coupled plasma of gluons & fundamental matter

strongly-coupled plasma of gluons & adjoint and fundamental matter deconfined, screening, finite corr. lengths, ...

very similar !!

T>>Tc

runs to weak coupling

deconfined, screening,

finite corr. lengths, . . .

remains strongly-coupled

very different !!

QCD and $\mathcal{N} = 4 SYM$ as a function of temperature

[from Myers and Vazquez 08]

Some perils, following Gubser's talk

• Constant λ_{SYM} cannot match running λ_{QCD} except in a limited window. We're interested in 200 MeV $\leq T \leq 300$ MeV.

QCD is significantly non-conformal in this window.

Static qq potential, following Gubser's

- Fundamental charge arises because hanging string ends on a D3-brane.
- A color singlet pair charges can lower their energy by joining their hanging strings.

SYM:
$$V_{q\bar{q}}(r) = -\frac{4\pi^2}{\Gamma(1/4)^4} \frac{\sqrt{\lambda}}{r} \times \left[1 - (\text{Debye screening})\right]$$

QCD: $V_{q\bar{q}}(r) = \left(-\frac{4\alpha/3}{r} + \sigma r\right) \times \left[1 - (\text{Debye screening})\right]$

Static qq potential redux

• Curve shown corresponds to $\lambda = 5.5 {+2.5 \atop -2}$ in SYM. Surprising because then $\alpha_{SYM} \approx 0.15$.

Match to string theory is conspicuously imperfect because SYM doesn't confine. And string theory curve isn't even understood for $r \ge 0.25$ fm; but see [Bak et al. 2007].

Static qq potential: fine with v2 data

 $\lambda = 5.5$ significantly affects viscosity [Policastro et al. 2001; Buchel 2008]: $\frac{\eta}{s} = \frac{1}{4\pi} \left(1 + \frac{15\zeta(3)}{\lambda^{3/2}} + \ldots \right) \approx 0.2$ for $\lambda = 5.5$. Market higher order terms could be important. $n/s \approx 0.2$ is not far from elliptic flow data, with CGC initial eccentricity and a

 $\eta/s \approx 0.2$ is not far from elliptic flow data, with CGC initial eccentricity and a soft EOS.

Anisotropic expansion is driven by pressure gradient, which is greater "in plane."

Progress and perils

Bulk/Soft physics:

- evaluation of bulk viscosity
- dihadron correlations
- Mach cone like, non-hydro structures
- multiplicity distributions !!

Hard physics: See the talk of G. Barnaföldi

Significant in-medium η' mass reduction in $\sqrt{s_{nn}} = 200$ GeV Au+Au collisions

R. Vértesi, T. Cs, J. Sziklai, arXiv:0905.2803 [nucl-th]

Tihany, 27/08/09

Motivation

Approximate SU(3) symmetry Spontaneous symmetry breaking \rightarrow 9 Goldstone bosons U_A(1)-breaking terms $\rightarrow \eta$ ' gains extra mass

> <u>Refs</u>: T. Kunihiro, Phys.Rev.Lett. B218 363 (1989) J.Kapusta, D.Kharzeev, L.McLerran, Phys.Rev. D53 5028 (1996) Z.Huang, X.-N. Wang, Phys.Rev. D53 5034 (1996)

In hot medium, η' mass reduced to quark model mas

Signal: Enhanced η' production at low p_τ

$$\frac{N_{\eta'}^{*}}{N_{\eta'}} = \left(\frac{m_{\eta'}^{*}}{m_{\eta'}}\right)^{\alpha} e^{-\left(\frac{m_{\eta'}^{*} - m_{\eta'}}{T}\right)}$$

Observation channel: pion BEC η ' has long lifetime, decays into pions Core-halo picture: more η 's enhance halo Measurable through the parameter λ^*

Tihany, 27/08/09

$$\lambda^* = \left(\frac{N_{\text{core}}^{\pi^+}}{N_{\text{halo}}^{\pi^+} + N_{\text{core}}^{\pi^+}}\right)^2$$

Vance, T. Cs, Kharzeev, Phys. Rev. Lett. 81 2205

Simulation and Results

Cross-check plan: low p_T and dileptons

η' spectrum

Excess at $m_{\ell\ell}$ <1 GeV Seen at SPS (CERES) and RHIC (PHENIX) Only in A+B reactions Absent in p+p Possible explanation: η ' enhancement

- Resonance ratios: nucl-th/0405068
 - Enhancement factor ~24
 - Breaks $m_{\rm T}$ scaling for η '

Conclusion

 \mathbf{K}^{0}

K

Π

K

K

ηπ

 $m_{\eta'}^* < m_{\eta'} - 200 \text{ MeV}$ at the 99.9% confidence level

from PHENIX+STAR $\pi^+\pi^+$ correlation data + 6 models

Cross-check when an epton spectrum needed

<u>More λ^* data at low p_T is needed to reduce systematics</u>

-> Chiral restoration at lower T as deconfinement?

Revitalize interest in chiral symmetry restoration

Summary II

How well hydro works at RHIC?

in p_t < 1.5 GeV: it works perfectly scaling laws for spectra, v2, HBT radii predicted but: quark number scaling of v2 is exp. discovery

The hottest, most perfect and most opaque fluid - ever made

AdS/CFT correspondence: PRogress and PERILS

- (1) Exact results in hydro: see Bajnok's talk.
- (2) New scaling laws discovered

(3) QCD: Possibly chiral symmetry restored at lower T than confinement.

Backup slides

Correlations for VARIOUS Quark Matters

