Universal scaling of v₂ in Au+Au collisions

and the Perfect Fluid at RHIC

T. Csörgő with M. Csanád, R. Lacey et al.

•Introduction:

 Press release, BNL: RHIC Scientists serve up "Perfect Liquid", April 18, 2005 - "White Papers" in Nucl. Phys. A

New results at QM05 and at the 5th Budapest RHIC School

•Hydrodynamics and scaling of soft observables

- Exact hydro results
- Scaling of slope parameters
- Bose-Einstein / HBT radii
- the elliptic and higher order flows
- Intermediate pt region: breaking of the hydro scaling

Discovering New Laws

"In general we look for a new law by the following process. First we guess it.

Then we compare the consequences of the guess to see what would be implied if this law that we guessed is right. Then we compare the result of the computation to nature, with experiment or experience, compare it directly with observation, to see if it works.

If it disagrees with experiment it is wrong.

In that simple statement is the key to science. It does not make any difference how beautiful your guess is. It does not make any difference how smart you are, who made the guess, or what his name is if it disagrees with experiment it is wrong.

/R.P. Feynman/"

Buda-Lund hydro and Au+Au@RHIC

3

Femptoscopy signal of supercooled QGP

Buda-Lund hydro fit indicates

- scaling of HBT radii
- sudden hadronization

- a hint for supercooled QGP.

Hadrons with T>T_c escapea hint also for

cross-over transition

Phases of QCD Matter, EoS

Quark Gluon Plasma

"Ionize" nucleons with heat "Compress" them with density New state(s?) of matter

Z. Fodor and S.D. Katz: $T_c = 164 \pm 2 \rightarrow 189 \pm 8 \text{ MeV}, QM'05(?)$ even at finite baryon density, Cross over like transition. (hep-lat/0106002, hep-lat/0402006)

For most recent results

S. D. Katz, http://qm2005.kfki.hu/ lattice QCD -> Equations of State Input for hydrodynamics

Nonrelativistic hydrodynamics

• Equations of nonrelativistic hydro:

$$\partial_t n + \nabla(n\mathbf{v}) = 0$$

$$\partial_t \mathbf{v} + (\mathbf{v}\nabla)\mathbf{v} = -(\nabla p)/(mn)$$

$$\partial_t \epsilon + \nabla(\epsilon \mathbf{v}) = -p\nabla \mathbf{v}$$

- Not closed, EoS needed: $\epsilon = \kappa p$

$$p = nT$$

- Perfect fluid: no viscosity and heat conductivity
- We use the following scaling variable:

$$s = \frac{r_x^2}{X^2} + \frac{r_y^2}{Y^2} + \frac{r_z^2}{Z^2}$$

• X, Y and Z are characteristic scales, depend on (proper-) time

6

Exact nonrelativistic solutions

A general group of scale-invariant solutions (hep-ph/0111139):

$$n(t, \mathbf{r}) = n_0 \frac{V_0}{V} \nu(s) \qquad \mathbf{r}' = \left(r_x \frac{X_0}{X}, r_y \frac{Y_0}{Y}, r_z \frac{Z_0}{Z} \right)
\mathbf{v}(t, \mathbf{r}) = \left(\frac{\dot{X}}{X} r_x, \frac{\dot{Y}}{Y} r_y, \frac{\dot{Z}}{Z} r_z \right) \qquad n(t, \mathbf{r}) = n(t_0, \mathbf{r}') \left(\frac{X_0 Y_0 Z_0}{X Y Z} \right)
T(t, \mathbf{r}) = T_0 \left(\frac{V_0}{V} \right)^{1/\kappa} \mathcal{T}(s) \qquad v_x(t, \mathbf{r}) = v_x(t_0, \mathbf{r}') \frac{\dot{X}}{\dot{X}_0}, \dots
\nu(s) = \frac{1}{\mathcal{T}(s)} \exp\left(-\frac{T_i}{2T_0} \int_0^s \frac{du}{\mathcal{T}(u)} \right) \qquad T(t, \mathbf{r}) = T(t_0, \mathbf{r}') \left(\frac{X_0 Y_0 Z_0}{X Y Z} \right)^{1/\kappa}$$

• This is a PARAMETRIC but exact solution, if the scales fulfill:

T. Csörgő, Acta Phys. Polonica B37 (2006) 1001 **Tale of 1001 nights**

 $X\ddot{X} = Y\ddot{Y} = Z\ddot{Z} = \frac{T_i}{m} \left(\frac{V_0}{V}\right)^{1/\kappa}$

 Temperature scaling function is arbitrary, e.g. Constant temperature \Rightarrow Gaussian density **Buda-Lund profiles:**

$$\mathcal{T}(s) = \frac{1}{1+bs} \\ \nu(s) = (1+bs) \exp\left[-\frac{T_i}{2T_0}(s+bs^2/2)\right]$$

Zimányi-Bondorf-Garpman profiles:

$$\mathcal{T}(s) = (1-s)\Theta(1-s)$$

$$\nu(s) = (1-s)^{\alpha}\Theta(1-s)$$

Some new solutions of hydro

Friedmann eq. of heavy ion physics

Scale invariant solutions of fireball hydro, hep-ph/0111139:

$$X\ddot{X} = Y\ddot{Y} = Z\ddot{Z} = \frac{T_i}{m} \left(\frac{V_0}{V}\right)^{1/\kappa}$$

• From global energy conservation -> "Friedmann equation"

$$\frac{\partial}{\partial t} \int d^3 r(\varepsilon + \frac{nmv^2}{2}) = 0$$
$$\dot{X}^2 + \dot{Y}^2 + \dot{Z}^2 + 3\frac{T_0}{m} \left(\frac{V_0}{V}\right)^{2/3} = A = const.$$

 $R^{2}(t) = X^{2}(t) + Y^{2}(t) + Z^{2}(t) = A(t - t_{0})^{2} + B(t - t_{0}) + C,$

$$H = \frac{1}{2m} \left(P_x^2 + P_y^2 + P_z^2 \right) + \frac{3}{2} T_0 \left(\frac{X_0 Y_0 Z_0}{XYZ} \right)^{2/3} \quad (P_x, P_y, P_z) = m(\dot{X}, \dot{Y}, \dot{Z})$$

Hamiltonian motion in heavy ion physics

Direction dependent Hubble flow

$$v_x(t, \mathbf{r}) = \frac{\dot{X}(t)}{X(t)} r_x,$$

$$v_y(t, \mathbf{r}) = \frac{\dot{Y}(t)}{Y(t)} r_y,$$

$$v_z(t, \mathbf{r}) = \frac{\dot{Z}(t)}{Z(t)} r_z.$$

$$(P_x, P_y, P_z) = m(\dot{X}, \dot{Y}, \dot{Z})$$

$$T(t) = T_0 \left(\frac{V_0}{V(t)}\right)^{2/3},$$

$$n(t, \mathbf{r}) = n_0 \frac{V_0}{V(t)} \exp\left(-\frac{r_x^2}{2X(t)^2} - \frac{r_y^2}{2Y(t)^2} - \frac{r_z^2}{2Z(t)^2}\right),$$

- Late t -> v = H r, where H = 1/t. Spherical symmetry: R=X=Y=Z
- 2/3 in general: c_s^2 , if $T_0 < 0$, and $c_s^2 = 1/3 \rightarrow$ Friedmann

 $H = \frac{1}{2m} \left(P_x^2 + P_y^2 + P_z^2 \right) + \frac{3}{2} T_0 \left(\frac{X_0 Y_0 Z_0}{XYZ} \right)^{2/3}$

Examples of exact hydro results

Propagate the hydro solution in time numerically:

11

 $R_{x}(t), R_{y}(t), R_{z}(t)$

The RHIC horizont problem

12

Geometrical & thermal & HBT radii

3d analytic hydro: exact time evolution (!!)

geometrical size (fugacity ~ const)
Thermal sizes (velocity ~ const)
HBT sizes (phase-space density ~ const)

HBT dominated by the smaller of the geometrical and thermal scales

nucl-th/9408022, hep-ph/9409327 hep-ph/9509213, hep-ph/9503494

HBT radii approach a const(t) (!!!) HBT volume -> spherical HBT radii -> thermal, constant lengths!!

hep-ph/0108067, nucl-th/0206051 <-- Thanks to Máté Csanád for animation

Relativistic Perfect Fluids

• Rel. hydrodynamics of perfect fluids is defined by:

$$\frac{\partial_{\mu} (nu^{\mu}) = 0}{\partial_{\mu} T^{\mu\nu} = 0} \qquad T^{\mu\nu} = (\varepsilon + p) u^{\mu} u^{\nu} - pg^{\mu\nu}$$

• A recent family of exact solutions: (nucl-th/0306004):

$$u^{\mu} = \frac{x^{\mu}}{\tau}$$
$$n(t, \mathbf{r}) = n_0 \left(\frac{\tau_0}{\tau}\right)^3 \mathcal{V}(s)$$
$$p(t, \mathbf{r}) = p_0 \left(\frac{\tau_0}{\tau}\right)^{3+3/\kappa}$$
$$T(t, \mathbf{r}) = T_0 \left(\frac{\tau_0}{\tau}\right)^{3/\kappa} \frac{1}{\mathcal{V}(s)}$$

- Overcomes two shortcomings of Bjorken's solution:
 - Rapidity distribution
 - Transverse flow

Accelerating exact rel. solutions: in preparation / Marci/

T. Csörgő @ Columbia, 2006/2/10

 $u^{\mu}\partial_{\mu}u_{\nu}=0$

Hubble from numerical rel. hydro

Assume net barion-free, approx. boost invariant case Rel. Euler equation Entropy conservation 4 independent eqs, 5 variables

$$u^{\mu}\partial_{\mu}\left(T\,u^{\nu}\right) = \partial^{\nu}T,$$

$$\partial_{\mu} \left(\sigma u^{\mu} \right) = 0,$$

$$d\varepsilon = Td\sigma, \qquad dP = \sigma dT, \qquad w = \varepsilon + P = T\sigma,$$

Closed by thermodynamical c_s^2 = relationships. key quantity: temperature dependent speed of sound can be taken from lattice QCD

$$c_s^2 = \frac{\partial P}{\partial \varepsilon} = \frac{\sigma}{T} \frac{\partial T}{\partial \sigma}$$

Some num. rel. hydro solutions

M. Chojnacki, W. Florkowski, T. Cs, nucl-th/0410036 lattice QCD EOS ($\mu_B=0$) $T_0(r) \sim$ initial entropy (Glauber) $H_0 \sim$ initial Hubble flow

Support the quick development of the Hubble flow and the Blast-wave, Buda-Lund and Cracow etc models

16

Effects of pre-equilibrium flow

to get Hubble in a sufficiently short time. $H_0 > 0$ **17 T. Csörg**

Principles for Buda-Lund hydro model

- Analytic expressions for all the observables
- 3d expansion, local thermal equilibrium, symmetry
- Goes back to known hydro solutions in: nonrel, Bjorken, and Hubble limits - but smoothly extrapolates in between
- Separation of the Core and the Halo
 - Core: hydrodynamic evolution
 - Halo: decay products of long-lived resonances
- Missing link: accelerating simple solutions of rel. hydro
 - Yu. Karpenko, M. Nagy

Q /MeV/ T. Csörgő @ Columbia, 2006/2/10

A useful analogy

Fireball at RHIC ⇔ our Sun

The general form of the emission function:

$$S_c(x,p)d^4x = \frac{g}{(2\pi)^3} \frac{p^{\mu}d^4\Sigma_{\mu}(x)}{\exp\left(\frac{p^{\nu}u_{\nu}(x)}{T(x)} - \frac{\mu(x)}{T(x)}\right) + s_q}$$

Calculation of observables with core-halo correction: $N_1(p) = \frac{1}{\sqrt{\lambda_*}} \int d^4 x S_c(p, x)$ $C(Q, p) = 1 + \left| \frac{\tilde{S}(Q, p)}{\tilde{S}(0, p)} \right|^2 = 1 + \lambda_* \left| \frac{\tilde{S}_c(Q, p)}{\tilde{S}_c(0, p)} \right|^2$

Assuming special shapes for the flux, temperature, chemical potential and flow:

Invariant single particle spectrum:

$$N_1 = \frac{d^2n}{2\pi m_t dm_t dy} = \frac{g}{(2\pi)^3} \overline{E} \,\overline{V} \,\overline{C} \,\frac{1}{\exp\left(\frac{p^\mu u_\mu(x_s) - \mu(x_s)}{T(x_s)}\right) + s_q}$$

Invariant Buda-Lund correlation function: oscillating, non-Gaussian prefactor!

$$C_2(k_1, k_2) = 1 + \lambda_* \Omega(Q_{||}) \exp\left(-Q_{||}^2 R_{||}^2 - Q_{\perp}^2 R_{\perp}^2 - Q_{\perp}^2 R_{\perp}^2\right)$$

Non-invariant Bertsch-Pratt parameterization, in a Gaussian approximation:

$$C_2(k_1, k_2) = 1 + \lambda_* \exp\left(-Q_o^2 R_o^2 - Q_s^2 R_s^2 - Q_l^2 R_l^2 - 2Q_{os}^2 R_o R_s\right)$$

Non-Gaussian BL form — Gaussian BP approximation:

$$R_{||,\Omega}^2 = R_{||}^2 \left(1 + \frac{\overline{\Delta \eta}^2}{\overline{\eta}}\right)$$

The generalized Buda-Lund model

- The original model was for axial symmetry only, central coll.
- In the most general hydrodynamical form: 'Inspired by' nonrelativistic 3d hydrodynamical solutions:

$$S_c(x,p)d^4x = \frac{g}{(2\pi)^3} \frac{p^{\mu} d^4 \Sigma_{\mu}(x)}{\exp\left(\frac{p^{\nu} u_{\nu}(x)}{T(x)} - \frac{\mu(x)}{T(x)}\right) + s_q}$$

- Have to assume special shapes:
 - Generalized Cooper-Frye prefactor:

 $p^{\mu}d^{4}\Sigma_{\mu}(x) = p^{\mu}u_{\mu}(x)H(\tau)d^{4}x \qquad H(\tau) = \frac{1}{(2\pi\Delta\tau^{2})^{1/2}}\exp\left(-\frac{(\tau-\tau_{0})^{2}}{2\Delta\tau^{2}}\right)$

• Four-velocity distribution:

 $u^{\mu} = (\gamma, \sinh \eta_x, \sinh \eta_y, \sinh \eta_z)$

• Temperature:

$$\begin{aligned} \frac{1}{T(x)} &= \frac{1}{T_0} \left(1 + \frac{T_0 - T_s}{T_s} s \right) \left(1 + \frac{T_0 - T_e}{T_e} \frac{(\tau - \tau_0)^2}{2\Delta \tau^2} \right) \\ \frac{\mu(x)}{T(x)} &= \frac{\mu_0}{T_0} - s \end{aligned}$$

• Fugacity:

T. Csörgő @ Columbia, 2006/2/10

22

Some analytic results

• Distribution widths

$$\frac{1}{R_{i,i}^2} = \frac{B(x_s, p)}{B(x_s, p) + s_q} \left(\frac{1}{X_i^2} + \frac{1}{R_{T,i}^2}\right)$$
$$\frac{1}{R_{T,i}^2} = \frac{m_t}{T_0} \left(\frac{a^2}{X_i^2} + \frac{\dot{X}_i^2}{X_i^2}\right) \qquad a^2 = \frac{T_0 - T_s}{T_s} = \left\langle\frac{\Delta T}{T}\right\rangle_r$$

• Slopes, effective temperatures

$$T_{eff} = \frac{1}{2} \left(\frac{1}{T_{*,x}} + \frac{1}{T_{*,y}} \right) \quad T_{*,i} = T_0 + m_t \dot{X}_i^2 \frac{T_0}{T_0 + m_t a^2}$$

Flow coefficients

$$v_{2n} = \frac{I_n(w)}{I_0(w)}$$
$$v_{2n+1} = 0$$

w ~ Energy x (slope difference)

$$w = \frac{p_t^2}{4\overline{m}_t} \left(\frac{1}{T_{*,y}} - \frac{1}{T_{*,x}}\right)$$

 $\overline{m}_t = m_t \cosh(\eta_s - y)$

Confirmation

see nucl-th/0310040 and nucl-th/0403074, R. Lacey@QM2005/ISMD 2005 A. Ster @ QM2005.

Slope parameters

Buda-Lund rel. hydro formula: • Exact non-rel. hydro solution:

$$T_{*,i} = T_0 + m_t \dot{X}_i^2 \frac{T_0}{T_0 + m_t a^2}$$

same, but $m_t \rightarrow m$, $a \rightarrow 0$

$$T'_x = T_f + m \dot{X}_f^2 ,$$

$$T'_y = T_f + m \dot{Y}_f^2 ,$$

Experimental test: PHENIX, STAR

Elliptic flow, limits

G. Veres, PHOBOS data, proc QM2005

Elliptic flow, PHENIX data

M. Csanád et al. nucl-th/0512078

Elliptic flow, PHOBOS data

M. Csanád et al. nucl-th/0512078

Elliptic flows

Buda-Lund rel. hydro formula nucl-th/1003040 (2003!):

$$v_2 = \frac{I_1(w)}{I_0(w)} + w = \frac{p_t^2}{4\overline{m}_t} \left(\frac{1}{T_{*,y}} - \frac{1}{T_{*,x}}\right)$$

$$\overline{m}_t = m_t \cosh(\eta_s - y)$$

Experimental test (on PHOBOS data, PRL 2005!)

Exact non-relativistic result:

$$v_2 = \frac{I_1(w)}{I_0(w)} +$$

same, but $\underline{m}_t \rightarrow m$

Universal v₂ scaling predicted in 2003

Higher flow coefficients

Buda-Lund rel. hydro formula:

$$v_{2n} = \frac{I_n(w)}{I_0(w)}$$
$$v_{2n+1} = 0$$

Exact non-relativistic result:

$$v_{2n} = \frac{I_n(w)}{I_0(w)}$$
$$v_{2n+1} = 0$$

$$v_4 = \frac{v_2^2}{2} + k \times y_T^4$$

R. Lacey, Proc. QM 2005

Scaling and scaling violations

Scaling laws from hydro

Exact non-rel. and Buda-Lund rel.

Single particle spectra Slope Rapidity width Elliptic flow Higher harmonics HBT radius parameters asHBT Au+Au data at RHIC satisfy the scaling laws that were predicted by the Buda-Lund hydro model.

v2(y,pt, ...) is mapped already to a universal scaling function

-> compelling evidence for a perfect fluid at RHIC

scaling breaks between 1-2 GeV, where quark number scaling sets in.

Summary

Universal scaling of v₂ is observed

Au+Au data at RHIC satisfy the UNIVERSAL scaling laws predicted in 2003 by the Buda-Lund hydro model, based on exact solutions of PERFECF FLUID hydrodynamics

quantitative evidence for a perfect fluid in Au+Au at RHIC

scaling breaks in pt at ~ 1.5 GeV, in rapidity at ~ ymax - 0.5 Search for establishing the domain of applicability started. Further tests with STAR and BRAHMS data.

Similar scaling of Bose-Einstein/HBT RADII

same slopes ~ fully developed, 3d Hubble flow