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Abstract

New solutions are found for the non-relativistic hydrodynamical equa-

tions. These solutions describe expanding matter in Gaussian space dis-

tribution. In the simplest case, thermal equilibrium is maintained without

any interaction, the energy is conserved, and the process is isentropic.

More general solutions are also obtained that describe explosions driven

by heat production, or contraction of the matter caused by energy loss.

Introduction. The equations of hydrodynamics correspond to local conser-
vation of some charges as well as energy and momentum. The equations are
scale-invariant, hence can be applied to phenomenological description of physi-
cal phenomena from collisions of heavy nuclei to collisions of galaxies. Recently,
a lot of experimental and theoretical effort went into the exploration of hydro-
dynamical behaviour of strongly interacting hadronic matter in non-relativistic
as well as in relativistic heavy ion collisions, see for example [1, 3, 4, 5, 6]. Due
to the non-linear nature of the equations of hydrodynamics, exact solutions of
these equations are rarely found, see e.g. [1] for an exact solution of hydro-
dynamics of expanding fireballs. The purpose of this Letter is to present and
analyze such a solution of the non-relativistic hydrodynamical equations, with
a generalization to heat production or loss (e.g. due to radiation). We hope
that the results presented herewith may be utilized to access analytically the
time-evolution of the hydrodynamically behaving strongly interacting matter as
probed by non-relativistic heavy ion collisions [3, 4]. The results presented in
this letter are, however, rather general in nature and they can be applied to
any physical phenomena where the non-relativistic hydrodynamical description
is valid.

Adiabatic expansion. Consider a non-relativistic hydrodynamical system de-
scribed by the Boltzmann equation

(

∂

∂t
+ v∇

)

f(r, p, t) = S(r, p, t). (1)

Suppose that the S source function or emission function describes the creation
of all the particles, so the boundary condition is f(r, p, t → −∞) = 0. The
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emission function S is related to the temporal change of the non-relativistic
Wigner function of the system. The single-particle momentum distribution can
be obtained by integrating the emission function over time and space:

N1(p, t) =

∫

d3xf(r, p, t) =

t
∫

−∞

dt′
∫

d3xS(r, p, t′) (2)

Suppose that the emission takes place within an instant, the emission function
is spherically symmetric, Gauss-like, and incorporates a linear radial flow:

S(r, p, t) = C exp

(

−
r2

2R2
0

−

(

p −
m
τ r
)2

2mT0

)

δ(t − t0). (3)

Let us assume that there is no collision after the particle emission, so the system
described by equations (1) and (3) after t0 can be equivalently described by the
free-streaming equation

(

∂

∂t
+ v∇

)

f(r, p, t) = 0 (4)

with the boundary condition

f(r, p, t0) = C exp

(

−
r2

2R2
0

−

(

p −
m
τ r
)2

2mT0

)

. (5)

The solution of (4-5) is

f(r, p, t) = f

(

r −
t − t0

m
p, p, t0

)

= C exp

(

−

(

r − t−t0
m p

)2

2R2
0

−

(

(1 + t−t0
τ )p − m

τ r
)2

2mT0

)

, (6)

or equivalently

f(r, p, t) = C exp

(

−
r2

2R2(t)
−

(p − mv(r, t))2

2mT (t)

)

, (7)

where v(r, t) = β(t)r and we have three new quantities that depend only on
time: the radius of the expanding matter R(t), the local temperature T (t) and
β(t), the coefficient of the local flow velocity v(r, t). They can be determined
from the equality of (6) and (7). After some calculations, we get the following
expressions:

T (t) =
T0

ϕ(t)
, R2(t) = R2

0ϕ(t), β(t) =
ϕ̇(t)

2ϕ(t)
, (8)
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where

ϕ(t) =

(

1 +
t − t0

τ

)2

+
T0

TG

(

t − t0
τ

)2

, (9)

and TG = mR2
0/τ2 is the “geometrical temperature”.

Let us determine the normalization factor in (7). By integrating f over co-
ordinate and momentum space, we get N , the total number of particles emitted.
Then the normalization factor can be expressed in terms of N and the other
parameters,

C =
N

(2π)3(mT (t)R2(t))3/2
.

Since the system is considered after t0, the normalization coefficient C is con-
stant because T (t)R2(t) = T0R

2
0 = const.

Note also that one can introduce the flow parameter u0 = R0/τ — the radial
flow at the mean radius — so that the geometrical temperature TG = mu2

0

carries the flow contribution to the effective temperature. With this notation,

ϕ(t) =

(

1 +
u0

R0
(t − t0)

)2

+
T0

mR2
0

(t − t0)
2. (10)

There are two limiting cases. The beginning

T (t0) = T0, R(t0) = R0, v(r, t0) =
r

τ
, (11)

and the t − t0 ≫ τ limit:

T (t) ≃

(

τ

t − t0

)2
T0TG

T0 + TG
, R(t) ≃

t − t0
τ

√

R2
0 + R2

T , v(r, t) ≃
r

t − t0
,

where R2
T = τ2T0/m = T0

mu2

0

R2
0. So we have R2

T /R2
0 = T0/TG.

Without rescattering and other final state interactions after particle emis-
sion, the momentum spectrum is independent of time. It is obvious from equa-
tion (2). But it can also be checked directly by calculating the single particle
spectra N1(p, t). We did it and got the following result:

N1(p, t) =
N

(2πmT∗)3/2
exp

(

−
p2

2mT∗

)

, (12)

where T∗ = T0 + TG.
The particle density, the local energy density, the pressure and the entropy

density can be evaluated from kinetic theory in a straightforward manner:

n(r, t) =

∫

d3p f =
N

(2πR2(t))3/2
exp

(

−
r2

2R2(t)

)

, (13)

ε(r, t) =

∫

d3p
(p− mv)2

2m
f =

3

2
n(r, t)T (t), (14)
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P (r, t) =

∫

d3p
(px − mvx)2

m
f = n(r, t)T (t), (15)

s(r, t) = −

∫

d3p (ln f − 1)f

=

(

r2

2R2(t)
− lnN +

3

2
ln(4π2mT (t)R2(t)) +

5

2

)

n(r, t). (16)

Note that the local phase-space distribution function f(r,p, t) maintains its lo-
cally thermalized shape without any collisions, due to the special choice of the
initial conditions and the invariance of the Gaussian shape under convolution.
We find a non-vanishing pressure maintained without collisions; the interpre-
tation of this result is that any wall or bubble inserted into this expanding
Knudsen gas would feel a pressure that arises due to the random, locally dis-
ordered motion of the free-streaming particles in any part of space. Such a
pressure arising from a collisionless gas of photons is well-known in cosmology
as a source of gravity.

By introducing the “effective volume” VG = (2π)3/2R3
0 and integrating the

entropy density over space, we find that the total entropy is

S(t) =

(

ln
VG

N
+

3

2
lnT0 +

3

2
ln(2πm) + 4

)

N = Sideal +
3

2
N.

As it was shown in [2], one can modify the thermodynamical definition of the
entropy by adding terms linear in extensives, without changing the thermody-
namics. And now we got the interesting result that the entropy is almost the
same as Sideal, the entropy of an ideal gas at temperature T0 in volume VG

— the difference is the extensive quantity 3
2N , hence the thermodynamics of

the system considered is the same as that of an ideal gas. Note that the total
entropy is independent of time.

It is worthwhile to evaluate the total energy in local disordered motion (heat
energy, denoted by Eheat), the total energy in ordered motion (flow energy,
denoted by Eflow) and the total energy Etot. One obtains that

Etot =
3

2
Nmu2

0 +
3

2
NT0, (17)

Eheat =
3

2
NT (t), (18)

Eflow = Etot − Eheat. (19)

The time dependence of the local temperature is given by eqs. (8, 10). Of
course, the total energy is conserved.

It is straightforward to verify that equations (13-15) together with (8) solve
the continuity equation, Euler’s equation — we also have to use eq. (9) for this
—, and satisfy the energy conservation:

∂n

∂t
+ ∇(vn) = 0, (20)
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(

∂

∂t
+ v∇

)

v = −
∇P

mn
, (21)

∂ε

∂t
+ ∇(vε) = −P∇v. (22)

From equations (8), (16) and (20) it is easy to verify that the process is
locally isentropic:

∂s

∂t
+ ∇(vs) = 0. (23)

Hence, we found a new solution of equations (20-21), the basic equations
of non-relativistic hydrodynamics. This solution is given by eqs. (8-10) and
eqs. (13-15). The equation of state is that of an ideal gas (15). The system
maintains local thermal equilibrium without any collisions. This is due to the
special initial conditions.

It is also worthwhile to make some remarks about the intensity correlations.
We proved that the single-particle spectra are time independent (12). Now we
will prove that the two-particle spectra N2(p1,p2, t1, t2) are also independent
of time if t1, t2 > t0. The two particle distribution function can be written in
terms of the emission function S in the following way:

N2(p1, p2, t1, t2) =

t1
∫

−∞

dt′1

∫

d3r1

t1
∫

−∞

dt′2

∫

d3r2 (S(r1, p1, t′1)S(r2, p2, t′2)

± S(r1, K/2, t′1)S(r2, K/2, t′2) cos [q(r1 − r2)] ,

where K = (p1 + p2)/2, q = p1 − p2 and the “+” sign refers to bosons, “-”to
fermions, if the final state Coulomb and other interactions are negligible. S
vanishes for t′1,2 > t0 so the the time integration is independent of the upper
bound t1,2 as long as t1,2 > t0. Therefore N2 is independent of t1 and t2.

Because both the single and the two-particle spectra are independent of time,
the two-particle correlation function

C2(p1, p2) =
N2(p1, p2)

N1(p1)N2(p2)
= 1 + e−Q2R2

∗

must also be independent of time. So the radius parameter of the two-particle
correlation function, R∗ is a constant. We can calculate it at t0, the time of
particle production. The result

1

R2
∗

=
1

R2
T

+
1

R2
0

=
1

R2
0

(

1 +
mu2

0

T0

)

is a generalization for arbitrary u0 of the result in ref. [3].
The general adiabatic solution. We are seeking for the solutions of the con-

tinuity equation (20), Euler’s equation (21) and the ideal gas equation of state
(15) with three basic assumptions:
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1. The particle density is a Gaussian specified by eq. (13), where R(t) is an
unknown function.

2. The time dependence of the volume-like quantity V (t) = (2πR2(t))3/2 is
related to the temperature by V 2/3(t)T (t) = const, which means that the
process is isentropic for pointlike particles.

This relation is equivalent to the first two relations in (8), where T0 and
R0 are constants and ϕ(t) is an arbitrary function of time.

3. The flow is linear in space coordinates: v(r, t) = rβ(t), where β(t) is an
arbitrary function.

Now if we try to solve the continuity equation (20) by substituting the

results in the previous two paragraphs, we get β(t) = ϕ̇(t)
2ϕ(t) which leads to

the third relation in (8).

So far we proved that our assumptions lead to equations (8), where ϕ(t) is an
arbitrary function. To get restrictions for ϕ(t), we have to solve Euler’s equation.
The substitution of the expressions in (8), the particle density (13) and the
pressure (15) into Euler’s equation (21), leads to this differential equation:

ϕ̈(t)ϕ(t) −
1

2
ϕ̇2(t) =

2T0

mR2
0

. (24)

The general solution of this equation is a quadratic polynomial with two arbi-
trary constants, denoted by c0 and c1. Additionally, a third coefficient c2 can
be determined from c0 and c1. Our result is

ϕ(t) = c0 + c1t +

(

T0

mR2
0c0

+
c2
1

4c0

)

t2. (25)

Now define the two “new” variables t0 and τ with the following relations:

c0 =

(

1 −
t0
τ

)2

+
T0

mR2
0

t20, c1 =
2

τ

(

1 −
t0
τ

(

1 +
T0

TG

))

.

If we substitute these expressions into (25), we get eq. (9). So we proved that
eqs. (8,9) yield the most general solution of the non-relativistic hydrodynamical
equations for a Gaussian density profile and linear flow profile ansatz, for an
ideal gas equation of state. As this hydro solution corresponds to a solution of
the collisionless Boltzmann equation as well, we find that in this case the hydro
equations are equivalent with a collisionless Boltzmann equation.

More general solutions. The above presented solution of the non-relativistic
hydrodynamical equation can be generalized in many ways. For instance, a
straightforward way would be to introduce a location dependent temperature
profile [8]. Such a temperature profile is present in a known analytic solution
of non-relativistic hydrodynamic equations, see ref. [1]. However, in the present
study we will choose another way to generalize the hydro solution presented
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above. Namely, we will investigate the possibility in our model to describe the
effects of some local heat production or heat loss. A simple model is introduced
to mimic the effects of heat production by chemical or nuclear reactions, or
the cooling of the system by radiation that decreases the local energy density.
The microscopic details of these processes are not sought for and the sources
of heat production, or the radiated energies are not part of the system under
consideration, so heat production of radiation changes the ‘total’ energy.

Let us introduce an additional term into the energy balance eq. (22). Let
us assume that this new term is proportional to the particle density:

∂ε

∂t
+ ∇(vε) + P∇v =

3

2
j(t)n(r, t)T (t). (26)

This new term is the simplest possible model of heat production (j(t) > 0 ) or
energy loss e.g. due to radiation (j(t) < 0). The heat loss or heat production is
assumed to be proportional to the local internal energy.

Now we have — in place of eqs. (8) — a more general Gaussian solution of
the continuity equation:

T (t) = T0
h(t)

ϕ(t)
, R2(t) = R2

0

ϕ(t)

h0
, v(r, t) = r

ϕ̇(t)

2ϕ(t)
, (27)

where h(t) is an arbitrary function. This parameterization satisfies the boundary
conditions for the temperature and the radius (11) if ϕ(t0) = h(t0) = h0.

By substituting the expressions of the particle density (13), the energy den-
sity (14) and the pressure (15) into the modified energy equation (26), and using
the parameterization (27), we get the following differential equation:

ḣ(t) = h(t)j(t). (28)

Note that adding source terms to the energy balance equation results in a devi-
ation from the isentropic expansion or contraction (23). From (16), (20), (27)
and (28), the local entropy production is

∂s

∂t
+ ∇(vs) =

3

2
jn. (29)

The solution of eq. (28) is

h(t) = h0e

∫

t

t0

dt′j(t′)
. (30)

The function ϕ(t) can be determined from the Euler equation which now be-
comes

ϕ̈(t)ϕ(t) −
1

2
ϕ̇2(t) =

2T0

mR2
0

h(t). (31)

Let us assume that j(t) = j is a nonzero constant. Then we can solve
equation (31) analytically. The result is the following:

ϕ(t) = h(t) = h0e
j·(t−t0), h0 =

4T0

mR2
0j

2
. (32)
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In terms of temperature, radius and velocity, the solution reads as:

T (t) = T0, R2(t) = R2
0e

j(t−t0), v(r, t) =
j

2
r.

The case of an exponential expansion is described by an energy source term,
j > 0, which means that the expansion is driven by an external energy source
in such a way that the temperature is kept constant. Such energy sources may
physically correspond e.g. to the release of the latent heat during a strong
first order phase transition. The total energy of the system (which corresponds
to the produced phase in the case of a strong first order phase transition) is
increasing linearly in time during the period of j = const > 0. Another case,
the exponential contraction of the matter, may be caused by the the continuous
emission of its energy by some radiation. It is described by an energy loss term,
j < 0, and the total energy is decreasing linearly in time.

Algorithm to generate new solutions: With the method above, one can gen-
erate even infinitely many new analytical solutions to the equations of non-
relativistic hydrodynamics with energy producing or radiative processes. This
algorithm reads as follows:

1) Fix the value of all but one of these parameters: m, t0, T0 and R0.
2) Assume a functional form for ϕ(t).
3) Determine the function h(t) and the value of the non-fix parameter (m,

t0, T0 or R0) from eq. (31) and the condition ϕ(t0) = h(t0).
4) Find the energy source function j(t) from eq. (30), or equivalently from

j(t) =
ḣ(t)

h(t)
. (33)

This way, a solution of eqs. (26, 20-21) is generated. The only requirement for
consistency arises from T (t) > 0, which results in h(t)/ϕ(t) > 0, which has to
be checked explicitly. The solution is given by eq. (27) with ϕ(t), h(t) and j(t)
generated by steps 1-4).

Summary. We found a new class of solutions for the non-relativistic hy-
drodynamical equations. Our initial result applies to a spherically expanding,
collisionless Knudsen gas with time dependent but location independent tem-
perature.

Then we incorporated into our formalism the possibility to describe the
effects of the emission or absorption of some secondary radiation. We did this by
introducing an energy source or loss term. Then we found an analytic solution,
in which the system expands or contracts exponentially, its temperature is kept
constant, and its total energy is a linear function of time.

We presented an algorithm that can be used to generate infinitely many
new analytical solutions of the non-relativistic hydrodynamical equations with
energy sources.
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[8] T. Csörgő; in preparation

9

http://arxiv.org/abs/nucl-th/9408022
http://arxiv.org/abs/nucl-th/9506006

