MŰTÁRGYAK RONCSOLÁSMENTES VIZSGÁLATA NEUTRONOKKAL – AZ EU ANCIENT CHARM PROJEKT

Kis Zoltán, Belgya Tamás, Szentmiklósi László, Kasztovszky Zsolt MTA Izotópkutató Intézet, Nukleáris Kutatások Osztálya és az Ancient Charm Együttmûködés

Az Ancient Charm projekt

Az Európai Közösség 6. keretprogramjában (EU FP6) került elfogadásra az Analysis by Neutron Resonant Capture Imaging and other Emerging Neutron Techniques: New Cultural Heritage and Archaeological Research Methods (ANCIENT CHARM) elnevezésű nemzetközi pályázat. Célja a roncsolásmentes neutronanalitikai módszerek kombinálása, továbbfejlesztése volt, illetve ezen technikák alkalmazása értékes műtárgyak háromdimenziós elemeloszlásának, fázisszerkezetének feltérképezésére [1]. A 4 éves kutatási program 2006 januárjában, 10 nemzetközi kutatócsoport (egyetemek, kutatóintézetek, múzeumok) részvételével indult.

A vizsgálatok során a mintákat kivezetett termikus-, illetve hidegneutron-nyalábbal sugároztuk be. A neutronok elektromosan semleges részecskék, így könynyen behatolnak a minta belsejébe, és ott magreakciókat válthatnak ki. Lassú neutronok esetén a reakciók és így a mérési eljárások két fő csoportra oszthatók az alapján, hogy a mért jel a neutronok sugárzásos befogásából vagy szóródásából keletkezik. Befogás révén az elemi összetételről, szóródás révén a szerkezetről kapunk információt. Az első csoportba tartozik a prompt-gamma aktivációs analízis (PGAA) és a rezonancia-neutronbefogásos analízis (NRCA), míg a másodikba a repülési idő-neutrondiffrakció (TOF-ND). A tárgyon átbocsátott neutronnyaláb gyengülése általában mindkét hatás együttes következménye, amelynek képi megjelenítésére alkalmas a neutronradiográfia (NR), illetve -tomográfia (NT). A fenti módszerek sok tekintetben kiegészítik egymást, ezért együttes alkalmazásukkal a vizsgálati eredmények teljesebb információt szolgáltatnak például a műtár-

Kutatásunkat az EU FP6 ANCIENT CHARM (015311) projekt és a NAP VENEUS08 (OMFB-00184/2006) projekt támogatta.

gyak kívülről láthatatlan részeinek jellegzetességeiről, közvetve a készítésük módjáról, a származási helyükről és a restaurálást befolyásoló tényezőkről.

A behatolás mélysége és a reakció végbemenetelének valószínűsége erősen függ a mintát besugárzó neutronnyaláb energiaeloszlásától és a nyaláb "útjában lévő" vizsgált anyagtól. A neutron és a MeV-es energiájú gamma-foton akár több cm anyagon is át tud haladni, így nagyobb tárgy belseje is sikerrel vizsgálható.

A következőkben röviden áttekintjük az ANCIENT CHARM projektben szereplő neutronos módszerek jellegzetességeit. A vizsgálatok során lehetővé tettük a minták pontos térbeli pozicionálását és forgatását. Ezáltal a mért információ (elemösszetétel, szerkezet) térbeli koordinátákhoz köthetővé vált, vagyis háromdimenziós (3D) leképezést hoztunk létre: a vizsgált tárgy belsejének jellemzői térképszerűen megjeleníthetők.

A mintán áthaladó neutronnyaláb gyengülésén alapuló neutrontomográfia/radiográfia a tárgyak valódi 3D/2D-s képalkotására alkalmas módszer. Jelenleg az irodalomból ismert [2] elérhető legjobb térbeli felbontás körülbelül 25 µm. Mi a kísérleteinkben 330 µm-es felbontást valósítottunk meg. A transzmissziós kép kémiai elemek azonosítására azonban csak korlátozottan alkalmas. Előnyös a szerves anyagot tartalmazó tárgyak megjelenítésére (a nyalábgyengülés a hidrogéntartalom miatt számottevő), illetve a hasonló rendszámú elemek elkülönítésére (amelyek a röntgen radiográfiával nem adnak megfelelő kontrasztot). A projekt keretében a tomográfiai/radiográfiai módszer fejlesztése nem volt cél, csak az általa kapott szerkezeti információ került felhasználásra.

Bizonyos atommagok a neutronbefogását követően másodpercekkel, percekkel vagy akár napokkal később úgynevezett késő gamma-fotonokat bocsátanak ki, általában β-sugárzás kíséretében. *Hevesy György* erre a jelenségre alapozva dolgozta ki 1936-ban a neutronaktivációs analízist (NAA). A módszer az 1950-es évektől általánosan elterjedt, régészeti anyagvizsgálati (archeometriai) kutatásokban is régóta alkalmazzák. A hagyományos neutronaktivációs analízis azonban roncsolásos eljárás, tehát mintát kell venni a vizsgált objektumból, ezért gyakran nem alkalmazható leletek elemzésére.

A roncsolásmentes megoldást sok esetben a sugárzásos neutronbefogási reakció közvetlen alkalmazása jelenti, amelynek során az atommagok magasan gerjesztett állapotba kerülnek, majd az atommagra, illetve az elemre jellemző, azonnali (prompt) γ-fotonokat kibocsátva alapállapotba jutnak. A kisugárzott prompt gamma-fotonok energiaeloszlása az elemre jellemző, míg számuk a mintában lévő atomok mennyiségével arányos. Az ilyen mérési eljáráson alapuló módszert prompt-gamma aktivációs analízisnek (PGAA) nevezzük. Alkalmazása során előnyös a nagyobb neutronbefogási hatáskeresztmetszettel rendelkező lassú (hideg vagy termikus) neutronokkal történő besugárzás. Ugyanannak az anyagnak a hideg vagy termikus neutronokkal történő besugárzása mindig azonos energiaeloszlású spektrumot eredményez (kivéve néhány irreguláris elemet), ezért az eloszlást jellemző arányokból az elemekre jellemző könyvtár hozható létre [3, 4].

Homogén minta esetén (általában ilyenek a fémötvözetek, üvegek és sokszor a kerámiák is), a mért öszszetétel jellemző lesz a teljes mintára és így a minta nyersanyagára. Inhomogén mintára ez nem igaz, ezért a térbeli eloszlás meghatározására kidolgoztuk a prompt-gamma aktivációs képalkotás (PGAI) módszerét, amelyet a későbbiekben részletesen bemutatunk.

A termikusnál nagyobb energiájú (1 eV – 10 keV), epitermikus neutronok rezonanciaszerűen is befogódnak az atommagokba. A jelenséget a mintán áthaladó neutronok számának hirtelen csökkenésével vagy a befogást követő gamma-fotonok számának hirtelen növekedésével észlelhetjük. A jel nagysága nem-lineárisan függ az anyag mennyiségétől. Ezen a jelenségen alapszik a rezonancia-neutronbefogásos analízis (NRCA) [5]. A mintán áthaladó neutronok energiafüggő detektálásával rezonancia-neutrontranszmissziós (NRT - Neutron Resonance Transmission) vizsgálat is végezhető [6]. Ekkor a különböző neutronenergiákon mért rezonanciaeloszlást mutató gyengülés jellemző az összetételre. A kis beütésszámok esetében alkalmazott nagy neutronnyaláb-átmérő (> 1 cm) miatt ennél a módszernél is az anyag besugárzott részére átlagosan jellemző összetételt kapunk eredményül.

Az anyagok kristályszerkezete (az atomi szerkezet periodikus, hosszú távú rendezettsége, illetve a rendezettség hiánya vagy csökkenése) meghatározza a neutronok szóródását (diffrakcióját). Az eltérülés mértékéből következtethetünk a szerkezet homogenitásának, torzulásának mértékére, illetve a rácsállandókra. A neutronszóródás jelenségén alapszik a repülési időneutrondiffrakciós (TOF-ND) módszer [7]. A diffrak-

ciós spektrum felvételével - hasonlóan a széles körben alkalmazott röntgendiffrakcióhoz (XRD) - vizsgálhatjuk a minták (például bronz, kerámia, kőzetek) kristályszerkezetét, fázisösszetételét és feszültségi viszonyait. Számos esetben az anyagban jelenlévő kémiai vegyületek is azonosíthatók.

Neutrontomográfiával kombinált prompt-gamma aktivációs képalkotás (PGAI-NT)

A teljes neutronnyaláb általában jól használható a tárgy tomografikus (3D), illetve radiografikus (2D) leképezésére. A minta egyes részeinek eltérő neutrongyengítése miatt a szürkeárnyalatos vetületi képeken a belső felépítés nagy pontossággal jeleníthető meg. Ezáltal láthatóvá válnak a régészeti szempontból érdekes részletek, és azok kijelölhetők a további vizsgálatokhoz [8]. Amennyiben a kijelölt részekhez hozzákapcsoljuk pontos térbeli koordinátáikat, a későbbiekben ezen részek a minta mozgatásával a kollimált neutronnyalábba vihetők és elemi összetételük meghatározható. A tomográf elvi felépítése az 1. ábrán látható.

A prompt-gamma aktivációs analízis elemi képalkotássá (PGAI) történő fejlesztése réssel kollimált párhuzamos neutronnyalábbal valósítható meg [9]. Minél kisebb résen keresztül engedjük a mintára a neutronokat, annál kisebb térfogatból származik az analitikai információ. Két fontos aleset különböztethető meg a detektálás szempontjából (2. ábra). Ha a neutronok elnyelése után felszabaduló y-sugárzást kollimálás nélkül detektáljuk, a γ-fotonok a mintán keresztülhúzódó, teljes húrszerű térfogatból eljutnak detektorba, vagyis ez az elrendezés a húr irányában homogén minták vizsgálatára alkalmas. Kettős kolli-

2. ábra. A PGAI-NT mérőrendszer elvi felépítési lehetőségei: húrgeometria, illetve izotérfogat.

FIZIKAI SZEMLE 2011/7-8

3. ábra. A PGAI-NT mérőrendszer kettős kollimációval.

máció esetén (amikor a neutronok és a detektált gamma-fotonok is kollimáltak) a kibocsátott γ -sugárzás csak egy kis térrészből juthat a detektorba. Ekkor az analitikai információ a kollimált nyaláb és a detektor látószögének metszési térfogatából, az izotérfogatból származik. Ezzel az elrendezéssel jobb térbeli felbontás érhető el a húrgeometriához képest, azonban a szükséges mérési idő hosszabb. A neutrontomográfia nyújtotta előnyöket kihasználva, a PGAI vizsgálat a teljes minta pásztázása helyett csak a kijelölt területekre koncentrálható [10], így ezeken a területeken az adott mérési idő mellett pontosabb elemi összetétel határozható meg (*3. ábra*).

Rezonancia-neutronbefogásos, illetve rezonancia-neutrontranszmissziós képalkotás (NRCI, illetve NRT)

A hideg, illetve termikus energiával rendelkező neutronokhoz képest a nagyobb energiájú, azaz epitermikus neutronok mélyebben képesek behatolni az anyagba. A rezonanciaenergiáknál nagyságrendileg megnő a neutronbefogás valószínűsége. Az egyes energiatartományokban végzett besugárzások az eltérő elemi érzékenységek miatt jól kiegészítik egymást. Az NRCA és NRT módszerrel például jól mérhető a PGAA-val nehezen kimutatható As, Sb, Sn (tipikus bronzösszetevők).

Az NRCA, illetve NRT mérések során a mintára bocsátott impulzusszerű neutroncsomagban a neutronok energiaeloszlása folytonos. A nagyobb energiájú, gyorsabb neutronok hamarabb érik el a tárgyat, mint a kisebb energiával rendelkezők. Tehát a repülési idő (a kibocsátás időpillanatának és a rezonanciaelnyelődés révén felszabaduló γ -sugárzás detektálásának időkülönbsége) egyértelmű kapcsolatban van az elnyelődött neutronok energiájával, amiből az abszorbeáló anyag összetételére következtethetünk. Az *4. ábrá*n a rezonanciaszerűen elnyelődött neutronok ujjlenyomatát (NRCA spektrumát) láthatjuk. NRT esetén csúcsok helyett abszorpciós völgyekkel találkozunk.

Ebben a formájában az NRCA módszer – hasonlóan a standard PGAA-hoz – tömbi információt nyújt az anyagról. A neutronnyaláb szűkítése és a tárgy mozgatása (*4. ábra*) most is az analitikai információ forrásának térbeli leszűkítését eredményezte (NRCI). A γ -sugárzás mérésére használt detektor YAP (ittrium alumínium perovszkit, YAIO3:Ce) szcintillációs kristály volt, míg a neutronnyaláb kollimálását és árnyékolását ⁶Li-ban dúsított lítium-karbonáttal (Li₂CO₃) oldották meg.

Amennyiben a tárgy mögé neutronokra érzékeny és időinformációt is rögzítő pixeldetektort helyezünk, akkor – a nyaláb szűkítése nélkül is – lehetőség van natív 2D, illetve forgatás révén 3D-s információ gyűjtésére, a rezonancia-neutrontranszmissziós (NRT) képalkotására. A transzmisszió mérése során a repülési idő alapján meghatározható az elnyelt neutronok energiája, és így a minta elemi összetétele. A térbeli felbontás a neutronok helyérzékeny detektálásának korlátaiból eredően a néhány mm-es nagyságrendbe esik.

Neutrondiffrakciós tomográfia (NDT)

A diffrakciós mérések során a tárgy köré helyezett detektorrendszer a szóródott nyaláb intenzitáseloszlását méri a szórási szög függvényében. Kristályos anyagok esetében az eloszlás diszkrét (nem folytonos), ellentétben a nem-periodikus szerkezetű anyagokkal (például amorf, folyékony), ahol az intenzitás eloszlása folytonos. Több fázis együttese esetén az egyes eloszlások egymásra rakódnak. A szóródott neutronok segítségével az anyag mikroszkopikus szerkezetéről nyerünk információt: például ásványi és fémes fázisok léte és aránya, kristályos textúrák felismerése, porozitás mértéke. Ezek a tulajdonságok számos esetben kapcsolatban vannak a tárgy előállításának, korábbi kezelésének és deformációjának történetével.

A standard mérési elrendezés során a besugárzás nagyobb keresztmetszetű (néhány cm²) neutronnyalábbal történik, tehát a szerkezeti jellemzőknek viszonylag nagyobb térfogatra való átlagértékét kapjuk. A számos egyéb elrendezési lehetőség közé tartozik a korábbiakban bemutatott húrgeometria (a mérés során csak a neutronnyaláb kollimált). A tárgy vízszintes és függőleges letapogatásával, valamint forgatásával a szóródási csúcsok intenzitásának változásából vissza-

KIS Z., BELGYA T., SZENTMIKLÓSI L., KASZTOVSZKY ZS.: MŰTÁRGYAK RONCSOLÁSMENTES VIZSGÁLATA NEUTRONOKKAL...

nyerhető a tárgy belsejének szerkezete, ebben az esetben két acél és két réz rúd egy alumínium hengerbe helyezve (5. ábra). Forgatás és eltolások segítségével háromdimenziós térkép is előállítható [7].

Összefoglalás a módszerek tulajdonságairól

Az 1. táblázat áttekintést ad a fenti módszerek legfontosabb jellemzőiről. Ahol nincs szükség a neutronok impulzusszerű kibocsátására, tehát a vizsgálatok állandó intenzitású nyalábbal történnek (NT, PGAI), ott az elsődleges neutronforrás a kutatóreaktor. A rezonancia-neutronbefogásos és a rezonancia-neutrontranszmissziós képalkotás esetén impulzusüzemű (például spallációs) neutronforrás biztosítja a neutronokat, mert itt a repülési idő-neutronenergia összefüggés meghatározásához szükséges a kibocsátás idejének ismerete. Diffrakciós vizsgálatok végezhetők mindkét típusú neutronforrással.

A különféle vizsgálatok érzékenysége jelentős mértékben eltérhet az egyes kémiai elemekre nézve. Szerencsés körülmény, hogy sok esetben egymást kiegészítő eredmények nyerhetők. Külön érdemes megemlíteni, hogy a neutrontomográfia és a prompt-gamma aktivációs analízis sok könnyű elemre is nagyobb ér-

zékenységgel alkalmazható, míg a rezonancia-neutronbefogásos analízis inkább a közepes tömegszámú, illetve nehezebb elemeket méri jól. Mindhárom vizsgálati eljárással nehezen mutatható ki a szén, az oxigén és a nitrogén. A neutrondiffrakciós tomográfia leginkább a tökéletes rácsszerkezetű mintáknál nyújt jól értelmezhető eredményt.

Két eredmény

Az ANCIENT CHARM projekt keretében a Magyar Nemzeti Múzeumból származó két tárgy, egy 6. századi germán korong fibula (6. ábra), valamint egy 7. századi meroving övcsat (7. ábra) PGAI-NT, illetve NRT vizsgálatát mutatjuk be. A méréseket a garchingi FRM-II reaktornál és a didcoti ISIS pulzált neutronforrásnál végeztük.

A PGAI mérés során a fibula – alumínium keretbe történt befogása után – mozgatható mintatartó asztalra került. Neutron-radiográfiás, illetve -tomográfiás felvétel alapján határoztuk meg a neutronnyalábbal letapogatandó térrészt. A nyaláb mérete, vagyis a térbeli felbontás 2×2,5 mm² volt. A rendelkezésre álló viszonylag nagy neutronfluxus lehetővé tette az izotérfogatos mérést, ezáltal valódi 3D-s elemtérkép készítését.

A nagy számú gamma-spektrum kiértékelése után az egyes letapogatott térfogatelemek koordinátáihoz hozzárendeltük a lokális elemösszetételt. A 6. ábrán az összetevők eloszlása látható. A mérés kiértékelésének jelenlegi fázisában számos korrekciós tényezőt még nem vettünk figyelembe, így nem számoltunk a neutronok önárnyékolásával, a gamma-sugárzás önabszorpciójával és a mérőrendszer hatásfokával. Ezért az előzetes eredmények csak kvalitatív, minőségi analízist adnak. A módszer továbbfejlesztésével a későbbiekben lehetőség lesz mennyiségi eredmények megadására is.

				1. táblázat
Áttekintés a roncsolásmentes neutronos vizsgálati módszerek legfontosabb jellemzőiről				
	NT	PGAI	NRCI/NRT	NDT
neutronenergia	hideg és termikus neutron	hideg és termikus neutron	epitermikus neutron	termikus neutron
sugárforrás	reaktor	reaktor	gyorsító	reaktor / gyorsító
információ	neutrongyengülés (elnyelés + szórás)	elemi összetétel elnyelésből	elemi összetétel elnyelésből	atomok térbeli helyzete (például rácsszerkezet)
érzékenység				
nagy	B, Cd, Sm, Gd	B, Cd, Sm, Gd	Cu, As, Zn, Ag, Sb, Sn, Sm, Gd, Au, Co	tökéletes rácsszerkezet
közepes	H, K, Mn, Fe, Ti, Cu, Ag, Au	H, Cu, Ag, Au, Na, K, Mn, Fe, Al, T	Pb, Al, Fe, Ni, Ti, Ca, Na, K, Cl, Si	polikristály
kicsi	C, N, O, Na, Al, Sn, Pb	C, N, O, Mg, Si, Sn, Pb	H, B, C, N, O	amorf
jellemzően vizsgálható tárgyak	összetett fémek, fa, szerves	kerámiák, kövek, fémek, üveg	fémek, ötvözetek, kerámiák	ötvözetek, márvány, kerámiák
behatolási mélység	egy-két cm	egy-két cm	több cm	több cm
térbeli felbontás	~100 µm	1-3 mm	~10 mm	~10 mm

6. ábra. Kölked-Feketekapu lelőhelyről előkerült 6. századi germán korong fibula és a PGAI vizsgálattal kapott 3D elemtérkép.

7. ábra. Környe lelőhelyről előkerült 7. századi meroving övcsat elemi összetételének 2D térképe NRT mérések alapján.

A térképek alapján kiderült, hogy a készítés, illetve esetleges javítás során az almandin betétek alatt aranylemez-borítást alkalmaztak, ami ritkaság volt az adott kultúrában.

Az övcsat rezonancia-neutrontranszmisszós (NRT) méréseinek során a neutronnyaláb teljes keresztmetszetét használtuk; az elemi képeket egy 10×10 pixelre bontott neutrondetektorral felvett rezonancia-neutrontranszmisszós spektrumokból nyertük. A kiértékelés eredményéből kapott 2D-s elemi térképek a 7. *ábrá*n láthatók. Az eredmények alapján a készítési technológia követhető és ez utalással szolgál a készítő műhelyek kapcsolataira. Vizsgálataink alapján megerősítést nyert, hogy a Dunántúlon élő germán népesség az avar hódítás után is kiváló nyugati kapcsolatokkal rendelkezett.

A (nem is túl távoli) jövő

Az ANCIENT CHARM projekt keretében a PGAI-NT módszer részletes kidolgozását a Budapesti Kutatóreaktorhoz kapcsolódó NIPS mérőhelyen végeztük. A projektben elvégzett méréseink eredményén felbuzdulva megterveztünk egy új, NORMA névre keresztelt műszeregyüttest, amelynek megépítésére a Baross Gábor Program – Közép-Magyarország (REG_KM_INFRA_09) pályázatán NORMA_10 azonosítóval támogatást nyertünk. Várhatóan 2011 végére elkészül az új berendezés, és ezzel a PGAI-NT technika, elsők között a világon, hazánkban is elérhetővé válik.

Irodalom

- 1. Gorini, G.: Ancient Charm: A research project for neutron-based investigation of cultural-heritage objects. *Il Nuovo Cimento 30C(1)* (2006) 47–58.
- Lehmann, E. H. et al.: The micro-setup for neutron imaging: A major step forward to improve the spatial resolution. *Nucl. Instr. and Meth. A576* (2007) 389–396.
- Molnár, G.: Handbook of Prompt Gamma Activation Analysis with Neutron Beams. Kluwer Academic Publisher, Dordrecht, 2004.
- 4. Révay et al.: Cold neutron PGAA facility at Budapest. *Nucl. Instr. and Metb. B213* (2004) 385–388.
- Postma, H., Schillebeeckx P.: Neutron-resonance capture as a tool to analyse the internal compositions of objects non-destructively. *Notiziario Neutroni e Luce di Sincrotrone 11(2)* (2006) 14–18.
- Schooneveld, E. M. et al.: A new position-sensitive transmission detector for epithermal neutron imaging. *Journal of Physics D: Applied Physics 42* (2009) 152003.
- Kockelmann, W., Kirfel, A.: Neutron diffraction imaging of cultural heritage objects. *Archaeometry Workshop 2006/2* (2006) 1–15.
- Kasztovszky, Zs., Belgya, T.: From PGAA to PGAI: from bulk analysis to elemental mapping. *Archaeometry Workshop 2006/2* (2006) 16–21.
- 9. Belgya, T. et al.: A new PGAI-NT setup at the NIPS facility of the Budapest Research Reactor. *Journal of Radioanalytical and Nuclear Chemistry 278(3)* (2008) 713–718.
- Kis, Z. et al.: Prompt Gamma Activation Imaging on "black boxes" in the "ANCIENT CHARM" project. Archaeometry Workshop 1 (2008) 41–60.

A szerkesztőbizottság fizika tanításáért felelős tagjai kérik mindazokat, akik a fizika vonzóbbá tétele, a tanítás eredményességének fokozása érdekében új módszerekkel, elképzelésekkel próbálkoznak, hogy ezeket osszák meg a Szemle hasábjain az olvasókkal!

