

Hubertus Marbach

Microscopy and Nanolithography Group

Hubertus Marbach

Microscopy and Nanolithography Group

Fabrication/Nanotechnology

Functional Nanostructure

FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG Hubertus Marbach

Microscopy and Nanolithography Group

BREAKTHROUGH OF THE YEAR

Fabrication/Nanotechnology

In 2001, scientists assembled molecules into basic circuits, raising hopes for a new world of nanoelectronics

Molecules Get Wired

top-down approach

bottom-up approach

Nano-toolbox

Good connections. Molecules can now be crafted into working circuits. Constructing real molecular chips will be a big challenge.

21 DECEMBER 2001 VOL 294 SCIENCE

Hubertus Marbach

Microscopy and Nanolithography Group

Observation/Microscopy

FRIEDRICH-ALEXANDER

ERLANGEN-NÜRNBERG

UNIVERSITÄT

Next-Generation Technology Hits an Early Midlife Crisis

Researchers had hoped that a new revolution in ultraminiaturized electronic gadgetry lay almost within reach. But now some are saying the future must wait

top-down approach

Nano-toolbox

bottom-up approach

Fabrication/Nanotechnology

24 OCTOBER 2003 VOL 302 SCIENCE

Hubertus Marbach

Microscopy and Nanolithography Group

A pioneer of microscopy: Antonie van Leeuwenhoek

Pushing resolution in microscopy: the Nobelprice 1986

Concept: smaller wavelength of illuminating radiation, e.g., electrons

-transmission electron microscope (TEM) -scanning electron microscope (SEM)

Concept: Sensing with sharp probes based on near field interactions

-Scanning tunneling microscope (STM) -Atomic force microscope (AFM)

1st part:

STM investigations of porphyrins on single crystal metal surfaces as prototypes for functional molecules

Haemoglobin: conformational adaption upon O₂ coordination

G. Fermi et al., J Mol Biol, 175: pp. 159, 1984

The ingredients

The ingredients

Controlling the reactivity of the metal center by interaction with the substrate

Molecular arrangement on surface: general considerations

How do the different interactions contribute to the arrangement? And can we exploit them to tailor molecular architechtures?

Molecule – molecule interaction

Factors expected to influence the arrangement:

-choice of the actual porphrin derivative (e.g. different ligands and metal centers) -choice of the substrate

Mixture of 2HOEP and CoOEP on Ag(111)

I set = 37 pA, Ugap = -0.2 V

Y. Bai, F. Buchner, I. Kellner, M. Schmid, F. Vollnhals, H.P. Steinrück, H. Marbach, J.M. Gottfried, **New Journal of Physics**, 11 (2009) 125004

From submonolayer coverage to the multilayer regime: CoTPP on Ag(111)

F. Buchner, I. Kellner, W. Hieringer, A. Görling, H.-P. Steinrück and H. Marbach **PCCP** 12 (2010) 13082.

In situ metalation (functionalization) of 2HTPP

STM: F. Buchner, V. Schwald, K. Comanici, H.-P. Steinrück and H. Marbach, **ChemPhysChem.** 8 (2007) **XPS/STM:** F. Buchner, K. Flechtner, Y. Bai, E. Zillner, I. Kellner, H.P. Steinrück, H. Marbach, and J.M. Gottfried, **J. Phys. Chem. C** 112(2008) 15458

-Co/2HTPP-XPS: J. M. Gottfried, K. Flechtner, A. Kretschmann, T. Lukasczyk, H.-P. Steinrück, J. Am. Chem. Soc. 128 (2006) 5644
-Fe/2HTPyP-STM: W Auwärter, A Weber-Bargioni, S Brink, A Riemann, A Schiffrin, M Ruben, J V Barth, 2007 ChemPhysChem, 8, 250
-Co/2HTPP-XPS/STM/Theo:T. E. Shubina, H. Marbach, K. Flechtner, A. Kretschmann, N. Jux, F. Buchner, H.-P. Steinrück, T. Clark and J. M. Gottfried, J. Am. Chem. Soc. 129 (2007) 9476
-Fe/2HPc-STM/XPS: Y. Bai, F. Buchner, M. T. Wendahl, I. Kellner, A. Bayer, H.-P. Steinrück, H. Marbach and J. M. Gottfried, J. Phys. Chem. C 112 (2008) 6087

Metalation of 2HTPP with predepositied Fe

F. Buchner, K. Flechtner, Y. Bai, E. Zillner, I. Kellner, H.P. Steinrück, H. Marbach, and J.M. Gottfried , J. Phys. Chem. C 112(2008) 15458

Submolecularly resolved appearance of TPP molecules

Conformational adaption upon adsorption – saddle-shaped macrocycle

F. Buchner et al., ACS Nano, 2009. 3(7): p. 1789-1794

F. Buchner et al., **PCCP**. 12 (2010) 13082

Polymorphism of CoTTBPP on Ag(111)

F. Buchner, K. Comanici, N. Jux, H.-P. Steinrück and H. Marbach, J. Phys. Chem. C, 111 (2007) 13531

F. Buchner, K. Comanici, N. Jux, H.-P. Steinrück and H. Marbach, J. Phys. Chem. C, 111 (2007) 13531

Individual 2HTPP on Cu(111)

(18 nm)²; 39 images x 20s = 13 min

→ 1D-diffusion in preferential direction of the substrate

→ Interaction between Cu and nitrogens of macrocycle

F. Buchner et al., J. Phys. Chem. C, 115 (2011) 24172

2HTPP on Cu(111): temperature dependent dynamics

F. Buchner, E. Zillner, M. Röckert, S. Gläßel, H.-P. Steinrück and H. Marbach, Chem. Eur. J. 17 (2011) 10226

Separation of CoTPP and 2HTPP on Cu(111)

For **2HTPP** a strong interaction of the iminic nitrogen with the close packed Cu rows is proposed

For, e.g. CoTPP all nitrogens are coordinated to Co

Sample @ RT

In situ metalation of 2HTPP on Cu(111): XPS &STM

Metalation of 2HTPP on Cu(111): analysis of STM data

Arrhenius analysis:

S. Ditze, M. Stark, M Drost, F. Buchner, H.P. Steinrück, and H. Marbach, Angew. Chem Int. Ed., 2012 in press.

Composite surfaces a template for molecular architectures?

2HTPP and CoTPP on Cu(111) precovered with oxygen islands

52x114s (43 nm)²

2HTPP and CoTPP on Cu(111) precovered with oxygen islands

Prestructured surfaces for molecular architectures

The bottom-up porphyrin toolbox

K. Flechtner, J.M. Gottfried, H.P. Steinrück, and H. Marbach, **ACS Nano**, 2009. **3**(7): p. 1789-1794

2nd part:

Fabrication and characterization of nanostructures by means of a highly focused electron beam in <u>UHV</u>

→ Writing nanostructures via Electron Beam Induced Deposition (EBID)

FEPIP application: state-of-the-art mask repair tool

Nanostructuring Using 3D Deposition Lith

ZEISS, Mask repair tool

T. Liang, et al. Intel Corporation; Boegli, et al. NaWoTec GmbH,

Why UHV ?

SEM in a High Vacuum Environment (HV):

-electron induced
deposition of adsorbats
-in HV systems mainly
hydrocarbons (pump oil)
-most commercial SEMs
are housed in HV

Image from: "A guide to Scanning Microscope Observation", Jeol

Results for EBID in a High Vacuum Environment (HV) from Literature:

Typical metal content of HV-EBID deposits [1-3]:

≈ 15 - 60 % metal

Why UHV ?

≈ 15 - 60 % metal

[1] H. W. P. Koops et. al., *J. Vac. Sci. Technol. B*, 1988, 6, p. 477; [2] Y. M. Lau et. al., *J. Vac. Sci. Technol. A*, 2002, 20, p. 1295; [3] I. Utke et al., Applied Physics Letters (2002), 80, 4792-4794.

TiO₂ nanotubes supplied by Dr. Oliver Diwald, TU Wien

Lithographic control: EBID with different molecules

Line width (e.g. in F): ~ 15 nm ≈ smallest achievable size

Conventional wisdom: continuous "growth" of EBID with increasing e⁻ dose

Drouin et al., Scanning (2007), 29, 92

Conventional wisdom: continuous "growth" of EBID with increasing e⁻ dose

Simulation with **CASINO V 2.42** Drouin et al., Scanning (2007), 29, 92

T. Lukasczyk, M. Schirmer, H.-P. Steinrück, H. Marbach, small 2008, 4, No. 6, 841–846

200 nm

Slightly lower purity of the EBID structures at 200 K

Fabrication of **continuous structures** on a clean Si(001) surface at 200 K

200 nm

T. Lukasczyk, M. Schirmer, H.-P. Steinrück, H. Marbach, **small 2008**, *4*, No. 6, 841–846

Precursor molecules for FEBIP in our project so far

T. T. Lukaschzyk et al., *Small*, 4 (2008) 841
T. Lukaschzyk et al., *Langmuir*, 25 (2009) 11930
F. Porrati et al., *J. Phys. D*, 44 (2011) 425001

M. Schirmer et al., Nanotechnology, 22 (2011) 085301

Separation of irradiation and precursor dosage

Step 1: Irradiate clean surface

Step 2: Dose Fe(CO)₅ for few hours at p=3x10⁻⁷ mbar

Irradiation without precursor dosage as a seed for structure growth?

Electron beam induced surface activation (EBISA)

Irradiation of SiO_x without precursor dosage + autocatalytic growth (4h 30min)

Local electron induced activation of the surface! Reduction of proximity effects proposed! M.-M. Walz, M. Schirmer, F. Vollnhals, T. Lukasczyk, H.-P. Steinrück, H. Marbach, *Angew. Chem. Int. Ed.*, 49 (2010) 4669.

Does charging account for the catalytic activation?

100

200

300

Kinetic Energy (eV)

400

12 nC

10⁵

 10^{4}

M.-M. Walz, F. Vollnhals, M. Schirmer, H.-P. Steinrück and H. Marbach, PCCP, 13 (2011) 17333

500

600

 10^{-1}

10

 10^{1}

 10^{2}

Electron Area Dose (C/cm²)

 10^{3}

Activation also works on TiO₂.....

Potential application examples for iron FEBIP nanostructures

FEBIP deposits as seeds for the growth of Nanowires and -tubes

Si nanowire growth: Alois Lugstein, Vienna

Exploration of electron transport and magnetic properties

F. Porrati, R. Sachser, M.-M. Walz, F. Vollnhals, H.P. Steinrück, H. Marbach and M. Huth, *J. Phys. D*, 44 (2011) 425001

CNT growth: Nadejda Popovska, Erlangen

Fe deposits, STXM, XMCD contrast, SLS May 2012

The top-down FEBIP toolbox

Summary and Outlook

...relies on self-assembly of large organic molecules, here porphyrins as prototype examples for functional molecules

Control through:

-choice of molecule, e.g. attached peripheral ligands -functionalization by choice of substrate

situ metalation

FEBIP Structures as template for the assembly and/or functionalization of large organic molecules Usage of a high. locally modify the subto lithographically fabricate nanostructures

Control through: -lithography -choice of precursor molecule - choice of substrate -catalytic effects op-down approach

Acknowledgements

Technichal support: Hans-Peter Bäumler Bernd Kress Uwe Sauer Friedhold Wölfel

PC-II

th vacuo veritas

Michael Schirmer

Thomas Lukasczyk Michael Röckert

STM-team Stefanie Ditze Michael Stark Karmen Comanici Veronika Schwald Ina Kellner

Patrick Wintrich

Hans-Peter Steinrück

EBID-team Fan Tu Martin Drost

Florian Buchner

Elisabeth Zillner

Marie-Madeleine Walz Florian Rietzer Chen Chen, Achim Sandmann

Florian Vollnhals

Acknowledgements

Sonderforschungsbereich 583

<u>Spectroscopy (XPS,UPS):</u> PD Dr. Michael Gottfried, Dr. Ole Lytken Dr. Ken Flechtner, Dr. Jie Xiau, Michael Röckert, Yun Bai

Collaborations/STM:

PD Dr. Norbert Jux

Prof. Timothy Clark, Dr. Tatyana E. Shubina,

Prof. Paul Müller

Prof. Andreas Görling, Dr. Wolfgang Hieringer

Prof. Johannes Barth, Dr. Willi Auwärter

Prof. Lechoslaw Latos-Grazynski

Collaborations/FEBIP:

Prof. Nadeja Popovska, Katja Danova

Prof. Alois Lugstein

Prof. Ulrich Zenneck, llona Jipa

Prof. Oliver Diwald and his group

Prof. Michael Huth

- Prof. Geoff Thornton
- Prof. Janos Kiss

