

Kinematical correlations: from RHIC to LHC

Antoni Szczurek

INSTITUTE OF NUCLEAR PHYSICS POLISH ACADEMY OF SCIENCES IFJ PAN AND UNIVERSITY OF RZESZOW

Nonphotonic electrons – coincidences

Recent results of PHENIX and STAR (see M. Luszczak talk for inclusive distributions)

Nonphotonic electrons

- 1) Heavy quark-antiquark production $gg \rightarrow c\overline{c} \text{ or } gg \rightarrow b\overline{b}$ $q\overline{q} \rightarrow c\overline{c} \text{ or } q\overline{q} \rightarrow b\overline{b}$ k_t -factorization approach, Kwiecinski UPDFs here.
- 2) Fragmentation $c \rightarrow D \text{ and } \bar{c} \rightarrow \bar{D}$ $b \rightarrow B \text{ and } \bar{b} \rightarrow \bar{B}$ Peterson fragmentation functions.
- 3) Semileptonic decays
 D → e⁺ and D̄ → e⁻ (see CLEO data)
 B → e⁻ and B̄ → e⁺ (see BBAR data)
 fit of the decay function to the decay data.
- 4) Drell-Yan dielectron production

Simultaneous fragmentation of Q and \overline{Q}

From heavy quarks/antiquarks to heavy mesons:

$$\approx \int \frac{D_{Q \to M}(z_1)}{z_1} \cdot \frac{D_{\bar{Q} \to \bar{M}}(z_2)}{z_2} \cdot \frac{d\sigma(y_1, p_{1t}^M, y_2, p_{2t}^M, \phi)}{dy_1 dp_{1t}^Q dy_2 dp_{2t}^M d\phi} dz_1 dz_2 \quad . \tag{1}$$

where: $p_{1t}^Q = \frac{p_{1t}^M}{z_1}$, $p_{2t}^Q = \frac{p_{2t}^M}{z_2}$, $z_1 = (0, 1)$ and $z_2 = (0, 1)$. $D_{Q \to M}(z_1)$, $D_{\bar{Q} \to \bar{M}}(z_2)$ – Peterson fragmentation functions.

Approximation:

 y_1, y_2, ϕ – unchanged in the fragmentation process (reasonable for heavy quarks/antiquarks).

$D - \overline{D}$ correlations in transverse momenta

Kwiecinski UGDF with $\mu^2 = 4m_c^2$ and $b_0 = 1 \text{ GeV}^{-1}$

$D - \overline{D}$ azimuthal correlations

dashed: p_{1t}^D , $p_{2t}^D > 0.5$ GeV. Kwiecinski UGDF with $\mu^2 = 4m_c^2$ and $b_0 = 1$ GeV⁻¹ CDF has studied: $D^0 - D^{*-}$ and $D^+ - D^{*-}$ correlations.

Jaroh 2000 Takai n. 7

Dielectron correlations $(p_{1t}(e^+), p_{2t}(e^-))$

full range of rapidities Kwiecinski and Kharzeev-Levin UGDFs

Azimuthal correlations between e^+ and e^-

Decorrelation due to decays

March 2000 Takai n 0

Decorrelation due to semileptonic decays

Lost of memory (small transverse momenta)

Azimuthal correlations between e^+ and e^-

Cut on electron transverse momenta: $p_{1t}(e^+), p_{2t}(e^-) > 0.5 \text{ GeV}$

UGDF dependence of azimuthal correlations

Kwiecinski (black), Kharzeev-Levin (red)

Joroh 0000 Takai n 40

Pair transverse momentum distribution

Kwiecinski (black) versus Kharzeev-Levin (red)

March 2000 Takai n 42

Invariant mass distribution

$$\begin{aligned} \frac{1}{N_{evt}} \frac{dN}{dM_{ee}} &= \frac{1}{\sigma_{ine}} \\ (& BR(D \to e) \cdot BR(D \to e) \cdot \frac{d\sigma}{dM_{ee}} (gg \to c\bar{c} \to D\bar{D} \to e^+e^-; cuts) \\ + & BR(B \to e) \cdot BR(B \to e) \cdot \frac{d\sigma}{dM_{ee}} (gg \to b\bar{b} \to B\bar{B} \to e^+e^-; cuts) \\ + & \frac{d\sigma}{dM_{ee}} (q\bar{q} \to e^+e^-; cuts) \\ \sigma_{ine} (W = 200GeV) = 42.2 \text{ mb} \end{aligned}$$

$$BR(D \to e) \approx 0.1$$

$$BR(B \to e) \approx 0.1$$

PHENIX experimental cuts: -0.35 < $y(e^+), y(e^-) < 0.35$, $p_{1t}(e^+), p_{2t}(e^-) > 0.2 \text{ GeV}$. (3)

Comparison with recent PHENIX data

Kwiecinski and Kharzeev-Levin UGDFs