Kinematical correlations: from RHIC to LHC

Antoni Szczurek

INSTITUTE OF NUCLEAR PHYSICS
POLISH ACADEMY OF SCIENCES
IFJ PAN
AND
UNIVERSITY OF RZESZOW

Our recent works on correlations

- Jet-jet correlations (with A. Rybarska and G. Ślipek)
- Photon-jet correlations (with T. Pietrycki)
- Charm-anticharm correlations (with M. Łuszczak)
- Correlations of leptons from semileptonic decays of heavy mesons
- Drell-Yan pair production (with G. Ślipek)
- J / ψ - gluon correlations (with S. Baranov)

FF Plan of the first part

- Introduction/Motivation
- Theoretical approach(es)
- Matrix elements
- Unintegrated gluon distributions
- Results
- Conclusions
based on:
A. Szczurek, A. Rybarska and G. Slipek, Phys. Rev. D76 (2007) 034001.

Introduction/Motivation

Experimental motivation:
New RHIC data for hadron-hadron correlations - indication of jet structure down to small transverse momenta
(\rightarrow Jan Rak)
New PHENIX data
Theoretical motivation:
Dynamics of gluon/parton ladders - a theoretical chalange.
The QCD dynamics (collinear, k_{t}-factorization) is usually investigated for inclusive reactions:

- γ^{*}-proton total cross section (or F_{2})
- Inclusive production of jets
- Inclusive production of mesons (pions)
- Inclusive production of open charm, bottom, top
- Inclusive production of direct photons

Introduction/Motivation

Very interesting are:

- Dijet correlations (Leonidov-Ostrovsky, Bartels et al.)
- $Q \bar{Q}$ correlations (\rightarrow Marta Luszczak)
- γ^{*} - jet correlations (\rightarrow Tomasz Pietrycki)
- jet $-J / \psi$ correlations (Baranov-Szczurek)
- Exclusive reactions: $p p \rightarrow p X p$ where $X=J / \psi, \chi_{c}, \chi_{b}, \eta^{\prime}, \eta_{c}, \eta_{b}$
(Matrin-Khoze-Ryskin, Szczurek-Pasechnik-Teryaev)
They contain much more information about QCD ladders.

QCD motivation

HERA $\gamma^{*} p$ total cross section $\left(F_{2}\left(x, Q^{2}\right)\right)$

Collinear approach to dijet correlations

In LO:

$$
\begin{equation*}
\frac{d \sigma}{d \phi}=f(W) \delta(\phi-\pi) \tag{1}
\end{equation*}
$$

In NLO:

Fiqure 1: A tvpical diaaram for $2 \rightarrow 3$ contributions.

k_{t}-factorization approach to dijet correlations

Figure 2: Typical diagrams for k_{t}-factorization approach.

Pair of partons in k_{t}-factorization approach

$$
\begin{aligned}
\frac{d \sigma\left(h_{1} h_{2} \rightarrow j j\right)}{d^{2} p_{1, t} d^{2} p_{2, t}} & =\int d y_{1} d y_{2} \frac{d^{2} \kappa_{1 t}}{\pi} \frac{d^{2} \kappa_{2 t}}{\pi} \frac{1}{16 \pi^{2}\left(x_{1} x_{2} s\right)^{2}} \overline{|\mathcal{M}(g g \rightarrow j j)|^{2}} \\
& \cdot \delta^{2}\left(\vec{\kappa}_{1, t}+\vec{\kappa}_{2, t}-\vec{p}_{1, t}-\vec{p}_{2, t}\right) f\left(x_{1}, \kappa_{1, t}^{2}\right) f\left(x_{2}, \kappa_{2, t}^{2}\right.
\end{aligned}
$$

where

$$
\begin{align*}
& x_{1}=\frac{m_{1 t}}{\sqrt{s}} \mathrm{e}^{+y_{1}}+\frac{m_{2 t}}{\sqrt{s}} \mathrm{e}^{+y_{2}}, \tag{3}\\
& x_{2}=\frac{m_{1 t}}{\sqrt{s}} \mathrm{e}^{-y_{1}}+\frac{m_{2 t}}{\sqrt{s}} \mathrm{e}^{-y_{2}} \tag{4}
\end{align*}
$$

The final partonic state is $j j=g g, q \bar{q}$.
There are other (quark/antiquark initiated) processes (\rightarrow see soon)

Pair of partons in k_{t}-factorization approach

$$
\begin{equation*}
f_{1}\left(x_{1}, \kappa_{1, t}^{2}\right) \rightarrow x_{1} g_{1}\left(x_{1}\right) \delta\left(\kappa_{1, t}^{2}\right) \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{2}\left(x_{2}, \kappa_{2, t}^{2}\right) \rightarrow x_{2} g_{2}\left(x_{2}\right) \delta\left(\kappa_{2, t}^{2}\right) \tag{6}
\end{equation*}
$$

then one recovers the standard collinear formula.
Inclusive cross sections:

$$
\begin{equation*}
\frac{d \sigma\left(h_{1} h_{2} \rightarrow j\right)}{d y_{1} d^{2} p_{1, t}}=\left.2 \int d y_{2} \frac{d^{2} \kappa_{1, t}}{\pi} \frac{d^{2} \kappa_{2, t}}{\pi}(\ldots)\right|_{\vec{p}_{2, t}=\vec{\kappa}_{1, t}+\vec{\kappa}_{2, t}-\vec{p}_{1, t}} \tag{7}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
\frac{d \sigma\left(h_{1} h_{2} \rightarrow j\right)}{d y_{2} d^{2} p_{2, t}}=\left.2 \int d y_{1} \frac{d^{2} \kappa_{1, t}}{\pi} \frac{d^{2} \kappa_{2, t}}{\pi}(\ldots)\right|_{\vec{p}_{1, t}=\vec{\kappa}_{1, t}+\vec{\kappa}_{2, t}-\vec{p}_{2, t}} \tag{8}
\end{equation*}
$$

Pair of partons in k_{t}-factorization approach

The integration with the Dirac delta function in (2)

$$
\begin{equation*}
\int d y_{1} d y_{2} \frac{d^{2} \kappa_{1 t}}{\pi} \frac{d^{2} \kappa_{2 t}}{\pi}(\ldots) \delta^{2}(\ldots) \tag{9}
\end{equation*}
$$

can be performed by introducing the following new auxiliary variables:

$$
\begin{align*}
& \vec{Q}_{t}=\vec{\kappa}_{1 t}+\vec{\kappa}_{2 t} \\
& \vec{q}_{t}=\vec{\kappa}_{1 t}-\vec{\kappa}_{2 t} \tag{10}
\end{align*}
$$

The jacobian of this transformation is:

$$
\frac{\partial\left(\vec{Q}_{t}, \vec{q}_{t}\right)}{\partial\left(\vec{\kappa}_{1 t}, \vec{\kappa}_{2 t}\right)}=\left(\begin{array}{cc}
1 & 1 \tag{11}\\
1 & -1
\end{array}\right) \cdot\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)=2 \cdot 2=4 .
$$

Pair of partons in k_{t}-factorization approach

Then:

$$
\begin{gather*}
\frac{d \sigma\left(h_{1} h_{2} \rightarrow Q \bar{Q}\right)}{d^{2} p_{1, t} d^{2} p_{2, t}}=\frac{1}{4} \int d y_{1} d y_{2} d^{2} Q_{t} d^{2} q_{t}(\ldots) \delta^{2}\left(\vec{Q}_{t}-\vec{p}_{1, t}-\vec{p}_{2, t}\right) \tag{12}\\
=\left.\frac{1}{4} \int d y_{1} d y_{2} \underbrace{d^{2} q_{t}}(\ldots)\right|_{\vec{Q}_{t}=\vec{P}_{t}}= \tag{13}\\
=\left.\frac{1}{4} \int d y_{1} d y_{2} \overbrace{\underbrace{q_{t} d q_{t}} d \varphi}(\ldots)\right|_{\vec{Q}_{t}=\vec{P}_{t}}= \tag{14}\\
=\left.\frac{1}{4} \int d y_{1} d y_{2} \overbrace{\overbrace{\frac{1}{2} d q_{t}^{2} d \varphi}^{2}}(\ldots)\right|_{\vec{Q}_{t}=\vec{P}_{t}} \tag{15}
\end{gather*}
$$

Above $\vec{P}_{t}=\vec{p}_{1, t}+\vec{p}_{2, t}$.

Pair of partons in k_{t}-factorization approach

If one is interested in the distribution of the sum of transverse momenta of the outgoing quarks, then it is convenient to write

$$
\begin{align*}
d^{2} p_{1, t} d^{2} p_{2, t} & =\frac{1}{4} d^{2} P_{t} d^{2} p_{t}=\frac{1}{4} d \varphi_{+} P_{t} d P_{t} d \varphi_{-} p_{t} d p_{t} \\
& =\frac{1}{4} 2 \pi P_{t} d P_{t} d \varphi_{-} p_{t} d p_{t} \tag{16}
\end{align*}
$$

If one is interested in studying a two-dimensional map $p_{1, t} \times p_{2, t}$ then

$$
\begin{equation*}
d^{2} p_{1, t} d^{2} p_{2, t}=d \phi_{1} p_{1, t} d p_{1, t} d \phi_{2} p_{2, t} d p_{2, t} \tag{17}
\end{equation*}
$$

Then

$$
\begin{equation*}
\frac{d \sigma\left(p_{1, t}, p_{2, t}\right)}{d p_{1, t} d p_{2, t}}=\int d \phi_{1} d \phi_{2} p_{1, t} p_{2, t} \int d y_{1} d y_{2} \frac{1}{4} q_{t} d q_{t} d \phi_{q_{t}}(\ldots) \tag{18}
\end{equation*}
$$

Pair of partons in k_{t}-factorization approach

It is convenient to make the following transformation of variables

$$
\begin{equation*}
\left(\phi_{1}, \phi_{2}\right) \rightarrow\left(\phi_{\text {sum }}=\phi_{1}+\phi_{2}, \phi_{\text {dif }}=\phi_{1}-\phi_{2}\right) \tag{19}
\end{equation*}
$$

where $\phi_{\text {sum }} \in(0,4 \pi)$ and $\phi_{\text {dif }} \in(-2 \pi, 2 \pi)$. Now the new domain $\left(\phi_{\text {sum }}, \phi_{\text {dif }}\right)$ is twice bigger than the original one $\left(\phi_{1}, \phi_{2}\right)$.

$$
\begin{equation*}
d \phi_{1} d \phi_{2}=\left(\frac{\partial \phi_{1} \partial \phi_{2}}{\partial \phi_{s u m} \partial \phi_{d i f}}\right) d \phi_{s u m} d \phi_{d i f} \tag{20}
\end{equation*}
$$

The transformation jacobian is:

$$
\begin{equation*}
\left(\frac{\partial \phi_{1} \partial \phi_{2}}{\partial \phi_{\text {sum }} \partial \phi_{\text {dif }}}\right)=\frac{1}{2} \tag{21}
\end{equation*}
$$

Pair of partons in k_{t}-factorization approach

$$
\begin{align*}
d^{2} p_{1, t} d^{2} p_{2, t} & ==p_{1, t} d p_{1, t} p_{2, t} d p_{2, t} \frac{d \phi_{\text {sum }} d \phi_{d i f}}{2} \\
& =p_{1, t} d p_{1, t} p_{2, t} d p_{2, t} 2 \pi d \phi_{d i f} . \tag{22}
\end{align*}
$$

The integrals in Eq.(18) can be written equivalently as

$$
\begin{equation*}
\frac{d \sigma\left(p_{1, t}, p_{2, t}\right)}{d p_{1, t} d p_{2, t}}=\frac{1}{2} \cdot \frac{1}{2} \int d \phi_{\text {sum }} d \phi_{d i f} p_{1, t} p_{2, t} \int d y_{1} d y_{2} \frac{1}{4} q_{t} d q_{t} d \phi_{q_{t}}(\ldots) . \tag{23}
\end{equation*}
$$

First $\frac{1}{2}$ - jacobian, second $\frac{1}{2}$ - extra extension of the domain.
By symmetry, there is no dependce on $\phi_{\text {sum }}$

$$
\begin{equation*}
\frac{d \sigma\left(p_{1, t}, p_{2, t}\right)}{d p_{1, t} d p_{2, t}}=\frac{1}{2} \cdot \frac{1}{2} \cdot 4 \pi \int d \phi_{\text {dif }} p_{1, t} p_{2, t} \int d y_{1} d y_{2} \frac{1}{4} q_{t} d q_{t} d \phi_{q_{t}}(\ldots) . \tag{24}
\end{equation*}
$$

Matrix elements for $2 \rightarrow 2$ processes

The matrix elements for on-shell initial gluons/partons

$$
\begin{align*}
& \overline{\left|\mathcal{M}_{g g \rightarrow g g}\right|^{2}}=\frac{9}{2} g_{s}^{4}\left(3-\frac{\hat{t} \hat{u}}{\hat{s}^{2}}-\frac{\hat{s} \hat{u}}{\hat{t}^{2}}-\frac{\hat{s} \hat{t}}{\hat{u}^{2}}\right), \\
& \overline{\left|\mathcal{M}_{g g \rightarrow q \bar{q}}\right|^{2}}=\frac{1}{8} g_{s}^{4}\left(6 \frac{\hat{t} \hat{u}}{\hat{s}^{2}}+\frac{4}{3} \frac{\hat{u}}{\hat{t}}+\frac{4}{3} \frac{\hat{t}}{\hat{u}}+3 \frac{\hat{t}}{\hat{s}}+3 \frac{\hat{u}}{\hat{s}}\right) \text {, } \\
& \overline{\left|\mathcal{M}_{g q \rightarrow g q}\right|^{2}}=g_{s}^{4}\left(-\frac{4}{9} \frac{\hat{s}^{2}+\hat{u}^{2}}{\hat{s} \hat{u}}+\frac{\hat{u}^{2}+\hat{s}^{2}}{\hat{t}^{2}}\right) \text {, } \\
& \overline{\left|\mathcal{M}_{q g \rightarrow q g}\right|^{2}}=g_{s}^{4}\left(-\frac{4}{9} \frac{\hat{s}^{2}+\hat{t}^{2}}{\hat{s} \hat{t}}+\frac{\hat{t}^{2}+\hat{s}^{2}}{\hat{u}^{2}}\right) \text {. } \tag{25}
\end{align*}
$$

The matrix elements for off-shell initial gluons - the same formulae but with $\hat{s}, \hat{t}, \hat{u}$ from off-shell kinematics. In this case $\hat{s}+\hat{t}+\hat{u}=k_{1}^{2}+k_{2}^{2}$, where $k_{1}^{2}, k_{2}^{2}<0$. Our prescription - a smooth analytic continuation of the on-shell formula off mass shell.

$2 \rightarrow 3$ processes in collinear approach

Standard parton model formula:

$$
\begin{equation*}
d \sigma\left(h_{1} h_{2} \rightarrow g g g\right)=\int d x_{1} d x_{2} g_{1}\left(x_{1}, \mu^{2}\right) g_{2}\left(x_{2}, \mu^{2}\right) d \hat{\sigma}(g g \rightarrow g g g) \tag{26}
\end{equation*}
$$

The elementary cross section can be written as

$$
\begin{equation*}
\left.d \hat{\sigma}(g g \rightarrow g g g)=\frac{1}{2 \hat{s}} \right\rvert\, \overline{\left.\mathcal{M}_{g g \rightarrow g g g}\right|^{2}} d R_{3} . \tag{27}
\end{equation*}
$$

The three-body phase space element is:

$$
\begin{equation*}
d R_{3}=\frac{d^{3} p_{1}}{2 E_{1}(2 \pi)^{3}} \frac{d^{3} p_{2}}{2 E_{2}(2 \pi)^{3}} \frac{d^{3} p_{3}}{2 E_{3}(2 \pi)^{3}}(2 \pi)^{4} \delta^{4}\left(p_{a}+p_{b}-p_{1}-p_{2}-p_{3}\right), \tag{28}
\end{equation*}
$$

$2 \rightarrow 3$ processes in collinear-factorization app

It can be written in an equivalent way as:

$$
\begin{equation*}
d R_{3}=\frac{d y_{1} d^{2} p_{1 t}}{(4 \pi)(2 \pi)^{2}} \frac{d y_{2} d^{2} p_{2 t}}{(4 \pi)(2 \pi)^{2}} \frac{d y_{3} d^{2} p_{3 t}}{(4 \pi)(2 \pi)^{2}}(2 \pi)^{4} \delta^{4}\left(p_{a}+p_{b}-p_{1}-p_{2}-p_{3}\right), \tag{29}
\end{equation*}
$$

The last formula is useful for practical purposes. Now

$$
\begin{equation*}
d \sigma=d y_{1} d^{2} p_{1 t} d y_{2} d^{2} p_{2 t} d y_{3} \cdot \frac{1}{(4 \pi)^{3}(2 \pi)^{2}} \frac{1}{\hat{s}^{2}} x_{1} f_{1}\left(x_{1}, \mu_{f}^{2}\right) x_{2} f_{2}\left(x_{2}, \mu_{f}^{2}\right) \overline{\mid \mathcal{M}_{2}} \tag{30}
\end{equation*}
$$

where

$$
\begin{align*}
& x_{1}=\frac{p_{1 t}}{\sqrt{s}} \exp \left(+y_{1}\right)+\frac{p_{2 t}}{\sqrt{s}} \exp \left(+y_{2}\right)+\frac{p_{3 t}}{\sqrt{s}} \exp \left(+y_{3}\right) \\
& x_{2}=\frac{p_{1 t}}{\sqrt{s}} \exp \left(-y_{1}\right)+\frac{p_{2 t}}{\sqrt{s}} \exp \left(-y_{2}\right)+\frac{p_{3 t}}{\sqrt{s}} \exp \left(-y_{3}\right) . \tag{31}
\end{align*}
$$

$2 \rightarrow 3$ processes in collinear-factorization app

Repeating similar steps as for $2 \rightarrow 2$:

$$
\begin{array}{r}
d \sigma=\frac{1}{64 \pi^{4} \hat{s}^{2}} x_{1} f_{1}\left(x_{1}, \mu_{f}^{2}\right) x_{2} f_{2}\left(x_{2}, \mu_{f}^{2}\right) \overline{\left|\mathcal{M}_{2 \rightarrow 3}\right|^{2}} \tag{32}\\
p_{1 t} d p_{1 t} p_{2 t} d p_{2 t} d \Phi_{-} d y_{1} d y_{2} d y_{3},
\end{array}
$$

where Φ_{-}is restricted to the interval $(0, \pi)$.

Matrix elements for $2 \rightarrow 3$ processes

For the $g g \rightarrow g g g$ process $\left(k_{1}+k_{2} \rightarrow k_{3}+k_{4}+k_{5}\right)$ the squared matrix element is

$$
\begin{align*}
& \overline{\left.|\mathcal{M}|\right|^{2}}=\frac{1}{2} g_{s}^{6} \frac{N_{c}^{3}}{N_{c}^{2}-1} \\
& \qquad \quad[(12345)+(12354)+(12435)+(12453)+(12534)+(12543)+ \\
& \quad(13245)+(13254)+(13425)+(13524)+(12453)+(14325)] \\
& \quad \times \sum_{i<j}\left(k_{i} k_{j}\right) / \prod_{i<j}\left(k_{i} k_{j}\right) \tag{33}\\
& \text { where }(i j l m n) \equiv\left(k_{i} k_{j}\right)\left(k_{j} k_{l}\right)\left(k_{l} k_{m}\right)\left(k_{m} k_{n}\right)\left(k_{n} k_{i}\right)
\end{align*}
$$

Matrix elements for $2 \rightarrow 3$ processes

It is useful to calculate matrix element for the process $q \bar{q} \rightarrow g g g$. The squared matrix elements for other processes can be obtained by crossing the squared matrix element for the process $q \bar{q} \rightarrow g g g\left(p_{a}+p_{b} \rightarrow k_{1}+k_{2}+k_{3}\right)$

$$
\begin{align*}
\overline{|\mathcal{M}|^{2}} & =g_{s}^{6} \frac{N_{c}^{2}-1}{4 N_{c}^{4}} \\
& \sum_{i}^{3} a_{i} b_{i}\left(a_{i}^{2}+b_{i}^{2}\right) /\left(a_{1} a_{2} a_{3} b_{1} b_{2} b_{3}\right) \\
\times & {\left[\frac{\hat{s}}{2}+N_{c}^{2}\left(\frac{\hat{s}}{2}-\frac{a_{1} b_{2}+a_{2} b_{1}}{\left(k_{1} k_{2}\right)}-\frac{a_{2} b_{3}+a_{3} b_{2}}{\left(k_{2} k_{3}\right)}-\frac{a_{3} b_{1}+a_{1} b_{3}}{\left(k_{3} k_{1}\right)}\right)\right.} \\
& +\frac{2 N^{4}}{\hat{s}}\left(\frac{a_{3} b_{3}\left(a_{1} b_{2}+a_{2} b_{1}\right)}{\left(k_{2} k_{3}\right)\left(k_{3} k_{1}\right)}+\frac{a_{1} b_{1}\left(a_{2} b_{3}+a_{3} b_{2}\right)}{\left(k_{3} k_{1}\right)\left(k_{1} k_{2}\right)}+\frac{a_{2} b_{2}\left(a_{3} b_{1}+a_{1} b\right.}{\left(k_{1} k_{2}\right)\left(k_{2} k_{3}\right)}\right. \tag{34}
\end{align*}
$$

Matrix elements for $2 \rightarrow 3$ processes

The matrix element for the process $g g \rightarrow q \bar{q} g$ is obtained from that of $q \bar{q} \rightarrow g g g$ by appropriate crossing:
$\overline{|\mathcal{M}|^{2}}{ }_{g g \rightarrow q \bar{q} g}\left(k_{1}, k_{2}, k_{3}, k_{4}, k_{5}\right)=\frac{9}{64} \cdot \overline{|\mathcal{M}|^{2}}{ }_{q \bar{q} \rightarrow g g g}\left(-k_{4},-k_{3},-k_{1},-k_{2}, k_{5}\right)$.
We sum over 3 final flavours ($f=u, d, s$). For the $q g \rightarrow q g g$ process

$$
\begin{equation*}
{\overline{|\mathcal{M}|^{2}}}_{q g \rightarrow q g g}\left(k_{1}, k_{2}, k_{3}, k_{4}, k_{5}\right)=\left(-\frac{3}{8}\right) \cdot \overline{|\mathcal{M}|^{2}}{ }_{q \bar{q} \rightarrow g g g}\left(k_{1},-k_{3},-k_{2}, k_{4}, k_{5}\right) \tag{37}
\end{equation*}
$$

and finally for the process $g \bar{q} \rightarrow \bar{q} g g$
$\overline{|\mathcal{M}|}{ }^{2}{ }_{g \bar{q} \rightarrow \bar{q} g g}\left(k_{1}, k_{2}, k_{3}, k_{4}, k_{5}\right)=\left(-\frac{3}{8}\right) \cdot \overline{|\mathcal{M}|^{2}}{ }_{q \bar{q} \rightarrow g g g}\left(-k_{3}, k_{2},-k_{1}, k_{4}, k_{5}\right)$

Unintegrated gluon distributions (part 1)

Gaussian smearing

$$
\begin{gather*}
\mathcal{F}_{\text {naive }}\left(x, \kappa^{2}, \mu_{F}^{2}\right)=x g^{\text {coll }}\left(x, \mu_{F}^{2}\right) \cdot f_{\text {Gauss }}\left(\kappa^{2}\right) \tag{39}\\
f_{\text {Gauss }}\left(\kappa^{2}\right)=\frac{1}{2 \pi \sigma_{0}^{2}} \exp \left(-\kappa_{t}^{2} / 2 \sigma_{0}^{2}\right) / \pi \tag{40}
\end{gather*}
$$

BFKL UGDF

$$
-x \frac{\partial f\left(x, q_{t}^{2}\right)}{\partial x}=\frac{\alpha_{s} N_{c}}{\pi} q_{t}^{2} \int_{0}^{\infty} \frac{d q_{1 t}^{2}}{q_{1 t}^{2}}\left[\frac{f\left(x, q_{1 t}^{2}\right)-f\left(x, q_{t}^{2}\right)}{\left|q_{t}^{2}-q_{1 t}^{2}\right|}+\frac{f\left(x, q_{t}^{2}\right)}{\sqrt{q_{t}^{4}+4 q_{1 t}^{4}}}\right]
$$

Unintegrated gluon distributions (part 2)

Golec-Biernat-Wuesthoff saturation model from dipole-nucleon cross section to UGDF

$$
\begin{gather*}
\alpha_{s} \mathcal{F}\left(x, \kappa_{t}^{2}\right)=\frac{3 \sigma_{0}}{4 \pi^{2}} R_{0}^{2}(x) \kappa_{t}^{2} \exp \left(-R_{0}^{2}(x) \kappa_{t}^{2}\right) \tag{42}\\
R_{0}(x)=\left(\frac{x}{x_{0}}\right)^{\lambda / 2} \frac{1}{G e V} \tag{43}
\end{gather*}
$$

Parameters adjusted to HERA data for F_{2}.
Kharzeev-Levin gluon saturation

$$
\mathcal{F}\left(x, \kappa^{2}\right)= \begin{cases}f_{0} & \text { if } \kappa^{2}<Q_{s}^{2} \tag{44}\\ f_{0} \cdot \frac{Q_{s}^{2}}{\kappa^{2}} & \text { if } \kappa^{2}>Q_{s}^{2}\end{cases}
$$

f_{0} adjusted by Szczurek to HERA data for F_{2}.

Kwiecinski parton distributions

QCD-most-consistent approach - CCFM.
For LO $(2 \rightarrow 1)$ processes convenient to use UPDFs in a space conjugated to transverse momentum (Kwieciński et al.)

$$
\begin{aligned}
\tilde{f}\left(x, b, \mu^{2}\right) & =\frac{1}{2 \pi} \int d^{2} \kappa \exp (-i \vec{\kappa} \cdot \vec{b}) \mathcal{F}\left(x, \kappa^{2}, \mu^{2}\right) \\
\mathcal{F}\left(x, \kappa^{2}, \mu^{2}\right) & =\frac{1}{2 \pi} \int d^{2} b \exp (i \vec{\kappa} \cdot \vec{b}) \tilde{f}\left(x, b, \mu^{2}\right)
\end{aligned}
$$

The relation between
Kwieciński UPDF and the collinear PDF:

$$
x p_{k}\left(x, \mu^{2}\right)=\int_{0}^{\infty} d \kappa_{t}^{2} f_{k}\left(x, \kappa_{t}^{2}, \mu^{2}\right)
$$

Kwiecinski parton distributions

At $b=0$ the functions f_{j} are related to the familiar integrated parton distributions, $p_{j}(x, Q)$, as follows:

$$
\begin{aligned}
& f_{j}(x, 0, Q)=\frac{x}{2} p_{j}(x, Q), \\
p_{N S} & =u-\bar{u}, d-\bar{d} \\
p_{S} & =\bar{u}+u+\bar{d}+d+\bar{s}+s+\ldots, \\
p_{\text {sea }} & =2 \bar{d}+2 u+\bar{s}+s+\ldots, \\
p_{G} & =g,
\end{aligned}
$$

where . . . stand for higher flavors.

Kwiecinski equations

for a given impact parameter:

$$
\begin{aligned}
\frac{\partial f_{N S}(x, b, Q)}{\partial Q^{2}} & =\frac{\alpha_{s}\left(Q^{2}\right)}{2 \pi Q^{2}} \int_{0}^{1} d z P_{q q}(z)\left[\Theta(z-x) J_{0}((1-z) Q b) f_{N S}\left(\frac{x}{z}, b, Q\right)\right. \\
& \left.-f_{N S}(x, b, Q)\right] \\
\frac{\partial f_{S}(x, b, Q)}{\partial Q^{2}} & =\frac{\alpha_{s}\left(Q^{2}\right)}{2 \pi Q^{2}} \int_{0}^{1} d z\left\{\Theta (z - x) J _ { 0 } ((1 - z) Q b) \left[P_{q q}(z) f_{S}\left(\frac{x}{z}, b, Q\right)\right.\right. \\
& \left.\left.+P_{q g}(z) f_{G}\left(\frac{x}{z}, b, Q\right)\right]-\left[z P_{q q}(z)+z P_{g q}(z)\right] f_{S}(x, b, Q)\right\} \\
\frac{\partial f_{G}(x, b, Q)}{\partial Q^{2}} & =\frac{\alpha_{s}\left(Q^{2}\right)}{2 \pi Q^{2}} \int_{0}^{1} d z\left\{\Theta (z - x) J _ { 0 } ((1 - z) Q b) \left[P_{g q}(z) f_{S}\left(\frac{x}{z}, b, Q\right)\right.\right. \\
& \left.\left.+P_{g g}(z) f_{G}\left(\frac{x}{z}, b, Q\right)\right]-\left[z P_{g g}(z)+z P_{q g}(z)\right] f_{G}(x, b, Q)\right\}
\end{aligned}
$$

Nonperturbative effects

Transverse momenta of partons due to:

- perturbative effects (solution of the Kwieciński- CCFM equations),
- nonperturbative effects (intrinsic momentum distribution of partons)
Take factorized form in the b -space:

$$
\tilde{f}_{q}\left(x, b, \mu^{2}\right)=\tilde{f}_{q}^{C C F M}\left(x, b, \mu^{2}\right) \cdot F_{q}^{n p}(b) .
$$

We use a flavour and x independent form factor

$$
F_{q}^{n p}(b)=F^{n p}(b)=\exp \left(\frac{-b^{2}}{4 b_{0}^{2}}\right)
$$

May be too simplistic ?

Unintegrated gluon distributions (comparison)

Processes included in our k_{t}-factorization app

There are 4 important contributions:

- gluon+gluon \rightarrow gluon+gluon (Leonidov-Ostrovsky)
- gluon+gluon \rightarrow quark+antiquark (Leonidov-Ostrovsky)
- gluon+(anti)quark \rightarrow gluon+(anti)quark (new !!!)
- (anti)quark+gluon \rightarrow (anti)quark+gluon (new !!!)

First two processes discussed also by:
Bartels-Sabio-Vera-Schwennsen

New contributions

Figure 3:

Processes included in k_{t}-factorization

$g g \rightarrow g g$ (left upper),
$g g \rightarrow q \bar{q}$ (right upper),

 $g q \rightarrow g q$ (left lower), $q g \rightarrow q g$ (right lower).

Kwieciński UPDFs with $b_{0}=1 \mathrm{GeV}^{-1}, \mu^{2}=100 \mathrm{GeV}^{2}$. Full range of parton rapidities.

Processes included in k_{t}-factorization

Fractional contributions of different subprocesses

$g g \rightarrow g g$ (left upper),
$g g \rightarrow q \bar{q}$ (right upper),

$g q \rightarrow g q$ (left lower),
$q g \rightarrow q g$ (right lower).

Kwieciński UPDFs with $b_{0}=1 \mathrm{GeV}^{-1}, \mu^{2}=100 \mathrm{GeV}^{2}$. $5 \mathrm{GeV}<p_{1 t}, p_{2 t}<20 \mathrm{GeV}$.

Azimuthal correlations

Scales in Kwiecinski UGDF

$\mu^{2}=0.25$ (black), 10 (blue), 100 (red) GeV^{2}

Different UGDFs

\&f: $2 \rightarrow 3$ processes in collinear approach

Figure 7: $g g \rightarrow g g g$ component for $\mathrm{W}=200 \mathrm{GeV}$. Singularities when $\vec{p}_{1} \rightarrow 0, \vec{p}_{2} \rightarrow 0$ and $\vec{p}_{3} \rightarrow 0$.

ff How to remove NLO singularities?

if? $g g \rightarrow g g$, different UGDFs vs $g g \rightarrow g g g$

KL (left upper),
BFKL (right upper),
Ivanov-Nikolaev (left lower),

$g g \rightarrow g g g$ (right lower).

$$
-4<y_{1}, y_{2}<4
$$

Dijet correlations for $g g \rightarrow g g g$, leading jets

$p_{1 t}($ selected $)>p_{3 t}$ and $p_{2 t}($ selected $)>p_{3 t}$

Dijet correlations for $g g \rightarrow g g g$, leading jets

$p_{1 t}($ selected $)>p_{3 t}$ and $p_{2 t}($ selected $)>p_{3 t}$

Figure 9:

Windows in $p_{1 t}, p_{2 t}$

Figure 10: Definition of windows in $p_{1 t} \times p_{2 t}$ plane.

Windows in $p_{1 t}, p_{2 t}$

Figure 11:

Extra scalar cuts

- to eliminate LO and NLO singularities (yes!)
- to enhance resummation with respect to NLO (no!)

Figure 12: $\left|p_{1 t}-p_{2 t}\right|>\Delta_{s}$.

Extra vector cuts

- to eliminate LO and NLO singularities (yes!)
- to enhance resummation with respect to NLO (no!)

Figure 13: $\left|\vec{p}_{1 t}+\vec{p}_{2 t}\right|>\Delta_{v}$.

Summary/Conclusions of the first part

- Dijet correlations at RHIC have been calculated in the k_{t}-factorization approach with different UGDFs (UPDFs) from the literature
- Two new mechanisms have been included compared to the literature. They are dominant at larger rapidities (or rapidity gaps) i.e. constitute competition for Mueller-Navelet (BFKL) jets
- Results have been compared with collinear NLO calculations
- At $\phi<120^{\circ}$ and/or asymmetric jet transverse momenta the k_{t}-factorization is superior over the collinear NLO
- This calculation is a first step for hadron-hadron correlations measured at RHIC. Here internal structure of both jets enters in addition.
- The method can be used in semihard region (small p_{t}) at LHC.

Photon-jet correlations

Plan of the second part of the talk

- Introduction
- Inclusive spectra
- Photon-jet correlations
- Results
- Conclusions
based partially on:

1) Phys.Rev.D75, 014023 (2007)
2) arXiv:hep-ph/0704.2158, Phys. Rev.D76 034003
in collaboration with T. Pietrycki

\& Cascade mechanism 1

KMR UPDFs

Kimber-Martin-Ryskin for $k_{t}^{2}>k_{t, 0}^{2}$

$$
\begin{aligned}
f_{q}\left(x, k_{t}^{2}, \mu^{2}\right) & =T_{q}\left(k_{t}^{2}, \mu^{2}\right) \frac{\alpha_{s}\left(k_{t}^{2}\right)}{2 \pi} \\
& \cdot \int_{x}^{1} d z\left[P_{q q}(z) \frac{x}{z} q\left(\frac{x}{z}, k_{t}^{2}\right) \Theta(\Delta-z)+P_{q g}(z) \frac{x}{z} g\left(\frac{x}{z}, k_{t}^{2}\right)\right] \\
f_{g}\left(x, k_{t}^{2}, \mu^{2}\right)= & T_{g}\left(k_{t}^{2}, \mu^{2}\right) \frac{\alpha_{s}\left(k_{t}^{2}\right)}{2 \pi} \\
& \cdot \int_{x}^{1} d z\left[P_{g g}(z) \frac{x}{z} g\left(\frac{x}{z}, k_{t}^{2}\right) \Theta(\Delta-z)+\sum_{q} P_{g q}(z) \frac{x}{z} q\left(\frac{x}{z}, k_{t}^{2}\right)\right.
\end{aligned}
$$

saturation for $k_{t}^{2}<k_{t, 0}^{2}$

UPDFs and photon production

$$
\begin{aligned}
\frac{d \sigma\left(h_{1} h_{2} \rightarrow \gamma, \text { parton }\right)}{d^{2} p_{1, t} d^{2} p_{2, t}} & =\int d y_{1} d y_{2} \frac{d^{2} k_{1, t}}{\pi} \frac{d^{2} k_{2, t}}{\pi} \frac{1}{16 \pi^{2}\left(x_{1} x_{2} s\right)^{2}} \sum_{i, j, k} \overline{|M(i j \rightarrow \gamma k)|^{2}} \\
& \cdot \delta^{2}\left(\vec{k}_{1, t}+\vec{k}_{2, t}-\vec{p}_{1, t}-\vec{p}_{2, t}\right) f_{i}\left(x_{1}, k_{1, t}^{2}\right) f_{j}\left(x_{2}, k_{2, t}^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
(i, j, k)= & (q, \bar{q}, g),(\bar{q}, q, g) \\
& (g, \bar{q}, q),(q, g, q)
\end{aligned}
$$

standard collinear formula

$$
\begin{aligned}
& f_{i}\left(x_{1}, k_{1, t}^{2}\right) \rightarrow x_{1} p_{i}\left(x_{1}\right) \delta\left(k_{1, t}^{2}\right) \\
& f_{j}\left(x_{2}, k_{2, t}^{2}\right) \rightarrow x_{2} p_{j}\left(x_{2}\right) \delta\left(k_{2, t}^{2}\right)
\end{aligned}
$$

Differential cross section

$2 \rightarrow 2$ in k_{t}-factorization approach

$$
\begin{aligned}
d \sigma_{h_{1} h_{2} \rightarrow \gamma, k} & =d y_{1} d y_{2} d^{2} p_{1, t} d^{2} p_{2, t} \frac{d^{2} k_{1, t}}{\pi} \frac{d^{2} k_{2, t}}{\pi} \frac{1}{16 \pi^{2}\left(x_{1} x_{2} s\right)^{2}} \sum_{i, j, k} \overline{\left|M_{i j \rightarrow \gamma k}\right|^{2}} \\
& \cdot f_{i}\left(x_{1}, k_{1, t}^{2}\right) f_{j}\left(x_{2}, k_{2, t}^{2}\right) \delta^{2}\left(\vec{k}_{1, t}+\vec{k}_{2, t}-\vec{p}_{1, t}-\vec{p}_{2, t}\right)
\end{aligned}
$$

$2 \rightarrow 3$ in collinear-factorization approach

$$
\begin{aligned}
d \sigma_{h_{1} h_{2} \rightarrow \gamma k l} & =d y_{1} d y_{2} d y_{3} d^{2} p_{1, t} d^{2} p_{2, t} \frac{1}{(4 \pi)^{3}(2 \pi)^{2}} \frac{1}{\hat{s}^{2}} \sum_{i, j, k, l} \overline{\left|M_{i j \rightarrow \gamma k l}\right|^{2}} \\
& \cdot x_{1} p_{i}\left(x_{1}, \mu^{2}\right) x_{2} p_{j}\left(x_{2}, \mu^{2}\right)
\end{aligned}
$$

see Aurenche et al., Nucl. Phys. B286 553 (87)

Photon-jet correlations $d \sigma / d \phi_{-}$

$2 \rightarrow 2$ in k_{t}-factorization approach

$$
\begin{aligned}
\frac{d \sigma_{h_{1} h_{2} \rightarrow \gamma k}}{d \phi_{-}} & =\int \frac{2 \pi}{16 \pi^{2}\left(x_{1} x_{2} s\right)^{2}} \frac{f_{i}\left(x_{1}, k_{1, t}^{2}\right)}{\pi} \frac{f_{j}\left(x_{2}, k_{2, t}^{2}\right)}{\pi} \sum_{i, j, k} \overline{\left|M_{i j \rightarrow \gamma k}\right|^{2}} \\
& \cdot p_{1, t} d p_{1, t} p_{2, t} d p_{2, t} d y_{1} d y_{2} q_{t} d q_{t} d \phi_{q t}
\end{aligned}
$$

$2 \rightarrow 3$ in collinear-factorization approach

$$
\begin{aligned}
\frac{d \sigma_{h_{1} h_{2} \rightarrow \gamma k l}}{d \phi_{-}} & =\int \frac{1}{64 \pi^{4} \hat{s}^{2}} x_{1} p_{i}\left(x_{1}, \mu^{2}\right) x_{2} p_{j}\left(x_{2}, \mu^{2}\right) \sum_{i, j, k, l} \overline{\left|M_{i j \rightarrow \gamma k l}\right|^{2}} \\
& \cdot p_{1, t} d p_{1, t} p_{2, t} d p_{2, t} d y_{1} d y_{2} d y_{3}
\end{aligned}
$$

fif Decorrelations in $\left(p_{1, t}, p_{2, t}\right)$ space

Fs. Scale dependence in Kwieciński UPDFs

Photon-jet correlations $d \sigma / d \phi_{-}$

NLO collinear vs k_{t}-factorization approach

$$
\begin{aligned}
& \sqrt{s}=1960 \mathrm{GeV} \\
& p_{1, t}, p_{2, t} \in(5,20) \mathrm{GeV} \\
& y_{1}, y_{2}, y_{3} \in(-4,4)
\end{aligned}
$$

NLO collinear

Gauss $\sigma_{0}=1 \mathrm{GeV}$
KMR $k_{t 0}^{2}=1 \mathrm{GeV}^{2}$
Kwieciński $b_{0}=1 / \mathrm{GeV}$

Scalar cuts

Vector cuts

Leading photon/jet

(dashed) no limits on $p_{3, t}$
(solid) $p_{3, t}<p_{2, t}$
(dotted) $p_{3, t}<p_{1, t}$
$p_{3, t}<p_{2, t}$

$$
\begin{aligned}
& \sqrt{s}=1960 \mathrm{GeV} \\
& p_{1, t}, p_{2, t} \in(5,20) \mathrm{GeV} \\
& y_{1}, y_{2}, y_{3} \in(-4,4)
\end{aligned}
$$

Leading photon/jet

NLO collinear versus k_{t}-factorization

(solid) $p_{3, t}<p_{2, t}$
(dotted) $p_{3, t}<p_{1, t}$

$$
p_{3, t}<p_{2, t}
$$

$$
\begin{aligned}
& \sqrt{s}=1960 \mathrm{GeV} \\
& p_{1, t}, p_{2, t} \in(5,20) \mathrm{GeV} \\
& y_{1}, y_{2}, y_{3} \in(-4,4)
\end{aligned}
$$

$p_{1, t}$ - photon
$p_{2, t}$ - observed parton
$p_{3, t}$ - unobs. parton

fif Windows in $\left(p_{1, t}, p_{2, t}\right)$ - RHIC

if Photon hadron correlations

Photon hadron correlations - results

$$
\begin{aligned}
& 7<p_{\text {Tt,tig }}<9 \mathrm{GeV} \\
& 2<\mathrm{p}_{\mathrm{Tosoc}}<5 \mathrm{GeV}
\end{aligned}
$$

Summary/Conclusions of photon-jet correlatio

- Good agreement with exp. data using Kwiecinski UPDFs
(carefull treatment of the evolution of the QCD ladder)
- Predictions made for LHC based on several UPDFs
- The k_{t}-factorization approach is also better tool
- for $\phi_{-}<\pi / 2$ if leading parton/photon condition is imposed
- for $\phi_{-}=\pi$ (no singularities)
- RHIC measures γ-hadron, next step inclusion of jet hadronization

Drell-Yan with k_{t} smearing

Lowest order process:

Initial quarks and antiquarks
Kwieciński UPDFs a good tool to include initial transverse momenta
Nonzero transverse momenta of the lenton nair

if Drell-Yan with k_{t} smearing

Examples of higher order subprocesses:

Initial k_{t} included
No singularities

4f
 Drell-Yan versus semileptonic decays

Drell-Yan, $O\left(\alpha_{s}^{1}\right) \quad$ Semileptonic decays of D and \bar{D}

W=200 GeV, Kwieciński UPDFs for both

Summary of SLD and DY

- We have calculated $\left(p_{1 t}, p_{2 t}\right)$ and azimuthal $e^{+} e^{-}$ correlations including:
(a) $g g \rightarrow c \bar{c} \rightarrow D \bar{D} \rightarrow e^{+} e^{-}$,
(b) $g g \rightarrow b \bar{b} \rightarrow B \bar{B} \rightarrow e^{+} e^{-}$,
(c) $O\left(\alpha_{s}^{0}\right)$ and $O\left(\alpha_{s}^{1}\right)$ Drell-Yan
within $k_{t}-$ factorization approach.
- For SLD decorrelation in azimuthal angle $\phi_{e e}$ is due to:
(a) decay $D \rightarrow e^{+}\left(\bar{D} \rightarrow e^{-}\right)$
(b) initial k_{t}-smearing of gluons (UGDFs)
- For Drell-Yan decorrelation in $\phi_{e e}$ is due to: (a) initial k_{t}-smearing of quarks and antiquarks.
- At RHIC (W=200 GeV) dominance of SLD over DY in the large part of the phase-space. At LHC it may be even worse!

ff J / ψ-gluon correlations

a)

b)

c)

d)

e)

J / ψ - gluon correlations

Kwieciński UGDF $\mu^{2}=10 \mathrm{GeV}^{2}$ (left), $\mu^{2}=100 \mathrm{GeV}^{2}$ (right)
fif J / ψ - gluon correlations, gluons from the ladd

From RHIC to LHC

- Our future: LHC
- Calculations must be done, more difficulties, small x , saturation effects ?
- Large rapidities will be accessible (very small x).
- Small p_{t} with ALICE (saturation effects).
- Really large p_{t} will be available (domain of NLO, NNLO).
- Good lack for LHC and the correlation program for proton-proton collisions.
- Nuclear correlation program is very interesting at RHIC, It will be the same at LHC.

iff For our future with LHC

C-serizcia

