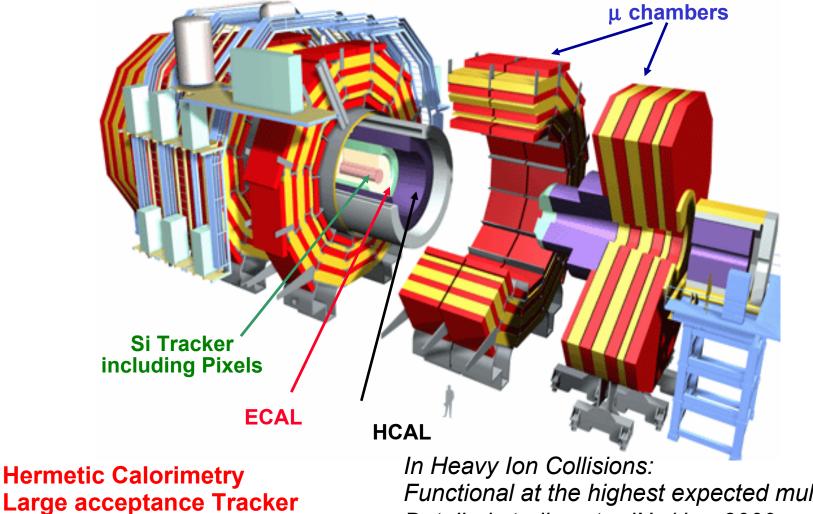

Measuring nuclear modification factors at high-p_T using jet triggers

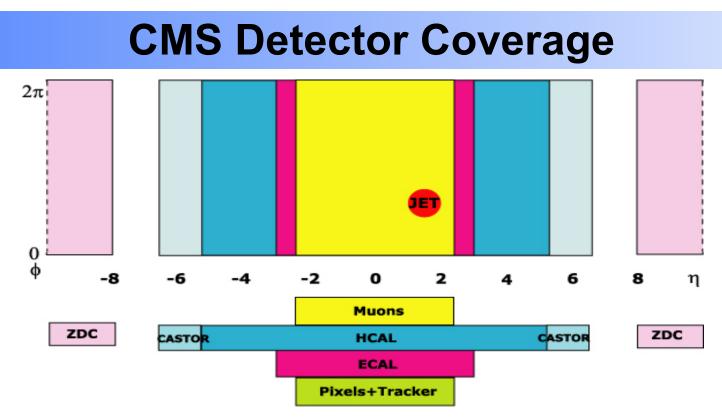
Krisztián Krajczár

High-p_т Physics at LHC Tokaj, Hungary, 2008

Heavy Ion Physics at the LHC


Pb+Pb Collisions at $\sqrt{s_{_{NN}}} \sim 5.5 \text{TeV}$ Large Cross section for Hard Probes High luminosity: $10^{27}/\text{cm}^2\text{s}$

- Copious production of high p_T particles
 - Nuclear modification factors $R_{_{A\!A}}$ up to very high $p_{_{T}}$
- Large cross section for J/ ψ and Υ family production
 - $\sigma^{cc}_{LHC} \sim 10 x \sigma^{cc}_{RHIC}$
 - $\sigma^{bb}_{LHC} \sim 100 x \sigma^{bb}_{RHIC}$
 - Different "melting" for members of Υ family with temperature
- Large jet cross section
 - Jets directly identifiable
 - Study in-medium modifications



The Detectors

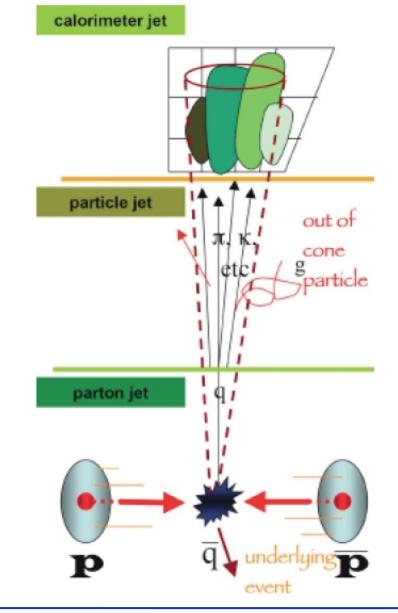
Designed for precision measurements in high luminosity p+p collisions

Large acceptance Tracker Excellent Muon Spectrometer In Heavy Ion Collisions: Functional at the highest expected multiplicities Detailed studies at $\sim dN_{ch}/d\eta \sim 3000$ cross-checks up to 7000-8000

- Hermeticity, Resolution, Granularity
 - Central region $\Delta\eta$ ~5 equipped with tracker, electromagnetic and hadronic calorimeters and muon detector
- Forward coverage
 - Calorimetric coverage of $\Delta \eta \sim 10$
 - CASTOR is dedicated for heavy-ion measurements, exotics: centauro
 - Zero Degree Calorimeter (ZDC), neutrons
- High data taking speed and trigger versatility

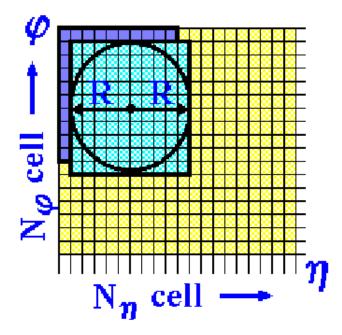
Hard partons and their energy loss: probe the medium Partial list of observables:

- High p_{T} particles and particle correlations
- Jet rates: single jets, multi-jets
- Jet fragmentation and shape
 - p_T of particles for r < R
 - Multiplicity of particles vs. r
 - Fragmentation function
- Additional information from
 - Jet+γ, Jet+Z correlations
 - Tagged heavy quark jets (b, c)



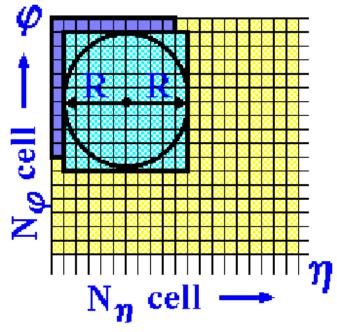
Jet Definitions

Parton jet


This is what we can calculate

- Final state particle jet
 - Fragmentation/hadronization
 - MC generators rely on parametrizations of experimental data
- Calorimeter Jet
 - This is what we measure in the detector
- Need to associate final state particles with initial parton
 - No unique way of doing this!
 - Jet algorithms
 - => Jet Calibration

Iterative cone


- Search for the particle with the highest E_{τ} (seed)
- Use its η and ϕ to define the axis of the jet candidate
- Define a ring on the $\eta\text{-}\phi$ plane with a radius of R
- Collect final state particle with r < R
- Redefine the jet with the help of these particles:

$$E_{T,jet} = \sum_{i} E_{T}^{i} \qquad \eta_{jet} = \frac{1}{E_{T,jet}} \sum_{i} E_{T}^{i} \eta^{i} \qquad \phi_{jet} = \frac{1}{E_{T,jet}} \sum_{i} E_{T}^{i} \phi^{i}$$

• If $\Delta\eta$ and $\Delta\phi$ < predefined value \rightarrow quit

Background Subtraction Algorithm

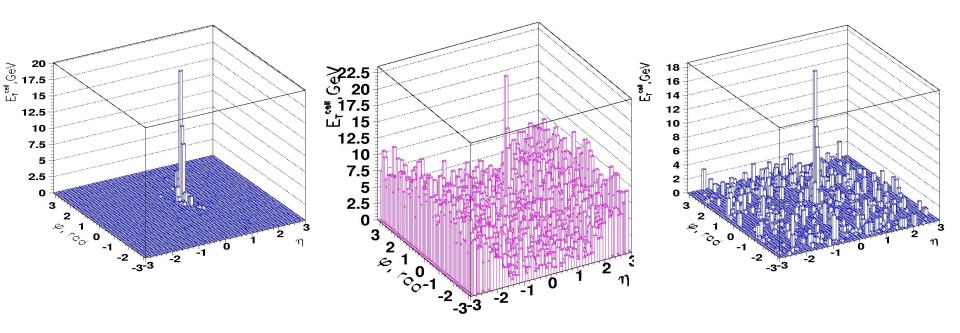
Event-by-event background subtraction:

- Calculate <E_T^{Tower}(η)> and D^{Tower}(η) for each η ring
- Recalculate all E_{T}^{Tower} tower energies:

 $\mathbf{E}_{\mathsf{T}}^{\mathsf{Tower}} = \mathbf{E}_{\mathsf{T}}^{\mathsf{Tower}} - \mathbf{E}_{\mathsf{t}}^{\mathsf{pile-up}}$

 $E_{t}^{\text{pile-up}} = \langle E_{T}^{\text{Tower}}(\eta) \rangle + D^{\text{Tower}}(\eta)$

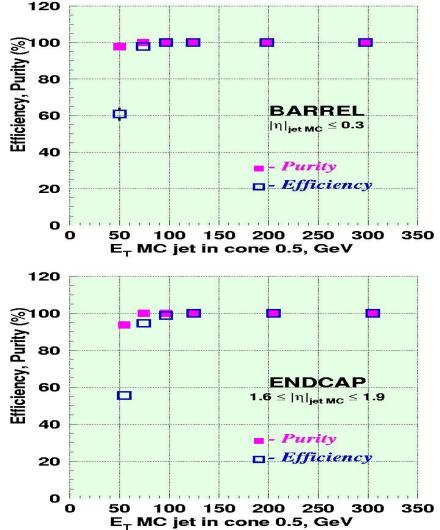
- Negative tower energies are replaced by 0
- Find Jets with $E_T^{jet} > E_t^{cut}$ using new tower energies
- Recalculate pile-up energy with towers outside of the jet cone
- Recalculate tower energy with new pile-up energy
- Final jets are found with the same iterative cone algorithm $E_T^{\text{Jet}} = E_T^{\text{cone}} E_t^{\text{pile-up new}}$


Jet Reconstruction

Jet $E_{T} \sim 100 \text{GeV}$, Pb Pb background $dN_{ch}/dy \sim 5000$

Jet in pp after pileup subtraction

Jet superimposed on Pb Pb background

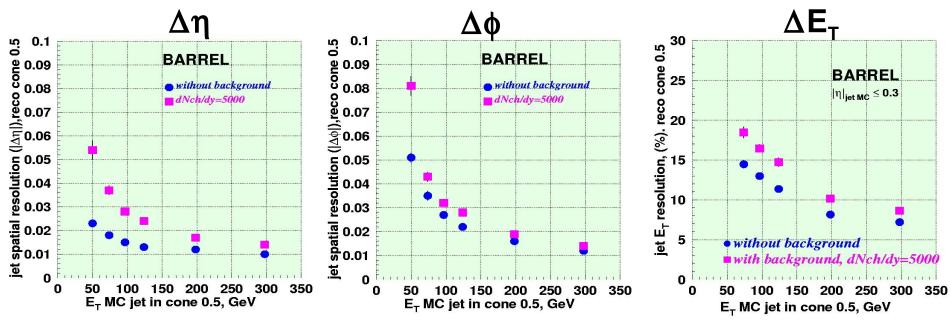

Jet in Pb-Pb after pileup subtraction

CMS

Efficiency, Purity vs. Jet Energy

Reconstructing 50-300 GeV Jets in Pb-Pb background

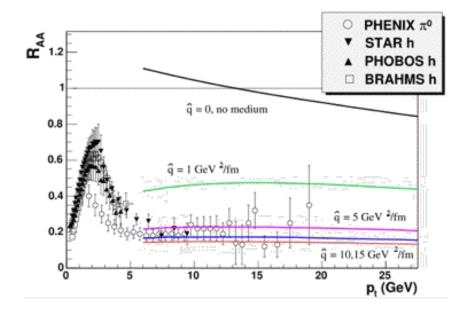
• EFFICIENCY


 <u># events with true reco. jets</u> # all jet events

• PURITY

- # events with true reco. jets # all reco. jet events (true+fake)
- Threshold of jet reco. E_τ > 30 GeV.
- Above 75(100) GeV we achieve
 100% efficiency and purity in the barrel (endcap)

Jet Resolutions

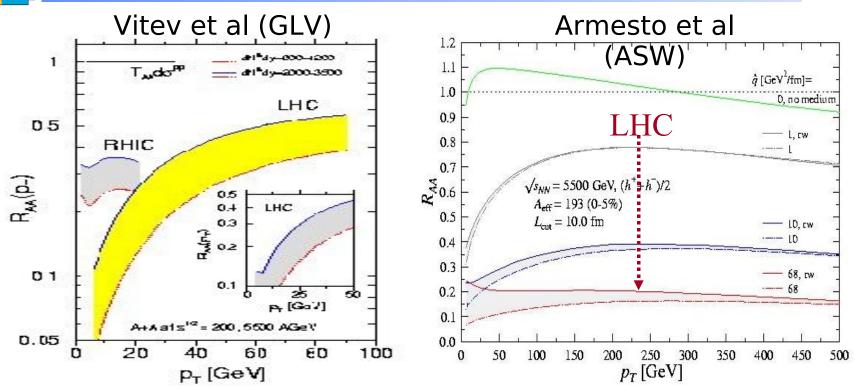

- The resolutions are degraded in Pb Pb collisions
 - η,φ better than size of calorimeter tower (0.087x0.087)
 - E_{τ} resolution ~16% at 100GeV

• Expect further improvement by adding tracker information

- \textbf{p}_{T} measurement of tracks is more precise than the response of the calorimeter
- Recover charged tracks that are bent out of the jet cone by the magnetic field

Jet Quenching @ RHIC

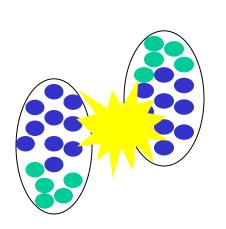
$$R_{AA} = rac{\sigma_{pp}^{
m inel}}{\langle N_{
m coll}
angle} rac{d^2 N_{AA}/dp_T d\eta}{d^2 \sigma_{pp}/dp_T d\eta}$$


 $R_{CP} = \frac{\langle N_{\rm coll}^{\rm periph} \rangle}{\langle N_{\rm coll}^{\rm central} \rangle} \frac{d^2 N_{AA}^{\rm central} / dp_T d\eta}{d^2 N_{AA}^{\rm periph} / dp_T d\eta}$

The nuclear modification factor R_{AA} or R_{CP}

- Compare charged hadron spectra in central PbPb collisions to a unquenched reference spectrum
 - R_{AA}: central PbPb compared to pp scaled by the number of binary collisions
 - R_{CP}: central PbPb compared to very peripheral PbPb

CMS


Predictions for PbPb @ LHC

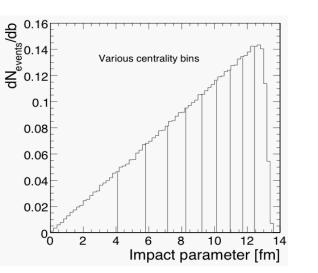
- Predictions for R_{AA} at LHC energy vary widely
 - Significant differences at high p_τ
 - Does the nuclear medium become transparent for high E_{τ} partons

The HYDJET Generator

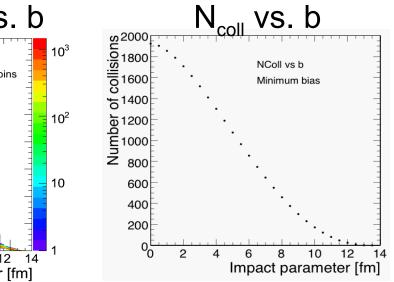
- Developed within the CMS HI Group
 - I.P. Lokhtin, A.M. Snigirev, Eur. Phys. J. C 46 (2006) 211
- Soft particle production using Hydrodynamic model,
 - includes bulk properties, flow etc...
- Jets produced using PYQUEN
 - PYTHIA with medium-induced quenching
- Calculate the collision geometry (Glauber model)
- Assume energy in collisions below p_T^{min} just thermalizes and heats the medium
 - Set p_{T}^{min} cutoff to define hard collisions, N_{hard}

- Soft Background
 - Bulk of the particles
 - Use HYDRO Generator

More details in Igor Lokhtin's talk


- Hard Signal
 - Generate N_{hard} signal collisions and add them to the background


e.g. $p_{T}^{min} = 7 \text{ GeV } N_{hard} = 320$


 I.e run PYTHIA/PYQUEN with p_T^{min} N_{hard} times => Multijet events

Collision Centrality

Generator level plots!

The collision centrality determines the bulk properties of the events

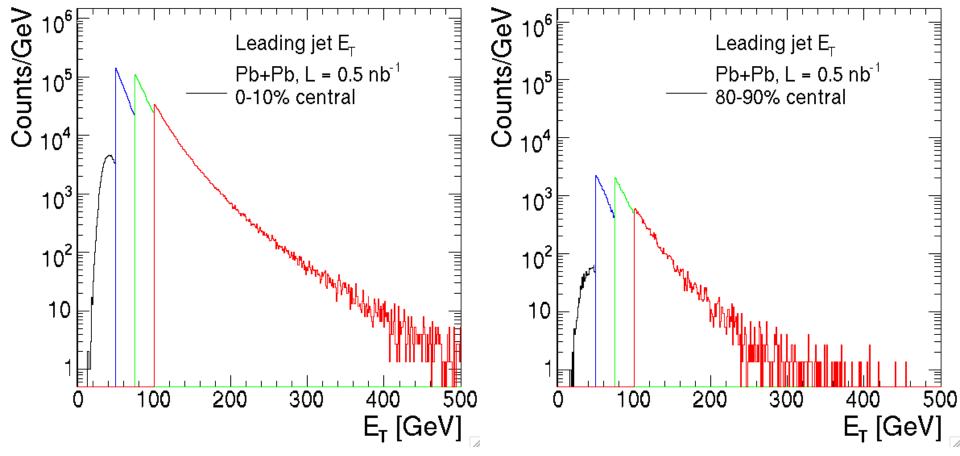
- Multiplicity increases with centrality
 - Background to the Jet reconstruction
- Jet cross section proportional to N_{coll}
- More parton energy loss in central collisions
- Data is analyzed as a function of centrality
 - Data sets are split in bins containing constant fractions of the total inelastic cross section

Channel	E_T threshold	Bandwidth [MByte/s]	event size [MByte]	rate to tape [Hz]
min. bias	-	33.75 (15%)	2.5	13.50
jet	100 GeV	24.75 (11%)	5.8	4.27
jet	75 GeV	27 (12%)	5.7	4.74
jet	50 GeV	27 (12%)	5.4	5.00

Statistics for one month of PbPb running

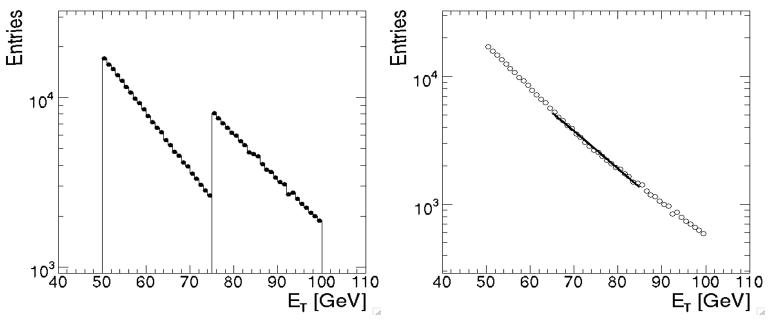
- Assume an integrated luminosity of L = 0.5 nb⁻¹
- Take bandwidth allocation from the HI-PTDR
 J. Phys. G: Nucl. Part. Phys. 34 (2007) 2307-2455
- Calculate the rates of Calo Jets above the trigger thresholds that saturate the allocated bandwidth
- Produce the full event statistics (on generator level) corresponding to one month of data taking
- HLT: full offline jet algorithm with pile-up subtraction

Jet Rates

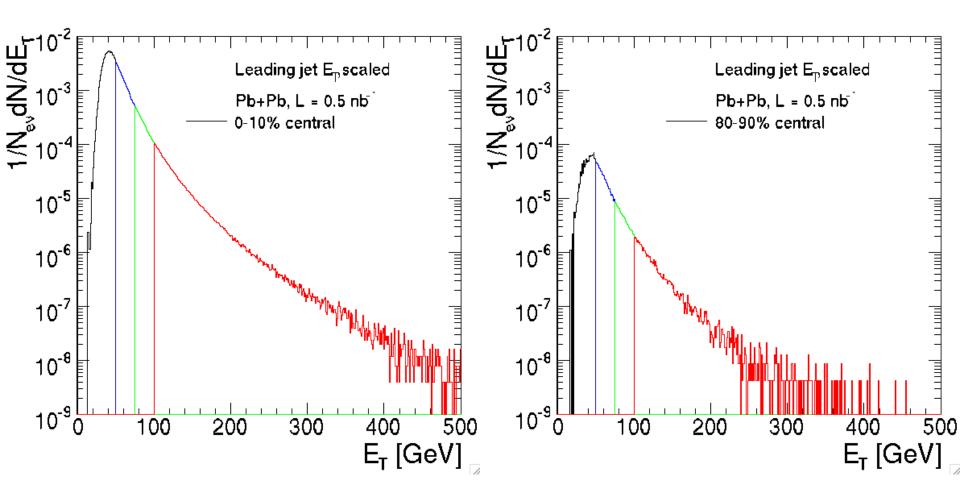

			Number of jets above:	
Centrality bin	Data taking mode	50 GeV	75 GeV	100 GeV
0-10%	Infinite bandwidth	2.27×10^{7}	3.71×10^{6}	9.67×10^{5}
	Minimum bias	7.86×10^4	1.28×10^{4}	3.35×10^3
	Triggered	2.02×10^6	1.79×10^6	$9.67 imes 10^5$
10-20%	Infinite bandwidth	1.40×10^{7}	2.51×10^{6}	6.74×10^{5}
	Minimum bias	4.85×10^4	8.69×10^{3}	2.33×10^3
	Triggered	1.23×10^{6}	1.21×10^{6}	6.74×10^5
20-30%	Infinite bandwidth	1.03×10^7	1.98×10^{6}	6.29×10^{5}
	Minimum bias	$3.57 imes 10^4$	6.85×10^{3}	2.18×10^3
	Triggered	9.22×10^{5}	9.54×10^{5}	6.29×10^5
30-40%	Infinite bandwidth	7.06×10^{6}	1.25×10^{6}	3.17×10^{5}
	Minimum bias	2.44×10^4	4.33×10^{3}	1.10×10^3
	Triggered	6.33×10^5	6.01×10^{5}	3.17×10^5
40-50%	Infinite bandwidth	4.84×10^{6}	9.30×10^{5}	2.78×10^{5}
	Minimum bias	1.68×10^{4}	3.22×10^{3}	9.62×10^2
	Triggered	4.34×10^{5}	4.48×10^{5}	2.78×10^{5}
50-60%	Infinite bandwidth	3.28×10^6	5.89×10^{5}	1.72×10^{5}
	Minimum bias	1.14×10^4	2.04×10^3	$5.95 imes 10^2$
	Triggered	2.94×10^5	2.84×10^{5}	1.72×10^5
60-70%	Infinite bandwidth	1.87×10^{6}	3.68×10^{5}	9.92×10^{4}
	Minimum bias	6.47×10^{3}	1.27×10^{3}	3.43×10^{2}
	Triggered	1.68×10^5	1.78×10^{5}	$9.92 imes 10^4$
70-80%	Infinite bandwidth	9.23×10^{5}	1.80×10^{5}	4.98×10^4
	Minimum bias	3.12×10^{3}	6.23×10^{2}	1.72×10^{2}
	Triggered	8.26×10^4	8.67×10^{4}	4.98×10^4
80-90%	Infinite bandwidth	3.96×10^5	7.24×10^{4}	1.82×10^{4}
	Minimum bias	2.24×10^{5}	3.98×10^4	1.10×10^4
	Triggered	3.55×10^{4}	3.49×10^{4}	1.82×10^{4}
Total	Infinite bandwidth	6.54×10^{7}	1.16×10^{7}	3.20×10^{6}
	Minimum bias	2.26×10^{5}	4.02×10^{4}	1.11×10^{4}
	Triggered	5.82×10^6	5.59×10^{6}	3.20×10^6

Events generated

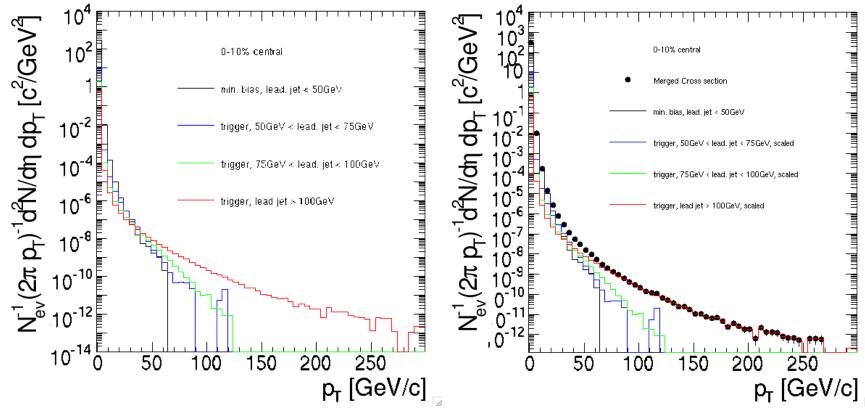
- jet triggered events in centrality bins according to this table
- 900k min. bias. Events per centrality bin


Leading Jet Distributions

- Statistics expected per month of PbPb running
 - Integrated luminosity: L = 0.5 nb⁻¹
 - Taking into account HLT bandwidth allocations

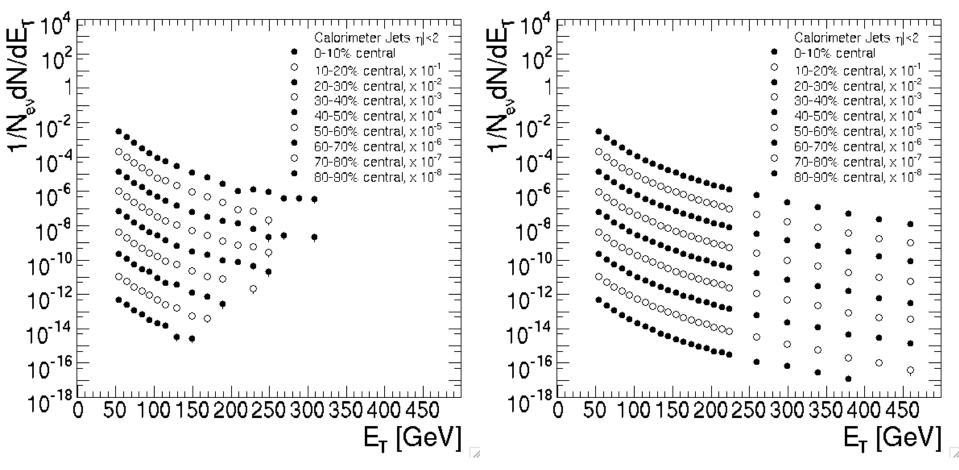

Merging Datasets

- The prescale factor in the trigger is centrality independent
 - The relative scaledown in centrality bins depends on the quenching model and the change of the jet E_{τ} resolution with centrality
 - Need a data driven determination of the scaledown factor
 - Fit the joined spectrum with a power law
 - Vary the scaledown factor to minimize the χ^2 of the fit



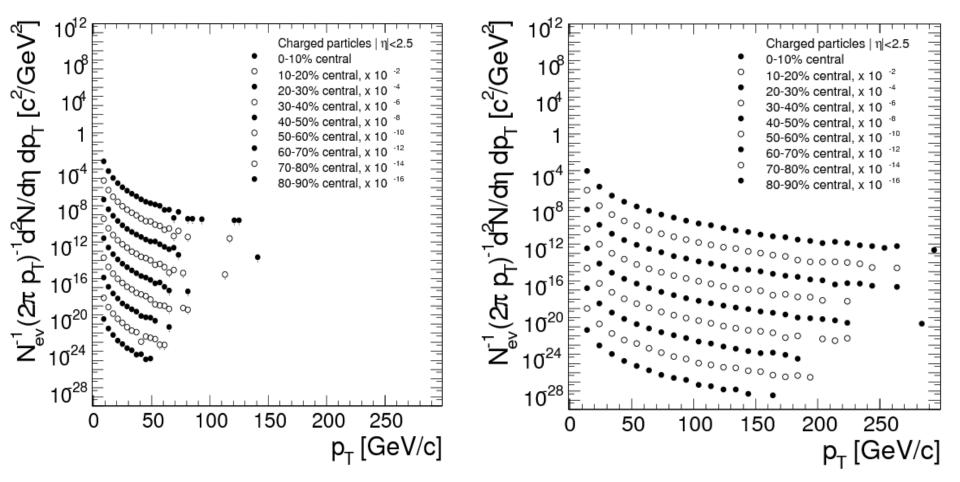
Leading Jets (Scaled)

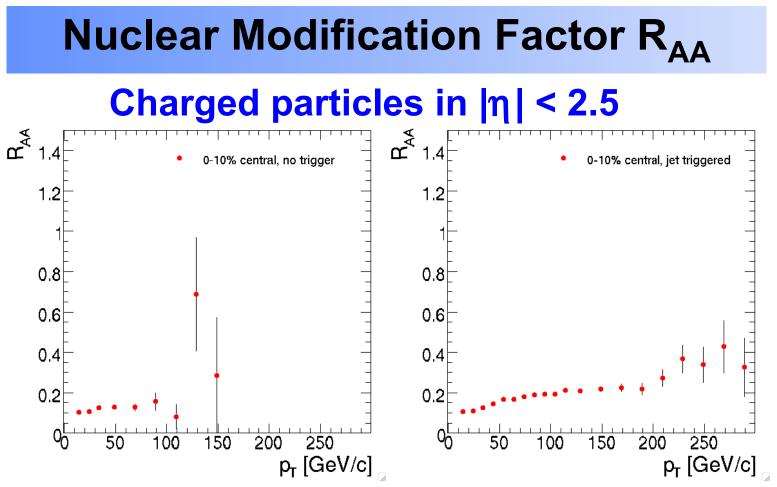
Merged Spectra



- The scaledown factors between datasets can now be used to merge
 - Charged particle distributions
 - Inclusive jet spectra

Inclusive Jet Distributions

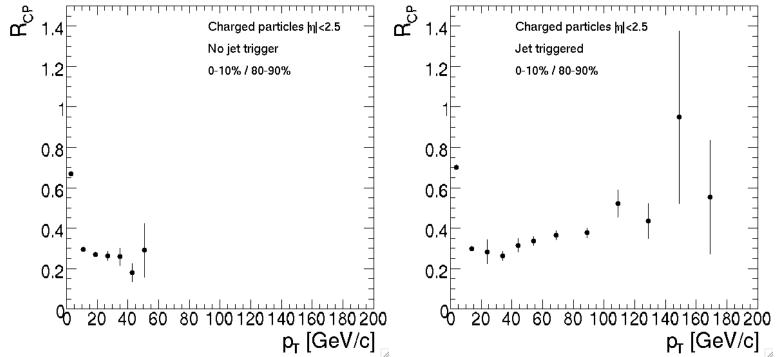

Jets in $|\eta| < 2$



No E_T resolution correction was applied

Charged Particle Cross Sections

Charged particles in $|\eta| < 2.5$



- Note: R_{AA} needs a pp reference spectrum
 - pp @ 5.5 TeV will not be available initially
 - Reference spectrum needs to be interpolated between Tevatron and LHC @ 14TeV

Nuclear Modification Factor R_{CP}

- R_{CP} does not need a reference spectrum
 - Limited by the reach of the peripheral spectrum
 - Includes nuclear effects in the reference spectrum

- LHC energies are optimal for jet physics
- CMS is excellent for jet physics (calorimeters, tracker, coverage)
- HI HLT proposed to include jets, rates calculated
- R_{AA} p_T range much extended, using jet triggers
- Measurement not sensitive to details of jet resolution etc.

Jet quenching and R_{AA} was exciting at RHIC and we can learn more at LHC at higher p_T

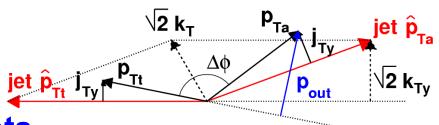
Backup Slides

What can we measure in Heavy lons?

- Some example Jets observables using calorimetry...
 - Jet cross sections
 - Jet Jet correlations
 - Jet- γ/Z correlations
 - ... and particle reconstruction
 - Jet fragmentation functions
 - Jet shape
 - Tagged heavy quark jets
 - Inclusive p_T spectra
 - Back-to-back particle correlations

Expected jet rates: 10⁶s LHC run L=5x10²⁶cm⁻²s⁻¹

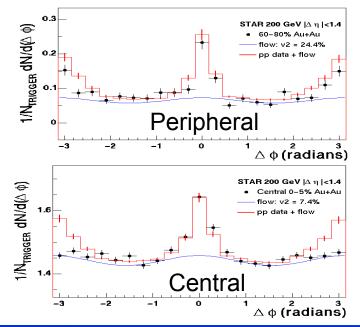
Channel	Barrel	Barrel+Endcap
Jet+Jet, E _T >100GeV	2.1x10 ⁶	4.3x10 ⁶
γ+Jet, E _τ >100GeV	1.6x10 ³	3.0x10 ³
Z(-> μ+μ-)+jet, E _T ^{jet} ,p _T ^Z >100GeV	30	45
Z(-> μ+μ-)+jet, E _T ^{jet} ,p _T ^Z >50GeV	180	300


Probe energy loss of the leading parton

Sensitive to the energy loss mechanism

Jet Shapes: RHIC vs. LHC

RHIC: measure two particle correlations


- This folds
 - Intrinsic kT
 - Fragmentation

• LHC: study fully formed Jets

Directly reconstruct Jet axis and energy!

RHIC: Particle-particle correlations:

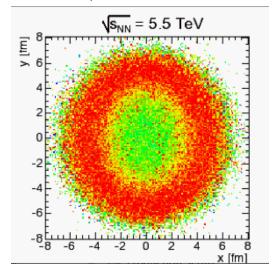
LHC: Jet-particle correlations

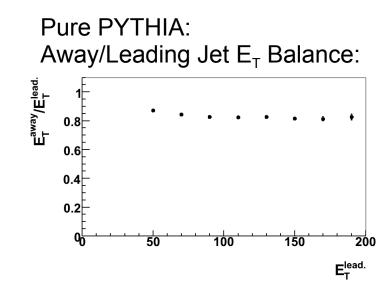
- $\Delta \phi$ correlations
- j_T , near and away side
- Fragmentation functions
 - $z = p_T / p_T^{Parton}$
 - Beware: parton p_T unknown!
 - Use final state jet energy?
- Jet E_{T} profiles

DiJets

Make use of the surface bias

- In a plane perpendicular to the beam of colliding ions high p_{τ} hadron production is dominated by surface emission
 - C. Loizides et al.
- Effect is strongly model dependent


Reconstruct dijets


- Take the leading jet
- Find the away side jet
- Check the energy balance

Experimental issues

- Needs large η coverage
- Uniform calorimeter response
- Beware of initial state radiation

Production point of hadrons with $p_T > 5 GeV/c$

Need better event generators at LHC: HYDJET

(I.P. Lokhtin and A.M. Snigirev, hep-ph/0312204,hep-ph/0406038)

- Developed within the CMS HI Group
- Soft particle production using Hydrodynamic model,
 - includes bulk properties, flow etc...
- Jets produced using PYQUEN
 - PYTHIA with medium-induced quenching
- Full control of soft and hard physics assumptions

• Assumptions:

- Particle production from soft physics and hard collisions factorizes
- Soft particle production scales with interaction volume, i.e. participant pairs (N_{part})
- Hard collisions scale with number of scattering centers, i.e. number of binary collisions (N_{coll})

Soft + Hard Simulation Strategy

- Assume energy in collisions below $p_{\mathsf{T}}^{\mathsf{min}}$ just thermalizes and heats the medium
 - Set p_T^{min} cutoff to define hard collisions
- Calculate the collision geometry (Glauber model)
- Calculate N_{part} , N_{coll} and N_{hard} ($p_T > p_T^{min}$)

Soft Background

• Bulk of the particles

Hard Signal

Multijet events

Quenching by PYQUEN

- I.P. Lokhtin, A.M. Snigirev, Eur. Phys. J. C 46 (2006) 211
- Uses PYTHA to calculate the initial parton configuration
- Calculates hard parton rescattering and energy loss. Emitted gluons are added to the event record
- Uses PYTHIA again for parton hadronization and final particle formation