

The high- p_T trigger detector of VHMPID

www.kfki.hu/~alice/bl-tokaj.pdf

L. Boldizsár KFKI RMKI, Budapest

$\begin{array}{c} \mbox{March 17. 2008}\\ \mbox{High-} p_T \mbox{ Physics at LHC, Tokaj'08} \end{array}$

- Motivations
- Equipment Development
- Simulation Results
- Summary

VHMPID Budapest Group: G. Barnaföldi; L. Boldizsár; Z. Fodor; E. Futó; G. Hamar; P. Lévai; L. Molnár; D. Varga

The high- p_T trigger detector of VHMPID (page 1) www.kfki.hu/~alice/bl-tokaj.pdf

Because of some theoretical considerations and exp. measurements the specification of particle ID's in higher p_T region seems to be more important than earlier...

- event by event particle identification above 5 GeV
- where will the pQCD region begin? (proton-pion anomaly)
- study of fragmentation processes
 - in matter modifications of FF (pp vs. PbPb)
 - multihadron fragmentation functions (baryon-antibaryon corr.)
- near-side and away-side correlations (with PHOS and EMCAL)
- jet energy loss (volume/surface), flavour dependence
- \clubsuit reconstruction of D and B mesons, Λ barions in higher p_T regions

To increase the statistics of high p_T events in the recorded data sample we need a high p_T trigger!

Motivations

There is some space available for VHMPID and its Trigger Detector opposite side of EMCAL, near PHOS: 12 modul with 140*90*120 cm would cover about the 0.3% of the full 4π acceptance and about 6% of central rapidity unit

possible position of 12 modul

ALIROOT simulation of 1 modul (left-inner-middle)

March 17. 2008 High- p_T Physics at LHC, Tokaj'08

The high- p_T trigger detector of VHMPID (page 3) www.kfki.hu/ \sim alice/bl-tokaj.pdf

Motivations

Charged high p_T particle track is close to a straight line. The angle of incidence is close to 0°. We use a high resolution multilayer strip detector to determine this angle. Small deviation from the radial line causes hits under each other. A fast electronic logic could trigger these events.

March 17. 2008 High- p_T Physics at LHC, Tokaj'08

4 layer of strip detector seems to be enough about 4.5 m from the interaction point

20 cm is needed for Trigger Detector; 100 cm remains for the VHMPID gas modul

March 17. 2008 High- p_T Physics at LHC, Tokaj'08

The high- p_T trigger detector of VHMPID (page 7) www.kfki.hu/ \sim alice/bl-tokaj.pdf

We would use RETGEMs (Resistive Thick Gas Electron Multiplier) to detect the the high p_T particle (quick, robust, cheap technology)

To study the technology and feasibility we built a test chamber with 10*10 cm sensitive surface (2 TGEM; 1000 V voltage, Ar/CO₂ 90:10)

Chamber was succesfully tested in 2006 november with PS 6 GeV proton test beam!

Our plan is to build one full-size modul prototype!

March 17. 2008 High- p_T Physics at LHC, Tokaj'08

The high- p_T trigger detector of VHMPID (page 9) www.kfki.hu/ \sim alice/bl-tokaj.pdf

The main goal of simulation is to optimize the padwidth and geometry

- to minimize the total surface of pads used by the trigger logic (in order to decrease the low p_T background)
- to minimize the number of logical decisions (in order to decrease the time of trigger decision)

the most simpliest versions of logical trigger decisions: (logical .or. among the pads of one layer; logical .and. among the 4 layer)

The deviation from the extrapolated 4th layer position of the high p_T particle

What indicate the padwidth for a certain p_T and trigger logic

March 17. 2008 High- p_T Physics at LHC, Tokaj'08

The trigger efficiencies for certain p_T as the function of padwidth

Efficiency vs. padwidth

With the used parameters and geometry it saturates around 4-6 mm

March 17. 2008 High- p_T Physics at LHC, Tokaj'08

Trigger rate of central PbPb events (no jet quenching, but shadowing was used)

With 2 mm pads one modul trigger rate is around 8 Hz. (12 modul could compensate the jet quenching effect)

5.5 TeV PbPb collisions at LHC:

8000 minimum bias events in 1 second

800 central events in 1 second (10% centrality)

20 events would be recorded in 1 second

 \longrightarrow a factor of 40 of high p_T content could be reached in the recorded data sample!

p spectra, HIJING Pb-Pb (b=0-5fm) $(3)^{9} 10^{3}$ $(3)^{9} 10^{2}$ $(3)^{9} 10^$

a 8 Hz high p_T trigger would start to work around 8-9 GeV what is the same p_T where the VHMPID starts to see kaons!

> March 17. 2008 High- p_T Physics at LHC, Tokaj'08

The high- p_T trigger detector of VHMPID (page 14) www.kfki.hu/ \sim alice/bl-tokaj.pdf

- interesting physics above $p_T > 5 \text{ GeV/c}$
- if ALICE wants to study this region high p_T trigger and particle identification are needed
- **\clubsuit VHMPID** and its High p_T Trigger Detector could work

Thank you for your attention!

March 17. 2008 High- p_T Physics at LHC, Tokaj'08 The high- p_T trigger detector of VHMPID (page 15) www.kfki.hu/ \sim alice/bl-tokaj.pdf