COMMON OPTICAL APPROACH TO POLARIZED NEUTRON - AND SYNCHROTRON MÖSSBAUER REFLECTOMETRY

L. Deák, L. Bottyán and D. L. Nagy

KFKI Research Institute for Particle and Nuclear Physics, P.O.B. 49, H-1525 Budapest, Hungary

OUTLINE

I. Introduction
II. General considerations
(Scattering problem \rightarrow wave equation)
III. Common optical formalism (specular scattering)

Neutron reflectometry Mössbauer reflectometry \& x-ray reflectometry
IV. off-specular scattering
V. Applications
VI. Summary

II. GENERAL CONSIDERATIONS

(M. Lax: Rev. Mod. Phys. 23. (1951) 287.)
single scatterer: inhomogeneous wave equation
$\left\lfloor\left(\Delta+k^{2}\right) I-U(\mathbf{r})\right\rfloor \Psi_{1}(\mathbf{r})=0$
$U(\mathbf{r}) \quad$ scattering potential not specialized
$\Psi_{1}(\mathbf{r}) \quad$ amplitude of scattered wave not specialized
$k \quad$ vacuum wave number
$I=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) \quad$ unity matrix
many scatterers:
homogeneous three dimensional wave equation for the coherent field $\Psi(\mathbf{r})$

$$
\begin{equation*}
\left\lfloor\left(\Delta+k^{2}\right) I+4 \pi N \bar{f}\right\rfloor \Psi(\mathbf{r})=0 \tag{2}
\end{equation*}
$$

$\begin{array}{ll}\bar{f} & \text { coherent forward scattering amplitude } \\ N & \text { density of scattering centers }\end{array}$
stratified media:
one dimensional wave equation

$$
\begin{equation*}
\Psi^{\prime \prime}(z)+k^{2} \sin \Theta\left[I \sin \Theta+\frac{\chi}{\sin \Theta}\right] \Psi(z)=0 \tag{3}
\end{equation*}
$$

$\chi \equiv \frac{4 \pi N}{k^{2}} \bar{f}$
Θ susceptibility glancing angle

III. COMMON OPTICAL FORMALISM

Using matrix notation and the definition $\Phi^{\prime}(z) \equiv \Psi^{\prime}(z)$ we get from Eq. (3) a system of first order differential equations

$$
\begin{align*}
& \frac{\mathrm{d}}{\mathrm{~d} z}\binom{\Phi}{\Psi}=i k M(z)\binom{\Phi}{\Psi}, \text { where } \tag{4}\\
& M(z)=\left(\begin{array}{cc}
0 & I \sin \Theta+\frac{\chi}{\sin \Theta} \\
I \sin \Theta & 0
\end{array}\right) \tag{5}
\end{align*}
$$

In the case of s different homogeneous layers with thickness d_{l} : ($l=1 \ldots s$, layer s is the substrate)

$$
\begin{equation*}
M(z)=M_{l}=\text { const } . \text { for the } l^{\text {th }} \text { layer } \tag{6}
\end{equation*}
$$

so the solution may be given by the 4×4 characteristic matrix L, that is the product of the characteristic matrices $L_{l}=\exp \left(i k d_{l} M_{l}\right)$ of the individual layers

$$
\begin{equation*}
L=L_{s} \cdot \ldots \cdot L_{2} \cdot L_{1}=\exp \left(i k d_{s} M_{s}\right) \cdot \ldots \cdot \exp \left(i k d_{2} M_{2}\right) \cdot \exp \left(i k d_{1} M_{1}\right) \tag{7}
\end{equation*}
$$

Denoting the 2×2 submatrices of L with $L^{[i j]}(i j=1,2)$ the 2×2 reflectivity matrix r reads

$$
\begin{equation*}
r=\left[L^{[11]}-L^{[12]}-L^{[21]}+L^{[22]}\right]^{-1}\left[L^{[11]}+L^{[12]}-L^{[21]}-L^{[22]}\right] . \tag{8}
\end{equation*}
$$

The reflected intensity I^{r} is

$$
\begin{equation*}
I^{r}=\operatorname{Tr}\left\lfloor r^{+} r \rho\right\rfloor \tag{9}
\end{equation*}
$$

and ρ is the 2×2 polarization density matrix of the incident radiation.

TREATMENT OF THE NUMERICAL PROBLEMS

Problem \#1: Calculation of the 4×4 matrix exponentials $L_{l}=\exp \left(i k d_{l} M_{l}\right)$

$$
L_{l}=\left(\begin{array}{cc}
\cosh \left(F_{l}\right) & \frac{1}{x_{l}} F_{l} \sinh \left(F_{l}\right) \tag{10}\\
x_{l} F_{l}^{-1} \sinh \left(F_{l}\right) & \cosh \left(F_{l}\right)
\end{array}\right),
$$

where $F_{l}=k d_{l} \sqrt{-I \sin ^{2} \Theta-\chi_{l}}$ and $x_{l}=i k d_{l} \sin \Theta$.
\checkmark OK

Problem \#2: the calculation of the 2×2 square root matrix F_{l} from the problem \#1
from the Cayley-Hamilton theory for any 2×2 matrices G

$$
\begin{equation*}
G^{1 / 2}=\frac{G+I \sqrt{\operatorname{det} G}}{\sqrt{\operatorname{Tr} G+2 \sqrt{\operatorname{det} G}}}\left(\text { if } G \sim I, \text { then } G^{1 / 2}=I(\operatorname{det} G)^{1 / 4}\right) \tag{11}
\end{equation*}
$$

\checkmark OK
Problem \#3: Calculation of the 2×2 (sinh and cosh) $\rightarrow \exp$ functions in problem \#1

Using the identity:

$$
\begin{equation*}
\exp G=\exp \left(\frac{1}{2} \operatorname{Tr} G\right)\left[\cos \sqrt{\operatorname{det} \bar{G}} I+\frac{\sin \sqrt{\operatorname{det} \bar{G}}}{\sqrt{\operatorname{det} \bar{G}}} \sqrt{\bar{G}}\right] \tag{12}
\end{equation*}
$$

where $\bar{G}=G-\frac{1}{2} I \operatorname{Tr} G$

Problem \#4: The substrate:
The characteristic matrix of a semi-infinite layer $L_{s} \rightarrow L_{\infty}$ is calculated by taking the $d_{s} \rightarrow \infty$ limes. From Eq. (10) we get

$$
L_{\infty}=\left(\begin{array}{cc}
I & a \sqrt{I+\frac{\chi_{s}}{\sin ^{2} \Theta}} \tag{13}\\
a\left(\sqrt{I+\frac{\chi_{s}}{\sin ^{2} \Theta}}\right)^{-1} & I
\end{array}\right),
$$

where $a=\operatorname{sgn}\left[\operatorname{Re}\left(\operatorname{Tr} F_{\infty}\right)\right]$ is the sign of the real part of the trace of $F_{\infty}=\sqrt{-I \sin ^{2} \Theta-\chi_{s}}$.

Problem \#5: Interface and surface roughness:

In the case of rough interfaces the characteristic matrix L_{l} of layer l has to be modified:

$$
\left.L_{l} \rightarrow\left(\begin{array}{c}
L_{l}^{[11]}\left[I+k^{2}\left(\sigma_{l}^{2}-\sigma_{l+1}^{2}\right) \chi_{l}\right. \tag{14}\\
L_{l}^{[21]}\left[\begin{array}{c}
{\left[I+k^{2}\left(\sigma_{l}^{2}+\sigma_{l+1}^{2}\right) \chi_{l}\right.}
\end{array}\right] \\
L_{l}^{[12]}\left[I-k^{2}\left(\sigma_{l}^{2}+\sigma_{l+1}^{2}\right) \chi_{l}\right. \\
L_{l}^{[22]}\left[I-k^{2}\left(\sigma_{l}^{2}-\sigma_{l+1}^{2}\right) \chi_{l}\right.
\end{array}\right]\right),
$$

where
σ_{l} and $\sigma_{l+1}:$ RMS surface roughness at the top and bottom of the layer.
We assume $d_{l} \ll \sigma_{l}, \sigma_{l+1}$.
The approximation is in the order of $(k \sigma)^{2}\|\chi\|$.

NEUTRON REFLECTOMETRY:

Using the potential $U(\mathbf{r})=U_{p}(\mathbf{r})+U_{m}(\mathbf{r})$ as the sum of the isotropic nuclear potential

$$
\begin{equation*}
U_{p}(\mathbf{r})=4 \pi b \delta(\mathbf{r}) I \tag{15}
\end{equation*}
$$

and the anisotropic magnetic potential

$$
\begin{equation*}
U_{m}(\mathbf{r})=-\frac{2 m}{\hbar^{2}} g \mu_{n} \boldsymbol{\sigma} \cdot\left[\mathbf{B}_{a}(\mathbf{r})+\mathbf{B}_{e x t}\right]=-\frac{2 m}{\hbar^{2}} g \mu_{n} \boldsymbol{\sigma} \cdot \mathbf{B}(\mathbf{r}), \tag{16}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mu_{N}=5.050 \times 10^{-27} \mathrm{Am}^{2}, \\
& g=-1.9132, \\
& \boldsymbol{\sigma}=\left(\sigma_{\xi}, \sigma_{\eta}, \sigma_{\varsigma}\right) \text { is the Pauli operator, }
\end{aligned}
$$

b : is the nuclear scattering length, and
$\mathbf{B}_{a}(\mathbf{r})$ and $\mathbf{B}_{\text {ext }}$ are the atomic and the external magnetic field.
In the $1^{\text {st }}$ order Born approximation the coherent forward scattering amplitude is $\bar{f}=-\frac{1}{4 \pi} \int \mathrm{~d}^{3} \mathbf{r} U(\mathbf{r})$, and $\chi \equiv \frac{4 \pi N}{k^{2}} \bar{f}$

$$
\begin{equation*}
\chi=\frac{1}{k^{2}}\left[\frac{2 m}{\hbar^{2}} g \mu_{N} \boldsymbol{\sigma} \cdot \overline{\mathbf{B}}-4 \pi \sum_{i} \alpha_{i} b_{i} I\right], \tag{17}
\end{equation*}
$$

where
α_{i} is the abundance of the $i^{\text {th }}$ type nuclear scattering center,
$\overline{\mathbf{B}}=\frac{1}{\Omega} \int_{\Omega} \mathrm{d}^{3} \mathbf{r} \mathbf{B}(\mathbf{r})$, and Ω is the volume of the interaction.

NEUTRON OPTICS

where:
momentum transfer:

$$
Q=2 k \sin \theta
$$

scattering length density:

$$
K=\frac{2 m}{\hbar^{2}} g \mu_{N}\left(\begin{array}{cc}
B_{x} & B_{y}-i B_{z} \\
B_{y}+i B_{z} & -B_{x}
\end{array}\right)-4 \pi \sum_{i} \alpha_{l} b_{l} I
$$

magnetic field:

$$
\left(B_{x}, B_{y}, B_{z}\right)=\overline{\mathbf{B}} .
$$

External magnetic field $\Rightarrow K \neq 0 \Rightarrow \quad$ vacuum is an anisotropic
medium
\Downarrow
Eq. (8) invalid!!!
The solution is well known in (photon) optics: impedance tensor

$$
\gamma=\sqrt{I+\frac{4 K}{Q^{2}}}=\frac{1}{Q}\left(\begin{array}{cc}
\sqrt{Q_{+}} & 0 \\
0 & \sqrt{Q_{-}}
\end{array}\right) \text {, with } Q_{ \pm}^{2}=Q^{2} \pm \frac{8 m}{\hbar^{2}} g \mu_{N}\left|\mathbf{B}_{\text {ext }}\right|
$$

And finally the reflectivity matrix:

$$
\begin{equation*}
r=\left[\left(L^{[11]}-L^{[21]}\right) \gamma-L^{[12]}+L^{[22]}\right]^{-1}\left[\left(L^{[11]}-L^{[21]}\right) \gamma+L^{[12]}-L^{[22]}\right] . \tag{19}
\end{equation*}
$$

MÖSSBAUER REFLECTOMETRY:

FROM THE DYNAMICAL THEORY:
J.P. Hannon et al, Phys. Rev B 32, 6363 (1985)

The grazing incidence limit of the dynamical theory of Mössbauer radiation in matrix form:

$$
\frac{\mathrm{d}}{\mathrm{~d} z}\binom{T}{R}=i\left(\begin{array}{cc}
g_{0} I+G & G \tag{20}\\
G & g_{0} I+G
\end{array}\right)\binom{T}{R},
$$

where T and R are the amplitudes of waves incident from above and below, respectively. With $g_{0}=k \sin \Theta$ and $G=(4 \pi N / 2 k \sin \Theta) \bar{f}$

$$
\frac{\mathrm{d}}{\mathrm{~d} z}\binom{T}{R}=i k\left(\begin{array}{cc}
I \sin \Theta+\frac{\chi}{2 \sin \Theta} & \frac{\chi}{2 \sin \Theta} \tag{21}\\
-\frac{\chi}{2 \sin \Theta} & -I \sin \Theta-\frac{\chi}{2 \sin \Theta}
\end{array}\right)\binom{T}{R} .
$$

Applying the unitary transformation $C=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}I & -I \\ I & I\end{array}\right)$ we get

$$
\frac{\mathrm{d}}{\mathrm{~d} z}\binom{T}{R}=i k\left(\begin{array}{cc}
0 & I \sin \Theta+\frac{\chi}{\sin \Theta} \tag{22}\\
I \sin \Theta & 0
\end{array}\right)\binom{T}{R}
$$

and again: $\frac{\mathrm{d}}{\mathrm{d} z} W(z)=i k M(z) W(z)$.

Validity: $\Theta<10 \mathrm{mrad}$

FROM THE OPTICAL THEORY:

L. Deák et al, Phys. Rev B 53, 6158 (1996):

The 3×3 nuclear susceptibility tensor (Afanas'ev and Kagan):

$$
\begin{equation*}
\hat{\chi}=-\frac{4 \pi}{c^{2} k^{2}} \frac{N}{2 I_{g}+1} \sum_{m_{e} m_{g}} \frac{\mathbf{J}_{m_{g} m_{e}} \circ \mathbf{J}_{m_{e} m_{g}}^{*}}{E_{k}-E_{m_{e} m_{g}}+i \Gamma / 2}, \tag{23}
\end{equation*}
$$

where: $\quad E_{k}$: the energy of the photon,
$E_{m_{e} m_{g}}$: the energy difference between the nuclear
excited and ground states,
$\Gamma: \quad$ the natural width of the excited states,
J: the current density operator.
${ }^{\circ}$: the symbol of the dyadic vector product

Using the anisotropic optical formalism (Borzdov-BarkovskiiLavrukovich) and the Andreeva approximation, the Maxwell equations transform into

where

$$
\begin{equation*}
\chi=\frac{4 \pi N}{k^{2}} \bar{f} \tag{24}
\end{equation*}
$$

Conclusion: common differential equations for different scattering processes

IV. OFF-SPECULAR SCATTERING

inhomogeneous wave equation

$$
\begin{equation*}
\left\lfloor\Delta+k^{2} I\right\rfloor \Psi(\mathbf{r})=-k^{2} \chi(\mathbf{r}) \Psi(\mathbf{r}) \tag{25}
\end{equation*}
$$

where $\quad \chi(\mathbf{r})=\sum_{l=1}^{S} \chi_{l}\left(\mathbf{r}_{\mathrm{II}}\right)$ and l is the layer index.
Defining $\bar{\chi}_{l}=\left\langle\chi_{l}\left(\mathbf{r}_{\text {II }}\right)\right\rangle$ we can separate the $\Psi_{c o h}(\mathbf{r})$ (coherent) specular and $\Psi_{o f f}(\mathbf{r})$ off-specular fields

$$
\begin{equation*}
\left\lfloor\Delta+k^{2} I\right\rfloor \Psi(\mathbf{r})=-k^{2} \sum \bar{\chi}_{l} \Psi(\mathbf{r})-k^{2} \sum\left(\chi_{l}\left(\mathbf{r}_{\mathrm{II}}\right)-\bar{\chi}_{l}\right) \Psi(\mathbf{r}) \tag{26}
\end{equation*}
$$

with $\Psi(\mathbf{r})=\Psi_{\text {coh }}(\mathbf{r})+\Psi_{o f f}(\mathbf{r})$

$$
\begin{gathered}
\left.\Delta+k^{2} I\right\rfloor \Psi_{o f f}(\mathbf{r})=-k^{2} \sum\left(\chi_{l}\left(\mathbf{r}_{\mathrm{II}}\right)-\chi_{l}\right) \Psi_{c o h}(\mathbf{r})-k^{2} \sum \chi_{l}\left(\mathbf{r}_{\mathrm{II}}\right) \Psi_{o f f}(\mathbf{r}) \\
\Downarrow \\
\text { known }
\end{gathered}
$$

$$
\begin{align*}
\Psi_{c o h}(\mathbf{r})= & \Psi_{c o h}\left(\mathbf{r}_{\perp}\right) \exp \left(i \mathbf{k}_{\mathrm{II}} \cdot \mathbf{r}_{\mathrm{II}}\right) \\
& =\left[L^{[21]}\left(\mathbf{r}_{\perp}\right)+L^{[22]}\left(\mathbf{r}_{\perp}\right) r\right] \cdot \Psi^{i n} \exp \left(i \mathbf{k}_{\mathrm{II}} \cdot \mathbf{r}_{\mathrm{II}}\right) \tag{28}
\end{align*}
$$

$1^{\text {st }}$ DWBA: neglecting the second term in Eq. (27)
$\Psi_{o f f}(\mathbf{r})=\frac{k^{2}}{4 \pi} \sum_{l} \int \frac{\exp (i k R)}{R}\left(\chi_{l}\left(\mathbf{r}^{\prime}{ }_{\text {II }}\right)-\chi_{l}\right) \Psi_{c o h}\left(\mathbf{r}^{\prime}\right) \mathrm{d}^{3} \mathbf{r}^{\prime}$ where $R=|\mathbf{r}-\mathbf{r}|$

In the Fraunhofer approximation $\frac{\exp (i k R)}{R} \approx \frac{\exp (i k r)}{r} \exp \left(i \mathbf{k}^{\prime} \cdot \mathbf{r}^{\prime}\right)$ and the scattered intensity is proportional to:

$$
\begin{align*}
I_{o f f}= & \frac{k^{4}}{(4 \pi r)^{2}} \iint\left(\Psi_{c o h}\left(\mathbf{r}_{\perp}^{\prime \prime}\right), \sum_{l, l^{\prime}} C_{l, l^{\prime}}\left(\mathbf{K}_{\mathrm{II}}\right) \cdot \Psi_{c o h}\left(\mathbf{r}_{\perp}^{\prime}\right)\right) \cdot \tag{30}\\
& \exp \left[i \mathbf{k}_{\perp}^{\prime}\left(\mathbf{r}_{\perp}^{\prime}-\mathbf{r}_{\perp}^{\prime \prime}\right)\right] \mathrm{d} \mathbf{r}_{\perp}^{\prime} \mathrm{d} \mathbf{r}_{\perp}^{\prime \prime}
\end{align*}
$$

$C_{l, l^{\prime}}\left(\mathbf{K}_{\mathrm{II}}\right)$ is the two dimensional Fourier transformation of the cross correlation function of $\left(\chi_{l}\left(\mathbf{r}_{\text {II }}^{\prime}\right)-\bar{\chi}_{l}\right)$ and $\mathbf{K}=\mathbf{k}^{\prime}-\mathbf{k}$

V. APPLICATIONS

Fig.: Different type of reflectometry measurements of $\left[{ }^{57} \mathrm{Fe}(2.33 \mathrm{~nm}) /{ }^{\text {nat }} \mathrm{Fe}(2.33 \mathrm{~nm})\right]_{10} / Z E R O D U R$ multilayer. The data evaluation was made in terms of the common optical algorithm.

Fig.: Time spectra at the total reflection peak and the first Bragg peak in $\left[{ }^{57} \mathrm{Fe}(2.33 \mathrm{~nm}) /{ }^{\text {nat }} \mathrm{Fe}(2.33 \mathrm{~nm})\right]_{10} /$ ZERODUR multilayer. The data evaluation was made in terms of the common optical algorithm.

VI. SUMMARY

- Without specifying the scattering process a common formalism is derived, which
- simplifies to a 2×2 matrix algebra and which is
- suitable for x-ray-, Mössbauer- and n-reflectometry
- This analogy helped when treating the external magnetic field as an anisotropic optical medium (for neutrons).
- Common formalism \Rightarrow common evaluation program (EFFINO - Environment For Fitting Nuclear Optics)

