Magnetic heterostructures as seen by x-rays and neutrons

Hartmut Zabel

Experimentalphysik/Festkörperphysik Ruhr-Universität Bochum, Germany

MMSPN, 7-9 December, 2001, Budapest, Hungary

Thin films

for magnetism, electronics, spintronics, superconductivity, optics, corrosion protection...

GMR heterostructures

Proximity effects and tunneling

Magnetic films

Exchange bias

Lateral structures

Topics:

- Dimensional scaling of Ho/Y
- Exchange bias of Co/CoO
- Enhancement of interface sensitivity

Scaling behavior of the critical temperature with thickness:

80

90

100

How does coupling affect the critical temperature?

 $k_B T_c =$

Scaling behavior of complex spin structures

SDW magnetism in Cr

Spin helix in Ho

How does the Ho spin structure and the Néel temperature depend on interlayer coupling?

V. Leiner, D. Labergerie, H. Zabel

Bulk Holmium Phase Diagram

Magnetic peaks from a spin helix are expected at: $\vec{K} = \vec{G} \pm \vec{\tau}$

Magnetic signal from single Ho films

(00. τ) as a function of the Ho thickness t_{HO}

Order parameter for a single 4.6 nm thick Hofilm

RKKY-type Interactions in Ho/Y Superlattices

RKKY coupling between localised Ho 4f - moments

RKKY-type interlayer coupling mediated by Y conduction electrons

Magnetic τ -peak for a single thin Ho film:

Magnetic τ -peak for a coupled Ho/Y superlattice:

Magnetic Signal from 30 x [77Å Ho/52Å Y]

V. Leiner, D. Labergerie, M. Ay, H. Zabel, 2001

Temperature dependence of the Ho/Y(00.0+τ) peak after hydrogen loading of the Y-spacer

Simulation of τ -peak for uncoupled and weakly coupled Ho-blocks

Scaling of the Néel – Temperature

Tunability of the exchange coupling in Fe/V superlattices with hydrogen

V. Leiner, K. Westerholt, B. Hjörvarsson, H. Zabel, to be published

Exchange Coupling in Fe/Cr Superlattices

interlayer exchange coupling for Fe 2 ML/VH_x 12 ML

The ADAM Reflectometer at ILL

http://www.ill.fr/YellowBook/ADAM/

Magnetic resonance x-ray scattering of Ho at the L_{III} - absorption edge (8074 eV), sp-channel Troika beam line, ESRF

C. Sutter, E. Weschke, R. Meier, C. Schüßler-Langeheine, G. Grübel, D. Abernathy

Resonant enhancement of the magnetic superstructure satellite at the Ho M_V edge

Reflectivity of a 109-ML-thick Ho film (a) well below and (b) in the vicinity of the Ho M_V edge

Resonant enhancement of the magnetic superstructure satellite at the Ho M_V edge, BESSY

 $(00.0 + \tau)$ peak of a single 4.6 nm thick Ho(00.1) film

E. Weschke, C. Schüßler-Langeheine, A. Yu. Grigoriev, H. Ott, G. Kaindl, V. Leiner and H. Zabel, to be published

Critical scattering from a 4.6 nm thick Ho film XRMD results, BESSY

Short range order diffuse scattering

Order parameter and inverse correlation length

E. Weschke, C. Schüßler-Langeheine, A. Yu. Grigoriev, H. Ott, G. Kaindl, V. Leiner and H. Zabel, to be published

Exchange bias

AF-layer

Magnetic field

F. Radu, M. Etzkorn, T. Schmitte, R. Siebrecht, V. Leiner, K. Westerholt, H. Zabel

PNR results from a CoO/Co bilayer

EVA-Neutron Reflectometer at the ILL with a ³He polarisation analyser:

B. Nickel A. Rühm, W. Donner, J. Major, H. Dosch, A. Schreyer, H. Zabel, and H. Humblot, Rev. Sci. Instr. **72**, 163 (2001)

Diffuse scattering from Co/CoO bilayer

EVA, ³He , Neutron Resonator, T=10 K, ~H_{c2}=370 Oe

F. Radu, A. Vorobiev, J. Major, H. Humblot, K. Westerholt, H. Zabel

PNR of 2 nm Fe/ 150 nm Nb on sapphire ADAM neutron reflectometer, ILL

K. Theis-Bröhl, R. Siebrecht, H. Zabel, 2001

Contrast matching for enhancing interface sensitivity

V. Leiner, B. Hjörvarsson, J. Birch, H. Zabel, submitted

Vanishing of 1. order peak by D- loading of V- layers:

After deuterium loading

Neutron wave guide (resonator) with polarized neutrons

V.K. Ignatovich, F. Radu, V.L. Aksenov, Yu.V.Nikitenko, Yu. M. Gledenov, P.V. Sedyshev *Frank Laboratory, Dubna*

Florin Radu

Resonances below the critical edge of total reflection

Resonances below the critical edge of total reflection

Summary

- Neutrons reveal the spin structure and exchange coupling in magnetic superlattices
- Neutrons can distinguish between wall motion and rotation during magnetization reversal
- Resonant magnetic x-ray scattering provides element selective information on magnetic hysteresis and spin structures
- Interface sensitivity can be enhanced by resonant techniques and/or clever design of the sample

Thanks to: F. Radu T. Schmitte M. Etzkorn K. Theis –Bröhl K. Westerholt V. Leiner R. Siebrecht

B. Hjörvarsson, UppsalaJ. Birch, LinköpingE. Weschke, FU Berlin

Funding through DFG-SFB 491, BMBF