(A review) on cavity quantum electrodynamics from a quantum measurement perspective

P. Domokos, D. Nagy, G. Kónya, G. Szirmai

Research Institute for Solid State Physics and Optics, Budapest

"Modern fejlemények a kvantumelméletben", Elméleti Fizikai Iskola

Tihany, 2010. augusztus 30-szeptember 3.

() optics \approx electromagnetic radiation field

1

1 optics \approx electromagnetic radiation field

2 light-matter interaction, "low energy" \approx atomic physics

- - optics \approx electromagnetic radiation field
 - light-matter interaction, "low energy" \approx atomic physics
- Iundamental theory is known (basic eqs.: Maxwell, Schrödinger) (What is left?)

-) optics \approx electromagnetic radiation field
- 2 light-matter interaction, "low energy" \approx atomic physics
- Iundamental theory is known (basic eqs.: Maxwell, Schrödinger) (What is left?)
 - huge variety of systems, QO \approx AMO \approx subject matter of Physical Review A

- 1) c
 - optics \approx electromagnetic radiation field
- 2 light-matter interaction, "low energy" \approx atomic physics
- Iundamental theory is known (basic eqs.: Maxwell, Schrödinger) (What is left?)
 - huge variety of systems, QO \approx AMO \approx subject matter of Physical Review A

What is left?

- 1) o
 - optics \approx electromagnetic radiation field
- light-matter interaction, "low energy" \approx atomic physics
- fundamental theory is known (basic eqs.: Maxwell, Schrödinger) (What is left?)
- huge variety of systems, QO \approx AMO \approx subject matter of Physical Review A

What is left?

 \bigcirc "quantum" \approx increasing the precision up to the ultimate quantum limit (quote S.H.)

-) optics \approx electromagnetic radiation field
- light-matter interaction, "low energy" \approx atomic physics
- fundamental theory is known (basic eqs.: Maxwell, Schrödinger) (What is left?)
- huge variety of systems, QO \approx AMO \approx subject matter of Physical Review A

What is left?

-) "quantum" \approx increasing the precision up to the ultimate quantum limit (quote S.H.)
- 2 measurement → preparation and manipulation of well defined quantum states Example: optical pumping, but: inhomogeneous Doppler broadening

-) optics \approx electromagnetic radiation field
- light-matter interaction, "low energy" \approx atomic physics
- fundamental theory is known (basic eqs.: Maxwell, Schrödinger) (What is left?)
- huge variety of systems, QO \approx AMO \approx subject matter of Physical Review A

What is left?

- "quantum" \approx increasing the precision up to the ultimate quantum limit (quote S.H.)
- easurement → preparation and manipulation of well defined quantum states Example: optical pumping, but: inhomogeneous Doppler broadening

-) optics \approx electromagnetic radiation field
- 2) light-matter interaction, "low energy" \approx atomic physics
- fundamental theory is known (basic eqs.: Maxwell, Schrödinger) (What is left?)
- huge variety of systems, QO \approx AMO \approx subject matter of Physical Review A

What is left?

-) "quantum" \approx increasing the precision up to the ultimate quantum limit (quote S.H.)
- easurement → preparation and manipulation of well defined quantum states Example: optical pumping, but: inhomogeneous Doppler broadening

Grand Epoch: from the 90'ies

degenerate Bose-gas (1995), Fermi-gas (2001)

-) optics \approx electromagnetic radiation field
- 2) light-matter interaction, "low energy" \approx atomic physics
- fundamental theory is known (basic eqs.: Maxwell, Schrödinger) (What is left?)
- huge variety of systems, QO \approx AMO \approx subject matter of Physical Review A

What is left?

-) "quantum" \approx increasing the precision up to the ultimate quantum limit (quote S.H.)
- easurement → preparation and manipulation of well defined quantum states Example: optical pumping, but: inhomogeneous Doppler broadening

- degenerate Bose-gas (1995), Fermi-gas (2001)
- entangled photon pairs

-) optics \approx electromagnetic radiation field
- 2) light-matter interaction, "low energy" \approx atomic physics
- fundamental theory is known (basic eqs.: Maxwell, Schrödinger) (What is left?)
- huge variety of systems, QO \approx AMO \approx subject matter of Physical Review A

What is left?

-) "quantum" \approx increasing the precision up to the ultimate quantum limit (quote S.H.)
- easurement → preparation and manipulation of well defined quantum states Example: optical pumping, but: inhomogeneous Doppler broadening

- 🚺 degenerate Bose-gas (1995), Fermi-gas (2001)
 - 2) entangled photon pairs
- \bigcirc full control of single ions in Paul trap \longrightarrow QC (10 qubit) & Coulomb-crystals (10³)

-) optics \approx electromagnetic radiation field
- light-matter interaction, "low energy" \approx atomic physics
- fundamental theory is known (basic eqs.: Maxwell, Schrödinger) (What is left?)
- huge variety of systems, QO \approx AMO \approx subject matter of Physical Review A

What is left?

-) "quantum" \approx increasing the precision up to the ultimate quantum limit (quote S.H.)
- easurement → preparation and manipulation of well defined quantum states Example: optical pumping, but: inhomogeneous Doppler broadening

- 🔰 degenerate Bose-gas (1995), Fermi-gas (2001)
- 2 entangled photon pairs
- 3) full control of single ions in Paul trap \rightarrow QC (10 qubit) & Coulomb-crystals (10³)
- Cavity quantum electrodynamics reaches the "holy grails"

-) optics \approx electromagnetic radiation field
- light-matter interaction, "low energy" \approx atomic physics
- fundamental theory is known (basic eqs.: Maxwell, Schrödinger) (What is left?)
- huge variety of systems, QO \approx AMO \approx subject matter of Physical Review A

What is left?

-) "quantum" \approx increasing the precision up to the ultimate quantum limit (quote S.H.)
- easurement → preparation and manipulation of well defined quantum states Example: optical pumping, but: inhomogeneous Doppler broadening

Grand Epoch: from the 90'ies

- 🚺 degenerate Bose-gas (1995), Fermi-gas (2001)
 - 2) entangled photon pairs
 - I full control of single ions in Paul trap \rightarrow QC (10 qubit) & Coulomb-crystals (10³)
- Cavity quantum electrodynamics reaches the "holy grails"

What is coming?

- optics \approx electromagnetic radiation field
- light-matter interaction, "low energy" \approx atomic physics
- fundamental theory is known (basic eqs.: Maxwell, Schrödinger) (What is left?)
- huge variety of systems, $QO \approx AMO \approx$ subject matter of Physical Review A

What is left?

- "quantum" \approx increasing the precision up to the ultimate quantum limit (quote S.H.)
- measurement preparation and manipulation of well defined quantum states Example: optical pumping, but: inhomogeneous Doppler broadening

Grand Epoch: from the 90'ies

- degenerate Bose-gas (1995), Fermi-gas (2001)
 - entangled photon pairs
 - full control of single ions in Paul trap \rightarrow QC (10 qubit) & Coulomb-crystals (10³)
- Cavity quantum electrodynamics reaches the "holy grails"

What is coming?

Quantum information science, hardware and software

-) optics \approx electromagnetic radiation field
- 2) light-matter interaction, "low energy" \approx atomic physics
- fundamental theory is known (basic eqs.: Maxwell, Schrödinger) (What is left?)
- huge variety of systems, QO \approx AMO \approx subject matter of Physical Review A

What is left?

-) "quantum" \approx increasing the precision up to the ultimate quantum limit (quote S.H.)
- easurement → preparation and manipulation of well defined quantum states Example: optical pumping, but: inhomogeneous Doppler broadening

Grand Epoch: from the 90'ies

- 🚺 degenerate Bose-gas (1995), Fermi-gas (2001)
 - 2) entangled photon pairs
 - full control of single ions in Paul trap \rightarrow QC (10 qubit) & Coulomb-crystals (10³)
- Cavity quantum electrodynamics reaches the "holy grails"

What is coming?

- 0
- Quantum information science, hardware and software
- Quantum many-body physics in tailored reality (PRB, PRE)

Radiation sources for atom-EM field interaction

thermal sources (sodium deflection, 1933)

Radiation sources for atom-EM field interaction

thermal sources (sodium deflection, 1933)

2 (maser &) laser (many photons in 1 mode) \rightarrow

manipulation of motion cooling and trapping

Radiation sources for atom-EM field interaction

- thermal sources (sodium deflection, 1933)
- 2 (maser &) laser (many photons in 1 mode) \rightarrow

manipulation of motion cooling and trapping

(μwave &) optical resonator (same photon many times)

Radiation sources for atom-EM field interaction

- thermal sources (sodium deflection, 1933)
- 2 (maser &) laser (many photons in 1 mode) \rightarrow

manipulation of motion cooling and trapping

(µwave &) optical resonator (same photon many times)

Optics

- Light (EM radiation): Maxwell-equations
- Matter (polarizable medium): index of refraction

Radiation sources for atom-EM field interaction

- thermal sources (sodium deflection, 1933)
- 2 (maser &) laser (many photons in 1 mode) \rightarrow

manipulation of motion cooling and trapping

(μwave &) optical resonator (same photon many times)

Optics

- Light (EM radiation): Maxwell-equations
- Matter (polarizable medium): index of refraction

Atomic physics (spectroscopy)

- Matter: Schrdinger-equation
- UV, laser, X, syncrotron: external driving field

Radiation sources for atom-EM field interaction

- thermal sources (sodium deflection, 1933)
- 2 (maser &) laser (many photons in 1 mode) \rightarrow

manipulation of motion cooling and trapping

(µwave &) optical resonator (same photon many times)

Optics

- Light (EM radiation): Maxwell-equations
- Matter (polarizable medium): index of refraction

Atomic physics (spectroscopy)

- Matter: Schrdinger-equation
- UV, laser, X, syncrotron: external driving field

Light-matter interaction in resonator

Coupled equations of motion for the system's degree of freedom

From measuring to manipulating quantum systems

From measuring to manipulating quantum systems

QED (boundary) effects on the atomic structure (1946-), inhibition and enhancement of spont. emission

From measuring to manipulating quantum systems

- QED (boundary) effects on the atomic structure (1946-), inhibition and enhancement of spont. emission
- 2 demand for a field sensitive to microscopic objects

← high-finesse, small volume resonator

From measuring to manipulating quantum systems

- QED (boundary) effects on the atomic structure (1946-), inhibition and enhancement of spont. emission
- 2 demand for a field sensitive to microscopic objects

← high-finesse, small volume resonator

Microwave resonators: dipole + Q-field (quantum gates),

From measuring to manipulating quantum systems

- QED (boundary) effects on the atomic structure (1946-), inhibition and enhancement of spont. emission
- 2 demand for a field sensitive to microscopic objects

← high-finesse, small volume resonator

- 3 microwave resonators: dipole + Q-field (quantum gates), metion
- optical domain: dipole + lossy cavity field + CM motion (Problems : quantum fluctuations, trapping time)

From measuring to manipulating quantum systems

- QED (boundary) effects on the atomic structure (1946-), inhibition and enhancement of spont. emission
- 2 demand for a field sensitive to microscopic objects

← high-finesse, small volume resonator

- 3 microwave resonators: dipole + Q-field (quantum gates), metion
- optical domain: dipole + lossy cavity field + CM motion (Problems : quantum fluctuations, trapping time)

Material (atoms) degrees of freedom

 Maxwell–Bloch-equations (semiclassical), Heisenberg–Langevin-equations (quantum)

 \longrightarrow internal degrees of freedom \longrightarrow e.g. laser

From measuring to manipulating quantum systems

- QED (boundary) effects on the atomic structure (1946-), inhibition and enhancement of spont. emission
- 2 demand for a field sensitive to microscopic objects

← high-finesse, small volume resonator

- 3 microwave resonators: dipole + Q-field (quantum gates), metion
- optical domain: dipole + lossy cavity field + CM motion (Problems : quantum fluctuations, trapping time)

Material (atoms) degrees of freedom

 Maxwell–Bloch-equations (semiclassical), Heisenberg–Langevin-equations (quantum)

 \longrightarrow internal degrees of freedom \longrightarrow e.g. laser

 Maxwell–Lorentz–Bloch-equations, external degrees of freedom, translational motion of atoms

Purcell, 1946: spectrum is not an inherent property of the atom, measurables: level shift and linewidth depend on the boundary conditions

- Purcell, 1946: spectrum is not an inherent property of the atom, measurables: level shift and linewidth depend on the boundary conditions
- 2 D. Kleppner (1981): "inhibition of spontaneous emission"

- Purcell, 1946: spectrum is not an inherent property of the atom, measurables: level shift and linewidth depend on the boundary conditions
 - D. Kleppner (1981): "inhibition of spontaneous emission"
 - experiment 1985, PRL, R. G. Hulet, E. S. Hilfer, D. Kleppner

FIG. 1. Inter-or-ingent signals for Various spontaneous decay rates. Mean time of flight = 1.57.40, where A₀ is the free-space radiative decay rate. Curve A, calculated signal, no radiative decay. Curve C, free space, A'=A₀, calculated (dashed line), measured (solid line).

FIG. 2. Inhibited spontaneous emission. Time-of-flight data for inhibited spontaneous emission ($\lambda/2d > 1$, curve B) and enhanced spontaneous emission ($\lambda/2d > 1$, curve with each simultaneously by modulation of the wavelength with an applied electric field.

ENS setup (S. Haroche & J.M. Raimond)

25× enhancement, single atoms

no radiative decay. Curve C, free space, $A' = A_0$; calculated

(dashed line), measured (solid line)

- Purcell, 1946: spectrum is not an inherent property of the atom, measurables: level shift and linewidth depend on the boundary conditions
 - 2 D. Kleppner (1981): "inhibition of spontaneous emission"
 - experiment 1985, PRL, R. G. Hulet, E. S. Hilfer, D. Kleppner

 optical experiments 1987, M. S. Feld, reduced spont. em (-0.5%) + level shift

were taken simultaneously by modulation of the wavelength

with an applied electric field

Generic experimental scheme

Generic experimental scheme

Generic experimental scheme

Strong coupling

Single atom detection (1999)

Generic experimental scheme

Strong coupling

atom-photon molecule

Single-mode radiation field

Single-mode radiation field

From mode density to single mode

$$|E_{\text{cav}}|^2 = \frac{T^{-1}}{1 + \left(\frac{\mathcal{F}}{\pi}\right)^2 \sin^2 \frac{\phi}{2}} |E_{\text{in}}|^2$$

Airy-function

$$\mathcal{F}$$
inesse: $\mathcal{F} = \frac{\pi \sqrt{1-T}}{T} \gg 1$

$$n_{\text{cav}} = |\alpha|^2 = \frac{2\kappa j_{\text{in}}}{(\omega - \omega_c)^2 + \kappa^2}$$

Lorentzian

$$\dot{J}_{in} = \epsilon_0 |E_{in}|^2 c A/\hbar \omega, \kappa = T c/2 I,$$

 $\eta = \sqrt{2\kappa} \dot{J}_{in}$

$$\dot{\alpha} = i(\omega - \omega_{\rm C})\alpha - \kappa\alpha + \eta$$

Mode (density) can be mimicked by a damped-driven harmonic oscillator

Open quantum system

$$\dot{\rho} = -\frac{i}{\hbar} \left[H, \rho \right] + \mathcal{L}\rho$$

Open quantum system

$$\dot{
ho} = -rac{i}{\hbar} \left[{
m H},
ho
ight] + {
m {\it L}}
ho$$

Generic 1D model for single atom and single cavity mode

$$H = \frac{p^2}{2M} - \hbar \Delta_C a^{\dagger} a - \hbar \Delta_A \sigma^+ \sigma^- - i\hbar g f(\hat{x})(\sigma^+ a - a^{\dagger} \sigma^-) - i\hbar \eta (a - a^{\dagger})$$

$$\mathcal{L}\rho = -\kappa \left(a^{\dagger} a \rho + \rho a^{\dagger} a - 2a \rho a^{\dagger} \right) -\gamma \left(\sigma^{+} \sigma^{-} \rho + \rho \sigma^{+} \sigma^{-} - 2 \int_{-1}^{1} N(u) \sigma^{-} e^{-iux} \rho e^{iux} \sigma^{+} du \right)$$

Open quantum system

$$\dot{
ho} = -rac{i}{\hbar} \left[{
m H},
ho
ight] + {
m {\it L}}
ho$$

Generic 1D model for single atom and single cavity mode

$$H = \frac{p^2}{2M} - \hbar \Delta_C a^{\dagger} a - \hbar \Delta_A \sigma^+ \sigma^- - i\hbar g f(\hat{x})(\sigma^+ a - a^{\dagger} \sigma^-) - i\hbar \eta (a - a^{\dagger})$$

$$\mathcal{L}\rho = -\kappa \left(a^{\dagger} a \rho + \rho a^{\dagger} a - 2a \rho a^{\dagger} \right) -\gamma \left(\sigma^{+} \sigma^{-} \rho + \rho \sigma^{+} \sigma^{-} - 2 \int_{-1}^{1} N(u) \sigma^{-} e^{-iux} \rho e^{iux} \sigma^{+} du \right)$$

Obvious generalizations

- many dimensions
- many modes
- many atoms

Open quantum system

$$\dot{
ho} = -rac{i}{\hbar} \left[{
m H},
ho
ight] + {
m {\it L}}
ho$$

Generic 1D model for single atom and single cavity mode

$$H = \frac{\rho^2}{2M} - \hbar \Delta_C a^{\dagger} a - \hbar \Delta_A \sigma^+ \sigma^- - i\hbar g f(\hat{x})(\sigma^+ a - a^{\dagger} \sigma^-) - i\hbar \eta (a - a^{\dagger})$$

$$\begin{aligned} \mathcal{L}\rho &= -\kappa \left(a^{\dagger} a \rho + \rho a^{\dagger} a - 2 a \rho a^{\dagger} \right) \\ &- \gamma \left(\sigma^{+} \sigma^{-} \rho + \rho \sigma^{+} \sigma^{-} - 2 \int_{-1}^{1} \mathsf{N}(u) \sigma^{-} e^{-iux} \rho e^{iux} \sigma^{+} du \right) \end{aligned}$$

Obvious generalizations

- many dimensions
- many modes
- many atoms

Cooperativity

$$\frac{g^2}{\kappa\gamma} = \frac{6\mathcal{F}}{k^2w^2} = 2\pi\mathcal{F}\frac{\sigma_A}{\mathcal{A}}$$

 $\sigma_{\rm A}$ radiative cross section

 $\mathcal A$ Gaussian mode c. s.

LKB ENS experiments, Paris

LKB ENS experiments, Paris

atoms

Rb, circular Rydberg states (n=51, l=50, m=50) $|e\rangle \leq |g\rangle$ 51.1 GHz d=1256 a. u. v=100-400 m/s , full path L=20 cm efficient state-selective ionization

LKB ENS experiments, Paris

atoms

Rb, circular Rydberg states (n=51, l=50, m=50) $|e\rangle \leq_{j}|g\rangle$ 51.1 GHz d=1256 a. u. v=100-400 m/s , full path L=20 cm efficient state-selective ionization

cavity

Ni supraconducting mirrors Fabry-Pérot resonator, TEM₉₀₀ I= 2.76 cm, w=6 mm, V_{eff} =770 mm³ interaction time τ =1-10 ms T=0.6 K

LKB ENS experiments, Paris

atoms

Rb, circular Rydberg states (n=51, l=50, m=50) $|e\rangle \leq_{j}|g\rangle$ 51.1 GHz d=1256 a. u. v=100-400 m/s , full path L=20 cm efficient state-selective ionization

cavity

Ni supraconducting mirrors Fabry-Pérot resonator, TEM₉₀₀ I= 2.76 cm, w=6 mm, V_{eff} =770 mm³ interaction time τ =1-10 ms T=0.6 K

CQED parameters

 $g=2\pi imes25/{
m ms}\gg\gammapprox$ 0.03/ms , \kappapprox 1– 0.008/ms,

LKB ENS experiments, Paris

atoms

Rb, circular Rydberg states (n=51, l=50, m=50) $|e\rangle \leq_{j}|g\rangle$ 51.1 GHz d=1256 a. u. v=100-400 m/s , full path L=20 cm efficient state-selective ionization

cavity

Ni supraconducting mirrors Fabry-Pérot resonator, TEM₉₀₀ I= 2.76 cm, w=6 mm, V_{eff} =770 mm³ interaction time τ =1-10 ms T=0.6 K

CQED parameters

 $g=2\pi imes25/{
m ms}\gg\gammapprox$ 0.03/ms , \kappapprox 1– 0.008/ms,

Reversible, non-perturbative dynamics (small dissipation)

Jaynes-Cummings Hamiltonian

$$H = -\hbar\Delta_C a^{\dagger} a - \hbar\Delta_A \sigma^+ \sigma^- - i\hbar g \left(\sigma^+ a - a^{\dagger} \sigma^-\right)$$

Jaynes-Cummings Hamiltonian

$$H=-\hbar\Delta_{C}a^{\dagger}a-\hbar\Delta_{A}\sigma^{+}\sigma^{-}-i\hbar g\left(\sigma^{+}a-a^{\dagger}\sigma^{-}\right)$$

Dressed states

$$\begin{split} E_{|\pm,n\rangle} &= (n+1)\hbar\omega_M \pm \hbar \sqrt{g^2(n+1) + \frac{\delta^2}{4}} \\ |e,n+1\rangle & & \dots \\ |g,n+2\rangle & & \dots \\ |e,n\rangle & |e,n+1\rangle \\ |g,n+1\rangle & & \delta \\ |e,n-1\rangle & & \dots \\ |g,n\rangle & & \dots \\ |+,n-1\rangle \\ |g,n\rangle & & \dots \\ |-,n-1\rangle \end{split}$$

Pure Hamiltonian dynamics

Quantized Rabi oscillation

$$\begin{split} |\psi(0)\rangle &= |e\rangle \sum c_n |n\rangle \\ P_e(t) &= 1 - \sum_n |c_n|^2 \frac{4g^2(n+1)}{4g^2(n+1) + \delta^2} \sin^2 \left(\sqrt{g^2(n+1) + \delta^2/4} t \right) \end{split}$$

Jaynes-Cummings Hamiltonian

$$H = -\hbar\Delta_C a^{\dagger}a - \hbar\Delta_A \sigma^+ \sigma^- - i\hbar g \left(\sigma^+ a - a^{\dagger}\sigma^-\right)$$

Dressed states

$$E_{|\pm,n\rangle} = (n+1)\hbar\omega_{M} \pm \hbar \sqrt{g^{2}(n+1) + \frac{\delta^{2}}{4}}$$

$$|e, n+1\rangle = |h, n+1\rangle = |h, n+1\rangle$$

$$|g, n+2\rangle = |h, n+1\rangle = |h, n+1\rangle$$

$$|e, n+1\rangle = |h, n+1\rangle = |h, n+1\rangle$$

$$|e, n-1\rangle = |h, n-1\rangle$$

$$|e, n-1\rangle = |h, n-1\rangle$$

$$|e, n-1\rangle = |h, n-1\rangle$$

Pure Hamiltonian dynamics

Quantized Rabi oscillation

$$P_{e}(t) = 1 - \sum_{n} |c_{n}|^{2} \frac{4g^{2}(n+1)}{4g^{2}(n+1) + \delta^{2}} \sin^{2}\left(\sqrt{g^{2}(n+1) + \delta^{2}/4} t\right)$$

Jaynes-Cummings Hamiltonian

$$H = -\hbar\Delta_C a^{\dagger} a - \hbar\Delta_A \sigma^+ \sigma^- - i\hbar g \left(\sigma^+ a - a^{\dagger} \sigma^-\right)$$

Dressed states

 $|\psi(0)\rangle = |e\rangle \sum c_n |n\rangle$

$$\begin{split} E_{|\pm,n\rangle} &= (n+1)\hbar\omega_M \pm \hbar \sqrt{g^2(n+1) + \frac{\delta^2}{4}} \\ |e,n+1\rangle & & \dots \\ |g,n+2\rangle & & \dots \\ |e,n\rangle & \downarrow \\ |g,n+1\rangle & & \downarrow \\ |e,n-1\rangle & & \downarrow \\ |g,n\rangle & & \dots \\ |e,n-1\rangle \\ |g,n\rangle & & \dots \\ |g,$$

Brune et al. PRL (1996) (α) (a) 0:0 (b) (β) P(n) rate Probability 0.0 transfer (c) (2) 40 05 \$ Fourier m, 0 (D) (d) (δ) Ó 90 ò 50 100 150 012345 30 Time (us) Frequency (kHz) n

Non-resonant interaction

Large detuning $\delta^2 >> g^2(n+1)$ (b) (a) |e,n+1
angle $|e\rangle$ $|n+1\rangle$ — $\begin{array}{c|c} |n+2\rangle & |n+2\rangle \\ |e,n\rangle & \omega_M - \Delta & |n\rangle \\ \hline \\ |g,n+1\rangle & |n+1\rangle \\ |e,n-1\rangle & \omega_M - \Delta & n-1 \\ \hline \end{array}$ $\omega_A + (2n+3)\Delta$ $- |e\rangle$ $\frac{1}{\omega_A + (2n+1)\Delta} |g\rangle$ $|g\rangle$ |g,n
angle |n
angle $|g\rangle$ $|n+1\rangle$ $|n\rangle$ $|g\rangle$ $|e\rangle$ $\hat{\mathcal{H}}_{\text{int}} \approx \hbar \Delta \left(a^{\dagger} a \left| g \right\rangle \left\langle g \right| - \left(a^{\dagger} a + 1 \right) \left| e \right\rangle \left\langle e \right| \right)$ $\Delta = g^2/\delta$ accumulated phase shift $\frac{g^2 t_{\text{int}}}{s} \ge 2\pi$

FIG. 3. $P_{ij}^{(k)}(\nu)$ signal exhibiting Ramsey fringes: (a) C empty, $\delta/2\pi = 712$ kHz; (b)-(d) C stores a coherent field with $|\alpha| = \sqrt{9,5} = 3.1$, $\delta/2\pi = 712$, 347, and 104 kHz, respectively. Points are experimental and curves are sinusoidal fits. Insets show the phase space representation of the field components left in C.

polarization

$$\dot{\sigma}^- = (i\Delta_A - \gamma)\sigma^- + 2gf(\hat{x})\sigma_z a + \xi_-$$

Adiabatic elimination of the internal atomic dynamics

$$\sigma^{-} \approx -\frac{i\Delta_{A}+\gamma}{\Delta_{A}^{2}+\gamma^{2}}gf(\hat{x})a$$

noise neglected saturation is low: $\sigma_z = -1/2$

Parameters

$$U_0 = -rac{\omega_C}{V}\chi' = rac{g^2\Delta_A}{\Delta_A^2 + \gamma^2}, \quad \Gamma_0 = -rac{\omega_C}{V}\chi'' = \gammarac{g^2}{\Delta_A^2 + \gamma^2}$$

polarization

$$\dot{\sigma}^- = (i\Delta_A - \gamma)\sigma^- + 2gf(\hat{x})\sigma_z a + \xi_-$$

Adiabatic elimination of the internal atomic dynamics

$$\sigma^{-} \approx -\frac{i\Delta_{A}+\gamma}{\Delta_{A}^{2}+\gamma^{2}}gf(\hat{x})a$$

noise neglected saturation is low: $\sigma_z = -1/2$

Parameters

$$U_0 = -rac{\omega_C}{V}\chi' = rac{g^2\Delta_A}{\Delta_A^2 + \gamma^2}\,, \quad \Gamma_0 = -rac{\omega_C}{V}\chi'' = \gammarac{g^2}{\Delta_A^2 + \gamma^2}$$

polarization

$$\dot{\sigma}^- = (i\Delta_A - \gamma)\sigma^- + 2gf(\hat{x})\sigma_z \mathbf{a} + \xi_-$$

Adiabatic elimination of the internal atomic dynamics

$$\sigma^{-} \approx -\frac{i\Delta_{A}+\gamma}{\Delta_{A}^{2}+\gamma^{2}}gf(\hat{x})a$$

noise neglected saturation is low: $\sigma_z = -1/2$

Effective von Neumann equation

$$H = \frac{\hat{p}^2}{2M} - \hbar \Delta_C a^{\dagger} a + \hbar U_0 f^2(\hat{x}) a^{\dagger} a - i\hbar \eta (a - a^{\dagger})$$

$$\begin{aligned} \mathcal{L}\rho &= -\kappa \left(a^{\dagger} a \rho + \rho a^{\dagger} a - 2a \rho a^{\dagger} \right) \\ &- \Gamma_0 \Big(f^2(\hat{x}) a^{\dagger} a \rho + \rho f^2(\hat{x}) a^{\dagger} \\ &- 2 \int_{-1}^1 du N(u) a f(\hat{x}) e^{-i u \hat{x}} \rho e^{i u \hat{x}} a^{\dagger} f(\hat{x}) du \Big) \end{aligned}$$

This minimal model is 'exact' for a linearly polarizable particle

Approach 1a. Brute force quantum solution

Approach 1a. Brute force quantum solution

But	
٩	one dimensional motion
٩	single atom
٩	low photon number

Joint atom-field Wigner function

$$\begin{split} \chi\left(\sigma,\tau,\xi,\xi^*\right) &= \operatorname{Tr}\left[\hat{\rho}\exp\left\{\xi\hat{a}^{\dagger} - \xi^*\hat{a} + i/\hbar(\sigma\hat{x} + \tau\hat{p})\right\}\right]\\ W(x,p,\alpha,\alpha^*) &= \frac{1}{\pi(2\pi\hbar)^2} \int \chi\left(\sigma,\tau,\xi,\xi^*\right)\exp\left\{-\left(\xi\alpha^* - \xi^*\alpha + i/\hbar(\sigma x + \tau p)\right)\right\} \end{split}$$

Joint atom-field Wigner function

Joint atom-field Wigner function

Rules

$$a\rho \rightarrow \left(\alpha + \frac{1}{2}\frac{\partial}{\partial\alpha^*}\right)W(\alpha)$$

$$a^{\dagger}\rho \rightarrow \left(\alpha^* - \frac{1}{2}\frac{\partial}{\partial\alpha}\right)W(\alpha)$$

$$\rho a \rightarrow \left(\alpha - \frac{1}{2}\frac{\partial}{\partial\alpha^*}\right)W(\alpha)$$

$$\rho a^{\dagger} \rightarrow \left(\alpha^* + \frac{1}{2}\frac{\partial}{\partial\alpha}\right)W(\alpha)$$
similar rules for $\delta\rho, \rho\delta, \dots$

Joint atom-field Wigner function

Rules

$$a\rho \rightarrow \left(\alpha + \frac{1}{2}\frac{\partial}{\partial\alpha^*}\right)W(\alpha)$$
$$a^{\dagger}\rho \rightarrow \left(\alpha^* - \frac{1}{2}\frac{\partial}{\partial\alpha}\right)W(\alpha)$$
$$\rho a \rightarrow \left(\alpha - \frac{1}{2}\frac{\partial}{\partial\alpha^*}\right)W(\alpha)$$
$$\rho a^{\dagger} \rightarrow \left(\alpha^* + \frac{1}{2}\frac{\partial}{\partial\alpha}\right)W(\alpha)$$
similar rules for $\hat{\chi}\rho, \rho\hat{\chi}, ...,$

Joint atom-field Wigner function

Equivalent Langevin equations

$$\begin{split} \dot{x} &= \frac{\rho}{M} \\ \dot{\rho} &= -\hbar U_0 \left(|\alpha|^2 - \frac{1}{2} \right) \nabla f^2(x) + \xi_\rho \end{split}$$

$$\dot{\alpha} = \eta - i \left(U_0 f^2(x) - \Delta_C \right) \alpha - \left(\kappa + \Gamma_0 f^2(x) \right) \alpha + \xi_{\alpha}$$

Rules

$$\begin{aligned} a\rho &\to \left(\alpha + \frac{1}{2} \frac{\partial}{\partial \alpha^*}\right) W(\alpha) \\ a^{\dagger}\rho &\to \left(\alpha^* - \frac{1}{2} \frac{\partial}{\partial \alpha}\right) W(\alpha) \\ \rho a &\to \left(\alpha - \frac{1}{2} \frac{\partial}{\partial \alpha^*}\right) W(\alpha) \\ \rho a^{\dagger} &\to \left(\alpha^* + \frac{1}{2} \frac{\partial}{\partial \alpha}\right) W(\alpha) \end{aligned}$$
similar rules for $\hat{x}\rho, \rho\hat{x}, ...$

Joint atom-field Wigner function

Equivalent Langevin equations

$$\begin{split} \dot{x} &= \frac{\rho}{M} \\ \dot{\rho} &= -\hbar U_0 \left(|\alpha|^2 - \frac{1}{2} \right) \nabla f^2(x) + \xi_\rho \end{split}$$

$$\dot{\alpha} = \eta - i \left(U_0 f^2(x) - \Delta_C \right) \alpha - \left(\kappa + \Gamma_0 f^2(x) \right) \alpha + \xi_{\alpha}$$

≡ classical equations + quantum noise

Rules

$$\begin{aligned} a\rho &\to \left(\alpha + \frac{1}{2} \frac{\partial}{\partial \alpha^*}\right) W(\alpha) \\ a^{\dagger}\rho &\to \left(\alpha^* - \frac{1}{2} \frac{\partial}{\partial \alpha}\right) W(\alpha) \\ \rho a &\to \left(\alpha - \frac{1}{2} \frac{\partial}{\partial \alpha^*}\right) W(\alpha) \\ \rho a^{\dagger} &\to \left(\alpha^* + \frac{1}{2} \frac{\partial}{\partial \alpha}\right) W(\alpha) \end{aligned}$$
similar rules for $\hat{x}\rho, \rho, \hat{x}, \dots$

Joint atom-field Wigner function

Equivalent Langevin equations

$$egin{aligned} \dot{x} &= rac{
ho}{M} \ \dot{p} &= -\hbar U_0 \left(ert lpha ert^2 - rac{1}{2}
ight)
abla f^2(x) + \xi_{
ho} \end{aligned}$$

$$\dot{\alpha} = \eta - i \left(U_0 f^2(x) - \Delta_C \right) \alpha - \left(\kappa + \Gamma_0 f^2(x) \right) \alpha + \xi_{\alpha}$$

force depends not only on the position but also on the velocity

Rules

$$\begin{aligned} a\rho &\to \left(\alpha + \frac{1}{2} \frac{\partial}{\partial \alpha^*}\right) W(\alpha) \\ a^{\dagger}\rho &\to \left(\alpha^* - \frac{1}{2} \frac{\partial}{\partial \alpha}\right) W(\alpha) \\ \rho a &\to \left(\alpha - \frac{1}{2} \frac{\partial}{\partial \alpha^*}\right) W(\alpha) \\ \rho a^{\dagger} &\to \left(\alpha^* + \frac{1}{2} \frac{\partial}{\partial \alpha}\right) W(\alpha) \end{aligned}$$
similar rules for $\hat{x}\rho, \rho\hat{x}, ...$

Correlated dynamics of the atom and the field mode

Simulation of noiseless motion

$$\begin{array}{l} \Delta_C = -4\kappa \\ U_0 = -3\kappa \end{array} \right\} \quad |\Delta_C - U_0| = \kappa \\ \eta = 1.5\kappa \end{array}$$

 $\gamma = 0.1\kappa$ (negligible)

Correlated dynamics of the atom and the field mode

Simulation of noiseless motion

$$\begin{array}{c} \Delta_C = -4\kappa \\ U_0 = -3\kappa \end{array} \right\} \quad |\Delta_C - U_0| = \kappa \\ \eta = 1.5\kappa \end{array}$$

 $\gamma = 0.1\kappa$ (negligible)

Sisyphus interpretation

Cooling can be attributed to the time lag with which the field adapts itself to the momentary position of the atom.

Diffusion matrix

$$d\xi_{\parallel} = \frac{\alpha_r}{|\alpha|} d\xi_r + \frac{\alpha_i}{|\alpha|} d\xi_i \text{ (amplitude noise)}, \quad d\xi_{\perp} = -\frac{\alpha_i}{|\alpha|} d\xi_r + \frac{\alpha_r}{|\alpha|} d\xi_i \text{ (phase noise)}$$

$$\mathbf{D} dt = \left\langle \left(\begin{array}{cc} d\xi_{\parallel} \\ d\xi_{\perp} \\ d\xi_{\rho} \end{array} \right) \left(d\xi_{\parallel}, \ d\xi_{\perp}, \ d\xi_{\rho} \right) \right\rangle = \left(\begin{array}{cc} d_1 & 0 & 0 \\ 0 & d_1 & d_3 \\ 0 & d_3 & d_2 \end{array} \right) dt$$

$$d_1 = \frac{1}{2} \left(\kappa + \Gamma_0 f^2(x) \right)$$

$$d_2 = 2\Gamma_0 \left(|\alpha|^2 - \frac{1}{2} \right) \left((\hbar \nabla f(x))^2 + \hbar^2 k^2 \bar{u^2} f^2(x) \right)$$

$$d_3 = \Gamma_0 |\alpha| \hbar f(x) \nabla f(x)$$

Domokos, Horak, Ritsch, J. Phys. B 2001

parameters

 $\begin{array}{l} \Delta_A = -20\gamma\\ \Delta_C = U_0 = -0.312\gamma\\ g = 2.5\gamma \end{array}$

Vukics, Janszky, Domokos, J. Phys. B38, 1453 (2005)

parameters

 $\begin{array}{l} \Delta_A = -20\gamma\\ \Delta_C = U_0 = -0.312\gamma\\ g = 2.5\gamma \end{array}$

photon number

parameters

 $\begin{array}{l} \Delta_A = -20\gamma\\ \Delta_C = U_0 = -0.312\gamma\\ g = 2.5\gamma \end{array}$

temperature

photon number

Vukics, Janszky, Domokos, J. Phys. B38, 1453 (2005)

parameters

 $\begin{array}{l} \Delta_A = -20\gamma\\ \Delta_C = U_0 = -0.312\gamma\\ g = 2.5\gamma \end{array}$

temperature

general cavcool result:

photon number

Idea of cavity cooling

In the strongly coupled dynamics of a moving dipole and the cavity field every available dissipation channel is shared by the components.

Cooling by photon loss κ

Idea of cavity cooling

In the strongly coupled dynamics of a moving dipole and the cavity field every available dissipation channel is shared by the components.

Cooling by photon loss κ

Promises

temperature not limited by γ

Idea of cavity cooling

In the strongly coupled dynamics of a moving dipole and the cavity field every available dissipation channel is shared by the components.

Cooling by photon loss κ

Promises

- temperature not limited by γ
- cooling molecules

Idea of cavity cooling

In the strongly coupled dynamics of a moving dipole and the cavity field every available dissipation channel is shared by the components.

Cooling by photon loss κ

Promises

- temperature not limited by γ
- cooling molecules
- exempt from spontaneous rescattering ⇒ cooling ensembles

semiclassical motion (slow)

Langevin-equation

$$\dot{x} = p/m \dot{p} = f + \beta p/m + \Xi where \langle \Xi(t_1)\Xi(t_2) \rangle = D\delta(t_1 - t_2)$$

Aim: determine the parameters from the internal dynamics

semiclassical motion (slow)

Langevin-equation

$$\dot{x} = p/m \dot{p} = f + \beta p/m + \Xi where \langle \Xi(t_1)\Xi(t_2) \rangle = D\delta(t_1 - t_2)$$

Aim: determine the parameters from the internal dynamics

Force operator

$$\hat{F} = \dot{p} = -\frac{i}{\hbar}[p, H]$$

= $-ig \frac{\partial f(x)}{\partial x}(\sigma^{\dagger}a - a^{\dagger}\sigma)$

semiclassical motion (slow)

Langevin-equation

$$\begin{split} \dot{x} &= p/m \\ \dot{p} &= f + \beta p/m + \Xi \\ \text{where} \quad \langle \Xi(t_1) \Xi(t_2) \rangle = D\delta(t_1 - t_2) \end{split}$$

Aim: determine the parameters from the internal dynamics

Force operator

$$\hat{F} = \dot{p} = -\frac{i}{\hbar}[p, H]$$
$$= -ig \frac{\partial f(x)}{\partial x}(\sigma^{\dagger}a - a^{\dagger}\sigma)$$

Mean force:

$$f = \langle \hat{F} \rangle$$

semiclassical motion (slow)

Langevin-equation

$$\begin{split} \dot{x} &= p/m \\ \dot{p} &= f + \beta p/m + \Xi \\ \text{where} \quad \langle \Xi(t_1) \Xi(t_2) \rangle = D\delta(t_1 - t_2) \end{split}$$

Aim: determine the parameters from the internal dynamics

Force operator

$$\hat{F} = \dot{p} = -\frac{i}{\hbar}[p, H]$$
$$= -ig \frac{\partial f(x)}{\partial x}(\sigma^{\dagger}a - a^{\dagger}\sigma)$$

Mean force:

$$f = \langle \hat{F} \rangle$$

Diffusion: $\langle \hat{F}(t_1)\hat{F}(t_2)\rangle - t^2 = D\delta_{\rm rec}(t_1 - t_2)$

semiclassical motion (slow)

Langevin-equation

$$\dot{x} = p/m$$

$$\dot{p} = f + \beta p/m + \Xi$$

where $\langle \Xi(t_1)\Xi(t_2) \rangle = D\delta(t_1 - t_2)$

Aim: determine the parameters from the internal dynamics

Internal dynamics (fast)

x is a parameter

$$\begin{split} \dot{a} &= (i\Delta_C - \kappa_n)a + g(x)\sigma + \eta + \xi\\ \dot{\sigma} &= (i\Delta_A - \gamma)\sigma + 2g(x)\sigma_z a + \zeta\\ \dot{\sigma}_z &= -g(x)\left(\sigma^{\dagger}a + a^{\dagger}\sigma\right) - 2\gamma(\sigma^z + 1/2) + \zeta^z \end{split}$$

Force operator

$$\hat{F} = \dot{p} = -\frac{i}{\hbar}[p, H]$$
$$= -ig \frac{\partial f(x)}{\partial x}(\sigma^{\dagger}a - a^{\dagger}\sigma)$$

Mean force: $f = \langle \hat{F} \rangle$

Diffusion: $\langle \hat{F}(t_1)\hat{F}(t_2)\rangle - t^2 = D\delta_{\rm rec}(t_1 - t_2)$

Horak, Hechenblaikner, Gheri, Ritsch, prl 1997; pra 1998

semiclassical motion (slow)

Langevin-equation

$$\dot{x} = p/m$$

$$\dot{p} = f + \beta p/m + \Xi$$

where $\langle \Xi(t_1)\Xi(t_2) \rangle = D\delta(t_1 - t_2)$

Aim: determine the parameters from the internal dynamics

Force operator

$$\hat{F} = \dot{p} = -\frac{i}{\hbar}[p, H]$$
$$= -ig \frac{\partial f(x)}{\partial x}(\sigma^{\dagger}a - a^{\dagger}\sigma)$$

Mean force:
$$f = \langle \hat{F} \rangle$$

Diffusion: $\langle \hat{F}(t_1)\hat{F}(t_2)\rangle - t^2 = D\delta_{\rm rec}(t_1 - t_2)$

Internal dynamics (fast)

x is a parameter

$$\begin{split} \dot{a} &= (i\Delta_C - \kappa_n)a + g(x)\sigma + \eta + \xi\\ \dot{\sigma} &= (i\Delta_A - \gamma)\sigma + 2g(x)\sigma_z a + \zeta\\ \dot{\sigma}_z &= -g(x)\left(\sigma^{\dagger}a + a^{\dagger}\sigma\right) - 2\gamma(\sigma^z + 1/2) + \zeta^z \end{split}$$

linearisation

$$\sigma_z a \approx -\frac{1}{2}a$$

• for
$$\langle \sigma_z \rangle \approx -\frac{1}{2}$$
, or

 for subspace {|g, 0⟩, |g, 1⟩, |e, 0⟩}

Friction

expansion

$$\begin{aligned} x &\to x(t) \approx x + vt \\ \frac{d}{dt} &\to \frac{\partial}{\partial t} + v \frac{\partial}{\partial x} \\ a_{ss}(x,v) &= a^{(0)}(x) + va^{(1)}(x) + O(v^2) \\ \sigma_{ss}(x,v) &= \sigma^{(0)}(x) + v\sigma^{(1)}(x) + O(v^2) \end{aligned}$$

Friction

expansion

$$\begin{aligned} x &\to x(t) \approx x + vt \\ \frac{d}{dt} &\to \frac{\partial}{\partial t} + v \frac{\partial}{\partial x} \\ a_{ss}(x,v) &= a^{(0)}(x) + va^{(1)}(x) + O(v^2) \\ \sigma_{ss}(x,v) &= \sigma^{(0)}(x) + v\sigma^{(1)}(x) + O(v^2) \end{aligned}$$

Quantum Bloch–equations to linear order in velocity

$$\frac{\partial}{\partial x}a^{(0)} = (i\Delta_C - \kappa_n)a^{(1)} + g(x)\sigma^{(1)}$$
$$\frac{\partial}{\partial x}\sigma^{(0)} = (i\Delta_A - \gamma)\sigma^{(1)} - g(x)a^{(1)}$$

linear friction coefficient (analytical)

$$eta = -ig \, rac{\partial f(x)}{\partial x} \left({\sigma^{(0)}}^{\dagger} a^{(1)} - a^{(1)}^{\dagger} \sigma^{(0)}
ight)$$
 non-adiabatic field
 $-ig \, rac{\partial f(x)}{\partial x} \left({\sigma^{(1)}}^{\dagger} a^{(0)} - a^{(0)}^{\dagger} \sigma^{(1)}
ight)$ non-adiabatic atom

Local friction coefficient

 $\Delta_{C} = 0, \, \Delta_{A} = 10\gamma, \, g = 4\gamma, \, \kappa = \gamma/6$

need for averaging What is the distribution?

Far off resonance trap (FORT)

optical lattice potential

Far off resonance trap (FORT)

Limit of large detuning

- spontaneous photon scattering rate $2\gamma P_e \propto \Omega^2 / \Delta_A^2$
- optical potential depth $U \propto \Omega^2 / \Delta_A$
- Friction and diffusion are slow → almost conservative potential

Far off resonance trap (FORT)

equilibrium

$$k_{B}T_{\text{Doppler}} = \frac{\hbar\gamma}{2} \left(\frac{\Delta_{A}}{\gamma} + \frac{\gamma}{\Delta_{A}}\right)$$
$$k_{B}T_{\text{FORT}} = \hbar\Delta_{A}/2 \gg U$$

Limit of large detuning

- spontaneous photon scattering rate $2\gamma P_e \propto \Omega^2/\Delta_A^2$
- optical potential depth $U \propto \Omega^2 / \Delta_A$
- Friction and diffusion are slow → almost conservative potential

free space

 $k_B T_{\rm FORT} = \hbar \Delta_A / 2$

switching on cavity

$$\Omega^2 = g^2 \langle a^{\dagger} a \rangle \propto \frac{N_{phot}}{V}$$

tree space

$$k_{\rm B}T_{\rm FORT} = \hbar\Delta_{\rm A}/2$$

switching on cavity
 $\Omega^2 = g^2 \langle a^{\dagger} a \rangle \propto \frac{N_{phot}}{V}$

temperature in a cavity

$$k_B T_{\text{FORT}} = \hbar \Delta_A / 2$$
switching on cavity

$$\Omega^2 = g^2 \langle a^{\dagger} a \rangle \propto \frac{N_{phot}}{V}$$

temperature in a cavity

molecool: spontaneous scattering events (rate of $2\gamma P_e$) are likely to lead out from the space \Rightarrow large cooperativity is needed

Vukics, Domokos, pra 2005; K. Murr et al. pra, 2007 P. Domokos, A. Vukics, and H. Ritsch, Phys. Rev. Lett. **92**, 103601, 2004.

Karim Murr, Phys. Rev. Lett., 2006

molecool: spontaneous scattering events (rate of $2\gamma P_e$) are likely to lead out from the space \Rightarrow large cooperativity is needed

Vukics, Domokos, pra 2005; K. Murr et al. pra, 2007 P. Domokos, A. Vukics, and H. Ritsch, Phys. Rev. Lett. **92**, 103601, 2004.

Karim Murr, Phys. Rev. Lett., 2006

$$\frac{\beta}{2\gamma P_{e}} = \frac{\hbar k^{2}}{2m\gamma} 4\sin^{2}(kx) \frac{2g^{2}(\Delta_{C} - U_{0}\cos^{2}(kx))(\kappa + \Gamma_{0}\cos^{2}(kx))}{\left((\Delta_{C} - U_{0}\cos^{2}(kx))^{2} + (\kappa + \Gamma_{0}\cos^{2}(kx))^{2}\right)^{2}}$$

Vukics, Domokos, pra 2005; K. Murr et al. pra, 2007 P. Domokos, A. Vukics, and H. Ritsch, Phys. Rev. Lett. **92**, 103601, 2004.

Karim Murr, Phys. Rev. Lett., 2006

Friction is independent of detuning Δ_A $\frac{\beta}{2\gamma P_e} = \frac{\hbar k^2}{2m\gamma} \left(\frac{g}{\kappa}\right)^2$

molecool: spontaneous scattering events (rate of $2\gamma P_e$) are likely to lead out from the space \Rightarrow large cooperativity is needed

Optical transport

forces

$$\mathcal{H} = ... + (\Delta_A + V \cos kz) \sigma^{\dagger} \sigma$$

van Enk et al. pra 2001 K. Murr et al, pra 2006

S. Nussmann, et al (Garching, A. Kuhn, G. Rempe), prl, nature phys, 2006

Optical transport

S. Nussmann, et al (Garching, A. Kuhn, G. Rempe), prl, nature phys, 2006

forces

$$\mathcal{H} = ... + (\Delta_A + V \cos kz) \sigma^{\dagger} \sigma$$

trapping time

S. Nussmann, et al (Garching, A. Kuhn, G. Rempe), prl, nature phys, 2006

forces

$$\mathcal{H} = ... + (\Delta_A + V \cos kz) \sigma^{\dagger} \sigma$$

trapping time

Motivation

- Feschbach resonance: tuning from weak coupling to strongly correlated matter
- specific: atoms interacting through the EM radiation field
- Contrast to collisions, ion crystal, dipolar gas: global, long-range coupling

Motivation

- Feschbach resonance: tuning from weak coupling to strongly correlated matter
- specific: atoms interacting through the EM radiation field
- Contrast to collisions, ion crystal, dipolar gas: global, long-range coupling
- Collective effects in a cavity: self-organization of atoms
 - atom-atom coupling
 - mean-field model
 - \Rightarrow phase transition
 - effects beyond mean field

Motivation

- Feschbach resonance: tuning from weak coupling to strongly correlated matter
- specific: atoms interacting through the EM radiation field
- Contrast to collisions, ion crystal, dipolar gas: global, long-range coupling
- Collective effects in a cavity: self-organization of atoms
 - atom-atom coupling
 - mean-field model
 - \Rightarrow phase transition
 - effects beyond mean field

- Collective effects in free space: opto-mechanical coupling in an optical lattice
 - Bragg-mirror regime
 - collective excitations
 - \Rightarrow density waves
 - dynamical instability

Many-body physics of atoms in optical resonators

Many-body physics of atoms in optical resonators

Many-body physics of atoms in optical resonators

Atom-atom interaction

- radiative (on top of the collisions)
- Iong-range
- global coupling (Kuramoto model)

Experiments

- Esslinger (ETH, Zürich), Stamper-Kurn (Berkeley)
- Hemmerich (Hamburg), Zimmermann (Tübingen)

atom-atom coupling by interference

 $|x_1 - x_2| = (2n + 1) \lambda/2 \rightarrow \text{destructive interference}$ $\rightarrow |\alpha|^2 = 0$

 $|x_1 - x_2| = 2n \lambda/2 \rightarrow \text{constructive interference}$ $\rightarrow |\alpha|^2 \propto 4\eta_t^2 \text{ (superradiance)}$

atom-atom coupling by interference

 $|x_1 - x_2| = (2n + 1) \lambda/2 \rightarrow \text{destructive interference}$ $\rightarrow |\alpha|^2 = 0$

 $|x_1 - x_2| = 2n \lambda/2 \rightarrow \text{constructive interference}$ $\rightarrow |\alpha|^2 \propto 4\eta_t^2 \text{ (superradiance)}$

Spatial self-organization of atom clouds

P. Domokos, H. Ritsch, PRL 89, 253003 (2002), Black, Chan, Vuletic, PRL 91, 203001 (2003)

atom-atom coupling by interference

 $|x_1 - x_2| = (2n + 1) \lambda/2 \rightarrow \text{destructive interference}$ $\rightarrow |\alpha|^2 = 0$

 $|x_1 - x_2| = 2n \lambda/2 \rightarrow \text{constructive interference}$ $\rightarrow |\alpha|^2 \propto 4\eta_t^2 \text{ (superradiance)}$

Spatial self-organization of atom clouds

P. Domokos, H. Ritsch, PRL 89, 253003 (2002), Black, Chan, Vuletic, PRL 91, 203001 (2003)

atom-atom coupling by interference

 $|x_1 - x_2| = (2n + 1) \lambda/2 \rightarrow \text{destructive interference}$ $\rightarrow |\alpha|^2 = 0$

 $|x_1 - x_2| = 2n \lambda/2 \rightarrow \text{constructive interference}$ $\rightarrow |\alpha|^2 \propto 4\eta_t^2 \text{ (superradiance)}$

Spatial self-organization of atom clouds

atom-atom coupling by interference

 $|x_1 - x_2| = (2n + 1) \lambda/2 \rightarrow \text{destructive interference}$ $\rightarrow |\alpha|^2 = 0$

 $|x_1 - x_2| = 2n \lambda/2 \rightarrow \text{constructive interference}$ $\rightarrow |\alpha|^2 \propto 4\eta_t^2 \text{ (superradiance)}$

Spatial self-organization of atom clouds

Quantized atom field in a single-mode resonator

One-dimensional toy model for coupled matter and light fields

$$\begin{split} H &= -\Delta_C \, \hat{a}^{\dagger} \hat{a} + i\eta \left(\hat{a}^{\dagger} - \hat{a} \right) + \int \hat{\Psi}^{\dagger}(x) \bigg[- \frac{\hbar}{2 \, m} \frac{d^2}{dx^2} + N g_c \hat{\Psi}^{\dagger}(x) \hat{\Psi}(x) \\ &+ U_0 \, \hat{a}^{\dagger} \hat{a} \cos^2(kx) + i\eta_t \cos kx (\hat{a}^{\dagger} - \hat{a}) \bigg] \hat{\Psi}(x) dx, \end{split}$$

Quantized atom field in a single-mode resonator

One-dimensional toy model for coupled matter and light fields

$$\begin{split} H &= -\Delta_C \, \hat{a}^{\dagger} \hat{a} + i\eta \left(\hat{a}^{\dagger} - \hat{a} \right) + \int \hat{\Psi}^{\dagger}(x) \bigg[-\frac{\hbar}{2 \, m} \frac{d^2}{dx^2} + Ng_c \hat{\Psi}^{\dagger}(x) \hat{\Psi}(x) \\ &+ U_0 \, \hat{a}^{\dagger} \hat{a} \cos^2(kx) + i\eta_t \cos kx (\hat{a}^{\dagger} - \hat{a}) \bigg] \hat{\Psi}(x) dx \end{split}$$

scattering processes (four-wave mixing)

- absorption and induced emission of cavity photons
- absorption of a pump photon and emission into the cavity

Quantized atom field in a single-mode resonator

One-dimensional toy model for coupled matter and light fields

$$\begin{split} H &= -\Delta_C \, \hat{a}^{\dagger} \hat{a} + i\eta \left(\hat{a}^{\dagger} - \hat{a} \right) + \int \hat{\Psi}^{\dagger}(x) \bigg[-\frac{\hbar}{2 \, m} \frac{d^2}{dx^2} + Ng_c \hat{\Psi}^{\dagger}(x) \hat{\Psi}(x) \\ &+ U_0 \, \hat{a}^{\dagger} \hat{a} \cos^2(kx) + i\eta_t \cos kx (\hat{a}^{\dagger} - \hat{a}) \bigg] \hat{\Psi}(x) dx \end{split}$$

scattering processes (four-wave mixing)

- absorption and induced emission of cavity photons
- absorption of a pump photon and emission into the cavity

dissipation and noise

$$rac{d}{dt}\hat{a} = -rac{i}{\hbar}[\hat{a},H] - \kappa \hat{a} + \hat{\xi} \qquad \langle \hat{\xi}(t)\hat{\xi}^{\dagger}(t')
angle = \kappa \delta(t-t') \; .$$

Mean-field approach

Separation of mean field and quantum fluctuations

 $\hat{a}(t) = \alpha(t) + \delta \hat{a}(t)$ $\hat{\Psi}(x,t) = \sqrt{N}\varphi(x,t) + \delta \hat{\Psi}(x,t)$

Szirmai, Nagy, Domokos, PRL 102, 080401 (2009), M is non-normal → excess noise

Mean-field approach

Separation of mean field and quantum fluctuations

$$\hat{a}(t) = \alpha(t) + \delta \hat{a}(t)$$
 $\hat{\Psi}(x,t) = \sqrt{N}\varphi(x,t) + \delta \hat{\Psi}(x,t)$

Gross-Pitaevskii-type equation

$$i\frac{\partial}{\partial t}\alpha = \left\{-\Delta_{C} + \mathsf{N}\mathsf{U}_{0}\langle\cos^{2}(kx)\rangle - i\kappa\right\}\alpha + \mathsf{N}\eta_{t}\langle\cos(kx)\rangle + \eta$$

$$i\frac{\partial}{\partial t}\varphi(x,t) = \left\{-\frac{\hbar}{2m}\frac{\partial^2}{\partial x^2} + |\alpha(t)|^2 U_0 \cos^2(kx) + 2Re\{\alpha(t)\}\eta_t \cos(kx) + Ng_c|\varphi(x,t)|^2\right\}\varphi(x,t)$$

Szirmai, Nagy, Domokos, PRL 102, 080401 (2009), M is non-normal → excess noise

Mean-field approach

Separation of mean field and quantum fluctuations

$$\hat{a}(t) = \alpha(t) + \delta \hat{a}(t)$$
 $\hat{\Psi}(x,t) = \sqrt{N}\varphi(x,t) + \delta \hat{\Psi}(x,t)$

Gross-Pitaevskii-type equation

$$i\frac{\partial}{\partial t}\alpha = \left\{-\Delta_{C} + NU_{0}\langle\cos^{2}(kx)\rangle - i\kappa\right\}\alpha + N\eta_{t}\langle\cos(kx)\rangle + \eta$$

$$i\frac{\partial}{\partial t}\varphi(x,t) = \left\{-\frac{\hbar}{2m}\frac{\partial^2}{\partial x^2} + |\alpha(t)|^2 U_0 \cos^2(kx) + 2Re\{\alpha(t)\}\eta_t \cos(kx) + Ng_c|\varphi(x,t)|^2\right\}\varphi(x,t)$$

Linearized quantum fluctuations

$$\frac{\partial}{\partial t} \vec{R} = -i\mathbf{M}\vec{R} + \vec{\xi}, \qquad \begin{cases} \vec{R} &\equiv [\delta\hat{a}, \delta\hat{a}^{\dagger}, \delta\hat{\Psi}(x), \delta\hat{\Psi}^{\dagger}(x)] \\ \mathbf{M} &= \mathbf{M}(\alpha_{0}, \varphi_{0}(x), \mu) \\ \vec{\xi} &= [\hat{\xi}, \hat{\xi}^{\dagger}, 0, 0] \end{cases}$$

Szirmai, Nagy, Domokos, PRL 102, 080401 (2009), ${\rm M}$ is non-normal \longrightarrow excess noise

Self-organization of a BEC in a cavity

Nagy, Szirmai, Domokos, Eur. Phys. J. D 48, 127 (2008)

Self-organization of a BEC in a cavity

Nagy, Szirmai, Domokos, Eur. Phys. J. D 48, 127 (2008)

Self-organization of a BEC in a cavity

threshold

$$egin{aligned} \sqrt{N}\eta_{c} &= \sqrt{rac{\delta_{C}^{2}+\kappa^{2}}{2|\delta_{C}|}}\,\sqrt{\omega_{\mathrm{R}}+2Ng_{c}} \ \delta_{C} &= \Delta_{C}-NU_{0}/2 \qquad \omega_{\mathrm{R}} &= rac{\hbar k^{2}}{2m} \end{aligned}$$

temperature ↔ kinetic energy + collision

Nagy, Szirmai, Domokos, Eur. Phys. J. D 48, 127 (2008)

Spectrum of fluctuations

frequencies

Spectrum of fluctuations

frequencies

Spectrum of fluctuations

frequencies

1

Reduce the size of the Hilbert space, to the subspace sufficient to describe the self-organization $% \label{eq:constraint}$

- Reduce the size of the Hilbert space, to the subspace sufficient to describe the self-organization
- 2 Study quantum statistical properties

$$\hat{\Psi}(x) = \frac{1}{\sqrt{L}}c_0 + \sqrt{\frac{2}{L}}c_1 \cos kx \qquad \left[c_i, c_i^{\dagger}\right] = 1 \quad i = 0, 1$$

Number of particles: $c_0^{\dagger}c_0 + c_1^{\dagger}c_1 = N$ fixed

- Reduce the size of the Hilbert space, to the subspace sufficient to describe the self-organization
- 2 Study quantum statistical properties

$$\hat{\Psi}(x) = \frac{1}{\sqrt{L}}c_0 + \sqrt{\frac{2}{L}}c_1 \cos kx \qquad \left[c_i, c_i^{\dagger}\right] = 1 \quad i = 0, 1$$

Number of particles: $c_0^{\dagger}c_0 + c_1^{\dagger}c_1 = N$ fixed

Spin representation $\hat{S}_x = \frac{1}{2}(c_1^{\dagger}c_0 + c_0^{\dagger}c_1) \quad \hat{S}_y = \frac{1}{2l}(c_1^{\dagger}c_0 - c_0^{\dagger}c_1) \quad \hat{S}_z = \frac{1}{2}(c_1^{\dagger}c_1 - c_0^{\dagger}c_0)$

- Reduce the size of the Hilbert space, to the subspace sufficient to describe the self-organization
- 2 Study quantum statistical properties

$$\hat{\Psi}(x) = \frac{1}{\sqrt{L}}c_0 + \sqrt{\frac{2}{L}}c_1\cos kx \qquad \left[c_i, c_i^{\dagger}\right] = 1 \quad i = 0, 1$$

Number of particles: $c_0^{\dagger}c_0 + c_1^{\dagger}c_1 = N$ fixed

Spin representation

$$\hat{S}_x = \frac{1}{2}(c_1^{\dagger}c_0 + c_0^{\dagger}c_1) \quad \hat{S}_y = \frac{1}{2i}(c_1^{\dagger}c_0 - c_0^{\dagger}c_1) \quad \hat{S}_z = \frac{1}{2}(c_1^{\dagger}c_1 - c_0^{\dagger}c_0)$$

Two-mode H: analogy with the Dicke Hamiltonian

$$\begin{array}{l} H/\hbar = -\delta_C \, a^{\dagger} a + \omega_R \hat{S}_z + i y (a^{\dagger} - a) \hat{S}_x / \sqrt{N} + u a^{\dagger} a \left(\frac{1}{2} + \hat{S}_z / N \right) \\ \omega_R = \hbar k^2 / m \\ \delta_C = \Delta_C - 2 u \\ u = N \, U_0 / 4 \\ y = \sqrt{2N} \eta_t \end{array} \right\} \text{ tunable}$$

Nagy, Konya, Szirmai, Domokos, PRL 104, 130401 (2010)

- Reduce the size of the Hilbert space, to the subspace sufficient to describe the self-organization
- 2 Study quantum statistical properties

$$\hat{\Psi}(x) = \frac{1}{\sqrt{L}}c_0 + \sqrt{\frac{2}{L}}c_1\cos kx \qquad \left[c_i, c_i^{\dagger}\right] = 1 \quad i = 0, 1$$

Number of particles: $c_0^{\dagger}c_0 + c_1^{\dagger}c_1 = N$ fixed

Spin representation

$$\hat{S}_x = \frac{1}{2}(c_1^{\dagger}c_0 + c_0^{\dagger}c_1) \quad \hat{S}_y = \frac{1}{2i}(c_1^{\dagger}c_0 - c_0^{\dagger}c_1) \quad \hat{S}_z = \frac{1}{2}(c_1^{\dagger}c_1 - c_0^{\dagger}c_0)$$

Two-mode H: analogy with the Dicke Hamiltonian

$$\begin{array}{l} H/\hbar = -\delta_{C} a^{\dagger} a + \omega_{R} \hat{S}_{z} + iy(a^{\dagger} - a) \hat{S}_{x}/\sqrt{N} + ua^{\dagger} a\left(\frac{1}{2} + \hat{S}_{z}/N\right) \\ \omega_{R} = \hbar k^{2}/m \\ \delta_{C} = \Delta_{C} - 2u \\ u = N U_{0}/4 \\ y = \sqrt{2N}\eta_{t} \end{array} \right\} \text{ tunable}$$

$$\begin{array}{l} \text{Threshold} \\ y_{\text{crit}} = \sqrt{-\delta_{C}\omega_{R}} \\ \text{c.f. } \kappa = 0 \text{ before} \end{array}$$

Nagy, Konya, Szirmai, Domokos, PRL 104, 130401 (2010)

Quantum statistical properties of the ground state

Holstein-Primakoff representation

 $S_- = \sqrt{N - b^{\dagger}b} \, b, \, S_+ = b^{\dagger} \, \sqrt{N - b^{\dagger}b}, \, S_Z = b^{\dagger}b - N/2 \,, \qquad b \text{ boson for } N \to \infty$

$$H/\hbar = -\delta_C a^{\dagger}a + \omega_R b^{\dagger}b + ua^{\dagger}ab^{\dagger}b/N + \frac{i}{2}y(a^{\dagger}-a)\left(b^{\dagger}\sqrt{1-\frac{b^{\dagger}b}{N}} + \sqrt{1-\frac{b^{\dagger}b}{N}}b\right)$$

Quantum statistical properties of the ground state

Holstein-Primakoff representation

 $S_- = \ \sqrt{N - b^\dagger b} \ b, \ S_+ = b^\dagger \ \sqrt{N - b^\dagger b}, \ S_z = b^\dagger b - N/2 \,, \qquad b \text{ boson for } N \to \infty$

$$H/\hbar = -\delta_C a^{\dagger}a + \omega_R b^{\dagger}b + ua^{\dagger}ab^{\dagger}b/N + \frac{i}{2}y(a^{\dagger}-a)\left(b^{\dagger}\sqrt{1-\frac{b^{\dagger}b}{N}} + \sqrt{1-\frac{b^{\dagger}b}{N}}b\right)$$

quadratic Hamiltonian

$$\begin{aligned} H/\hbar &= E_0 - \left(\delta_C - u\beta_0^2\right) a^{\dagger} a + \frac{M_x + M_y}{2} b^{\dagger} b + \frac{M_x - M_y}{4} \left(b^{\dagger 2} + b^2\right) + i \frac{M_c}{2} (a^{\dagger} - a) (b^{\dagger} + b) \\ \text{meanfield} \\ \beta_0^2 &= \frac{\delta_C}{u} \left(1 - \sqrt{1 - \frac{u}{\delta_C} \frac{y^2 - y_{\text{crit}}^2}{y^2 - \frac{u}{\delta_C} y_{\text{crit}}^2}}\right), \end{aligned}$$

$$\begin{split} M_{X} &= \omega_{R} - y \alpha_{0} \beta_{0} \frac{3 - 2\beta_{0}^{2}}{\left(1 - \beta_{0}^{2}\right)^{3/2}} \\ M_{Y} &= \omega_{R} - y \alpha_{0} \beta_{0} \frac{1}{\left(1 - \beta_{0}^{2}\right)^{1/2}} \\ M_{C} &= 2u \alpha_{0} \beta_{0} + y \frac{1 - 2\beta_{0}^{2}}{\left(1 - \beta_{0}^{2}\right)^{1/2}} \end{split}$$

Nagy, Konya, Szirmai, Domokos, PRL 104, 130401 (2010)

Quantum statistical properties of the ground state

Holstein-Primakoff representation

 $S_- = \sqrt{N - b^\dagger b} \, b, \, S_+ = b^\dagger \, \sqrt{N - b^\dagger b}, \, S_Z = b^\dagger b - N/2 \,, \qquad b \text{ boson for } N \to \infty$

$$H/\hbar = -\delta_C a^{\dagger}a + \omega_R b^{\dagger}b + ua^{\dagger}ab^{\dagger}b/N + \frac{i}{2}y(a^{\dagger}-a)\left(b^{\dagger}\sqrt{1-\frac{b^{\dagger}b}{N}} + \sqrt{1-\frac{b^{\dagger}b}{N}}b\right)$$

quadratic Hamiltonian

$$H/\hbar = E_0 - (\delta_C - u\beta_0^2)a^{\dagger}a + \frac{M_x + M_y}{2}b^{\dagger}b + \frac{M_x - M_y}{4}\left(b^{\dagger^2} + b^2\right) + i\frac{M_c}{2}(a^{\dagger} - a)(b^{\dagger} + b)$$

meanfield

$$\beta_0^2 = \frac{\delta_C}{u} \left(1 - \sqrt{1 - \frac{u}{\delta_C} \frac{y^2 - y^2_{\text{crit}}}{y^2 - \frac{u}{\delta_C} y^2_{\text{crit}}}} \right),$$

$$\begin{split} M_{x} &= \omega_{R} - y \alpha_{0} \beta_{0} \frac{3 - 2\beta_{0}^{2}}{\left(1 - \beta_{0}^{2}\right)^{3/2}} \\ M_{y} &= \omega_{R} - y \alpha_{0} \beta_{0} \frac{1}{\left(1 - \beta_{0}^{2}\right)^{1/2}} \\ M_{c} &= 2u \alpha_{0} \beta_{0} + y \frac{1 - 2\beta_{0}^{2}}{\left(1 - \beta_{0}^{2}\right)^{1/2}} \end{split}$$

Nagy, Konya, Szirmai, Domokos, PRL 104, 130401 (2010)

Experimental mapping of the phase diagram

Baumann, Guerlin, Brennecke, Esslinger, Nature 464, 1301 (2010)

Photon measurement induced back action

The ground state is fragile due to the irreversible loss of photons (=measurement) \Rightarrow quantum noise analysis

Szirmai, Nagy, Domokos, PRL 102, 080401 (2009) Nagy, Konya, Szirmai, Domokos, PRL 104, 130401 (2010)

Photon measurement induced back action

The ground state is fragile due to the irreversible loss of photons (=measurement) \Rightarrow quantum noise analysis

Normal mode decomposition

- left and right eigenvectors of M $\rightarrow (\vec{l}^{(k)}, \vec{r}^{(l)}) = \delta_{k,l}$
- normal modes $\hat{\rho}_k = (\vec{l}^{(k)}, \vec{\hat{R}})$
- $\hat{ } \frac{\partial}{\partial t} \hat{\rho}_k = -i\omega_k \hat{\rho}_k + \hat{Q}_k$
- projected noise $\hat{Q}_k \equiv (\vec{l}^{(k)}, \vec{\hat{\xi}})$
- 1.) quasi-mode excitation $\frac{\delta}{\delta t} \langle \rho_{+}^{\dagger} \rho_{+} + \rho_{-}^{\dagger} \rho_{-} \rangle$ 2.) measureably excitation $\delta N(t) = \langle a^{\dagger} a + b^{\dagger} b \rangle$

$$\begin{split} \frac{\delta N(t)}{\delta t} &\approx 2\kappa \sum_{k,l} {l_1^{(k)}}^* {l_2^{(l)}}^* \left(r_2^{(k)} r_1^{(l)} + r_4^{(k)} r_3^{(l)} \right) \\ & \Theta \left(\delta t^{-1} - \left| \omega_k + \omega_l \right| \right) \end{split}$$

Szirmai, Nagy, Domokos, PRL 102, 080401 (2009) Nagy, Konya, Szirmai, Domokos, PRL 104, 130401 (2010)

Photon measurement induced back action

The ground state is fragile due to the irreversible loss of photons (=measurement) \Rightarrow quantum noise analysis

Szirmai, Nagy, Domokos, PRL 102, 080401 (2009) Nagy, Konya, Szirmai, Domokos, PRL 104, 130401 (2010)

Depletion rate

$$\frac{\delta N(t)}{\delta t} = \kappa \frac{M_c^2}{\delta_C^2 + \kappa^2} \approx \frac{\kappa \omega_R}{|\delta_C|}$$

Open system dynamics away from equilibrium

Open system dynamics away from equilibrium

Microscopic model

$$\begin{split} H &= -\Delta_C a^{\dagger} a + i\eta (a^{\dagger} - a) \\ &+ \int \Psi^{\dagger}(x) \bigg[-\frac{1}{2\hbar m} \frac{d^2}{dx^2} + U_0 a^{\dagger} a \cos^2(kx) \bigg] \Psi(x) dx, \\ \dot{\rho} &= \frac{1}{i\hbar} \left[H, \rho \right] - \kappa \left(a^{\dagger} a \rho + \rho a^{\dagger} a - 2a\rho a^{\dagger} \right) \end{split}$$

Nagy, Domokos, Vukics, Ritsch EPJD 55, 659 (2009)

Open system dynamics away from equilibrium

Microscopic model

$$H = -\Delta_C a^{\dagger} a + i\eta (a^{\dagger} - a)$$
$$+ \int \Psi^{\dagger}(x) \left[-\frac{1}{2\hbar m} \frac{d^2}{dx^2} + U_0 a^{\dagger} a \cos^2(kx) \right] \Psi(x) dx,$$
$$\dot{\rho} = \frac{1}{i\hbar} [H, \rho] - \kappa \left(a^{\dagger} a\rho + \rho a^{\dagger} a - 2a\rho a^{\dagger} \right)$$

Reduced Hilbert-space

$$\Psi(x) = c_0 + \sqrt{2} c_2 \cos 2kx$$

 $X = \frac{1}{\sqrt{2}} (c_2^{\dagger} + c_2) \quad P = \frac{i}{\sqrt{2}} (c_2^{\dagger} - c_2)$

Nagy, Domokos, Vukics, Ritsch EPJD 55, 659 (2009)
Open system dynamics away from equilibrium

Microscopic model

$$H = -\Delta_C a^{\dagger} a + i\eta(a^{\dagger} - a)$$
$$+ \int \Psi^{\dagger}(x) \left[-\frac{1}{2\hbar m} \frac{d^2}{dx^2} + U_0 a^{\dagger} a \cos^2(kx) \right] \Psi(x) dx,$$
$$\dot{\rho} = \frac{1}{i\hbar} [H, \rho] - \kappa \left(a^{\dagger} a\rho + \rho a^{\dagger} a - 2a\rho a^{\dagger} \right)$$

Reduced Hilbert-space

$$\Psi(x) = c_0 + \sqrt{2} c_2 \cos 2kx$$

$$X = rac{1}{\sqrt{2}} (c_2^{\dagger} + c_2) \quad P = rac{i}{\sqrt{2}} (c_2^{\dagger} - c_2)$$

Analogy to opto-mechanics

$$H = -\tilde{\Delta}_C a^{\dagger} a + i\eta (a^{\dagger} - a) + 2\omega_R (X^2 + P^2) + u a^{\dagger} a X.$$

Nagy, Domokos, Vukics, Ritsch EPJD 55, 659 (2009)

Open system dynamics away from equilibrium

Microscopic model

$$H = -\Delta_C a^{\dagger} a + i\eta (a^{\dagger} - a)$$
$$+ \int \Psi^{\dagger}(x) \bigg[-\frac{1}{2\hbar m} \frac{d^2}{dx^2} + U_0 a^{\dagger} a \cos^2(kx) \bigg] \Psi(x) dx,$$
$$\dot{\rho} = \frac{1}{i\hbar} [H, \rho] - \kappa \big(a^{\dagger} a \rho + \rho a^{\dagger} a - 2a\rho a^{\dagger} \big)$$

Reduced Hilbert-space

$$\Psi(x) = c_0 + \sqrt{2} c_2 \cos 2kx$$

$$X = rac{1}{\sqrt{2}} \left(c_2^{\dagger} + c_2
ight) \quad P = rac{i}{\sqrt{2}} \left(c_2^{\dagger} - c_2
ight)$$

Analogy to opto-mechanics

$$H = -\tilde{\Delta}_C a^{\dagger} a + i\eta (a^{\dagger} - a) + 2\omega_R (X^2 + P^2) + u a^{\dagger} a X.$$

Nagy, Domokos, Vukics, Ritsch EPJD 55, 659 (2009)

Optical bistability

Reduced master equation

$$\dot{\rho} = \frac{1}{i\hbar} \begin{bmatrix} H_{\text{eff}}, \rho \end{bmatrix} - \begin{bmatrix} d(X), \begin{bmatrix} d(X), \rho \end{bmatrix} \end{bmatrix} - \frac{i}{2} \begin{bmatrix} g(X), \{P, \rho\} \end{bmatrix}$$

$$\mathbf{a}(t) = \frac{\eta}{\kappa - i\delta} + \int_0^t \mathbf{e}^{(i\delta - \kappa)(t-t')} \xi(t') dt', \quad \delta \equiv \delta(X) = \tilde{\Delta}_C - uX, \quad \langle \xi(t) \xi^{\dagger}(t') \rangle = 2\kappa \, \delta(t-t'),$$

Reduced master equation

$$\dot{\rho} = \frac{1}{i\hbar} \left[H_{\text{eff}}, \rho \right] - \left[d(X), \left[d(X), \rho \right] \right] - \frac{i}{2} \left[g(X), \{P, \rho\} \right]$$

$$a(t) = \frac{\eta}{\kappa - i\delta} + \int_0^t e^{(i\delta - \kappa)(t - t')} \xi(t') dt', \quad \delta \equiv \delta(X) = \tilde{\Delta}_C - uX, \quad \langle \xi(t) \, \xi^{\dagger}(t') \rangle = 2\kappa \, \delta(t - t') + \delta(t - t'$$

Coefficients

$$\begin{split} H_{\text{eff}} &= 4\omega_R \, \frac{1}{2} (X^2 + Y^2) + \frac{\eta^2}{\kappa} \arctan\left(\frac{uX - \tilde{\Delta}_C}{\kappa}\right) \\ d(X) &= \frac{\eta}{\sqrt{\kappa}} \arctan\left(\frac{\delta(X)}{\kappa}\right) \\ g(X) &= -\frac{4\omega_R \, u \, \kappa \eta^2}{(\delta^2(X) + \kappa^2)^2} \\ & \text{Lindblad?} \end{split}$$

Reduced master equation

$$\dot{\rho} = \frac{1}{i\hbar} \left[H_{\text{eff}}, \rho \right] - \left[d(X), \left[d(X), \rho \right] \right] - \frac{i}{2} \left[g(X), \{P, \rho\} \right]$$

$$\mathbf{a}(t) = \frac{\eta}{\kappa - i\delta} + \int_0^t \mathbf{e}^{(i\delta - \kappa)(t - t')} \boldsymbol{\xi}(t') dt', \quad \delta \equiv \delta(X) = \tilde{\Delta}_C - uX, \quad \langle \boldsymbol{\xi}(t) \, \boldsymbol{\xi}^{\dagger}(t') \rangle = 2\kappa \, \delta(t - t')$$

Coefficients

$$H_{\text{eff}} = 4\omega_R \frac{1}{2}(X^2 + Y^2) + \frac{\eta^2}{\kappa} \arctan\left(\frac{uX - \tilde{\Delta}_C}{\kappa}\right)$$
$$d(X) = \frac{\eta}{\sqrt{\kappa}} \arctan\left(\frac{\delta(X)}{\kappa}\right)$$
$$g(X) = -\frac{4\omega_R u \kappa \eta^2}{(\delta^2(X) + \kappa^2)^2}$$
Lindblad?

$$\alpha(X,t) = \alpha_0(X) + \frac{1}{2} \{Y, \alpha_1(X)\}$$

$$\alpha(X,t) = \alpha_0(X) + \frac{1}{2} \{Y, \alpha_1(X)\}$$
$$\frac{d}{dt} \alpha(X,t) = \frac{\partial}{\partial t} \alpha + i [H, \alpha(X,t)], \quad [Y, \alpha(X)] = -i \frac{\partial \alpha(X,t)}{\partial X}$$

$$\alpha(X,t) = \alpha_0(X) + \frac{1}{2} \{Y, \alpha_1(X)\}$$
$$\frac{d}{dt} \alpha(X,t) = \frac{\partial}{\partial t} \alpha + i [H, \alpha(X,t)], \quad [Y, \alpha(X)] = -i \frac{\partial \alpha(X,t)}{\partial X}$$
$$\frac{d}{dt} \alpha(X,t) = \frac{\partial}{\partial t} \alpha + 4\omega_R \frac{1}{2} \left\{ Y, \frac{\partial \alpha(X,t)}{\partial X} \right\} \quad \text{AND} \frac{d}{dt} \alpha(X,t) = [i(\tilde{\Delta}_C - uX) - \kappa] \alpha(X,t) + \eta + \xi$$

$$\alpha(X,t) = \alpha_0(X) + \frac{1}{2} \{Y, \alpha_1(X)\}$$
$$\frac{d}{dt} \alpha(X,t) = \frac{\partial}{\partial t} \alpha + i [H, \alpha(X,t)], \quad [Y, \alpha(X)] = -i \frac{\partial \alpha(X,t)}{\partial X}$$
$$\frac{d}{dt} \alpha(X,t) = \frac{\partial}{\partial t} \alpha + 4\omega_R \frac{1}{2} \left\{Y, \frac{\partial \alpha(X,t)}{\partial X}\right\} \quad \text{AND} \frac{d}{dt} \alpha(X,t) = [i(\tilde{\Delta}_C - uX) - \kappa] \alpha(X,t) + \eta + \xi$$

Hierarchy in powers of Y

$$\alpha_0(X)=\frac{\eta}{-i\delta(X)+\kappa}.$$

$$\alpha_1(X) = \frac{4\omega_R}{i\delta - \kappa} \frac{\partial \alpha_0(X)}{\partial X} = i \frac{4\omega_R u\eta}{(\kappa - i\delta(X))^3}$$

Many-body effects in the motion of atoms in a cavity

- global coupling
- non-equilibrium phase transitions
- experimental realization of Dicke-type phase transition
- driven-damped system, controlled dissipation channel
- Open question: stationary state of the system