Sötét állapotok szerepe fénnyel indukált koherens kontroll folyamatokban

Kis Zsolt

Kvantumoptikai és Kvantuminformatikai Osztály MTA Szilárdtestfizikai és Optikai Kutatóintézet H-1121 Budapest, Konkoly-Thege Miklós út 29-33

Tihanyi Iskola, 2010. szeptember 2.

<ロト (四) (正) (正)

ł

Sötét állapotokon alapuló koherens kontroll eljárások

Sötét állapotokon alapuló hullámteriedési ielenségek

・ 日 マ チ 全 司 マ チ 山 マ

Tartalom

Bevezetés

- Sötét állapotok felfedezése
- Adiabatikus populációtranszfer
- Adiabatikus populációtranszfer három-szintes rendszerben
- Koherens kontroll sötés altérben
- Sötét állapotokon alapuló koherens kontroll eljárások
 - Adiabatikus populációtranszfer tripod rendszerben
 - Általános degenerált STIRAP
 - Hat- és kilenc-szintes csatolt rendszer
 - Kvantumbit forgatás

Sötét állapotokon alapuló hullámterjedési jelenségek

- Bevezetés
- Elektromágnesesen indukált transzparencia 0
- Fotonok koherens tárolása

Sötét állapotokon alapuló koherens kontroll eljárások

Sötét állapotokon alapuló hullámterjedési jelenségek

・ロット (雪) (日) (日)

Tartalom

- Sötét állapotok felfedezése
- Adiabatikus populációtranszfer
- Adiabatikus populációtranszfer három-szintes rendszerben
- Koherens kontroll sötés altérben
- 2) Sötét állapotokon alapuló koherens kontroll eljárások
 - Adiabatikus populációtranszfer tripod rendszerben
 - Általános degenerált STIRAP
 - Hat- és kilenc-szintes csatolt rendszer
 - Kvantumbit forgatás

3 Sötét állapotokon alapuló hullámterjedési jelenségek

- Bevezetés
- Elektromágnesesen indukált transzparencia
- Fotonok koherens tárolása

Sötét állapotokon alapuló koherens kontroll eljárások

Sötét állapotokon alapuló hullámterjedési jelenségek

Sötét állapotok felfedezése

G. Alzetta-kísérlet (Pisa, 1976)

- RF átmeneteket vizsgáltak a nátrium D₁ (3²S_{1/2}-3²P_{1/2}, 589.756 nm) vonalában
- gázcella inhomogén mágneses térben \rightarrow az F nívók felhasadnak
- a megvilágító lézer sokmódusú festéklézer (Δν_L=290MHz)

Sötét vonalak				
Sötét állapotok felfedezése				
000000000000000000000000000000000000000				
Bevezetés	Sötét állapotokon alapuló koherens kontroll eljárások	Sötét állapotokon alapuló hullámterjedési jelenségek		

• az RF mezőt kikapcsolták és a cellát kissé elforgatták — a fénynek σ^+ és π komponense lett

• a fényes háttérben sötét vonalak jelentek meg, $\Delta \nu$ =1740MHz

Sötét állapotokon alapuló koherens kontroll eljáráso

Sötét állapotokon alapuló hullámterjedési jelenségek

Sötét állapotok felfedezése

Sötét állapotok

- kiderült, hogy $\Delta \nu = 6 \times \Delta \nu_L$
- az $E(F = 2, M_F = -2) E(F = 1, M_F = -1) = h\Delta\nu$, amikor $H_z = 15 \text{ G}$
- más nívópárok is kielégítik a rezonanciafeltételt

• legyen $\hbar \Omega = -dE$

$$\mathcal{H}=\hbar \left[egin{array}{ccc} 0 & rac{1}{2}\Omega_1(t) & 0 \ rac{1}{2}\Omega_1(t) & \Delta_1 & rac{1}{2}\Omega_2(t) \ 0 & rac{1}{2}\Omega_2(t) & \Delta_1-\Delta_2 \end{array}
ight] egin{array}{ccc} g_1 \ e \ g_2 \ g_2 \end{array}$$

• ha $\Delta_1 = \Delta_2$, akkor a $|\psi_D\rangle = \Omega_2 |g_1\rangle - \Omega_1 |g_2\rangle$ nem csatolt a terekhez, sötét állapot

Adiabatikus populációtranszfer

Modell Hamilton-operátor

Ω A Schrödinger egyenlet az atomi sajátállapot bázisban $\{|\psi_1\rangle, |\psi_2\rangle\}$:

$$i\frac{d}{dt}\begin{bmatrix} c_1\\ c_2\end{bmatrix} = \frac{1}{2}\begin{bmatrix} -\Delta(t) & \Omega(t)\\ \Omega(t) & \Delta(t)\end{bmatrix}\begin{bmatrix} c_1\\ c_2\end{bmatrix}$$

Sajátenergiák:
$$arepsilon_{\pm}=\pmrac{1}{2}\sqrt{\Delta(t)^2+\Omega(t)^2}$$
 .
Sajátállapotok:

 $|\varphi_{-}\rangle = \cos \vartheta |\psi_{1}\rangle - \sin \vartheta |\psi_{2}\rangle,$ $|\varphi_{+}\rangle = \sin \vartheta |\psi_{1}\rangle + \cos \vartheta |\psi_{2}\rangle,$

ahol tan $2\vartheta(t) = \frac{\Omega(t)}{\Delta(t)}$. A { $|\varphi_{-}\rangle$, $|\varphi_{+}\rangle$ } sajátállapotok az adiabatikus állapotok.

Sötét állapotokon alapuló hullámterjedési jelenségek

Adiabatikus populációtranszfer

Áttérés forgó-koordinátarendszerre

A bázisvektorok egy forgó koordinátarendszert határoznak meg:

$$oldsymbol{U} = \left[egin{array}{cc} \cosartheta & \sinartheta \ -\sinartheta & \cosartheta \end{array}
ight]$$

Az új koordinátarendszerben az állapotvektor:

$$\boldsymbol{b} = \boldsymbol{U}^{-1} \boldsymbol{c}$$

A Schrödinger egyenlet az új bázisban:

$$i\hbar \frac{d}{dt} (\boldsymbol{U}^{-1} \boldsymbol{c}) = i\hbar \frac{d\boldsymbol{U}^{-1}}{dt} \boldsymbol{c} + i\hbar \boldsymbol{U}^{-1} \frac{d\boldsymbol{c}}{dt}$$
$$= i\hbar \frac{d\boldsymbol{U}^{-1}}{dt} \boldsymbol{U} \boldsymbol{U}^{-1} \boldsymbol{c} + \boldsymbol{U}^{-1} \boldsymbol{H} \boldsymbol{U} \boldsymbol{U}^{-1} \boldsymbol{c}$$
$$= \left(i\hbar \frac{d\boldsymbol{U}^{-1}}{dt} \boldsymbol{U} + \boldsymbol{U}^{-1} \boldsymbol{H} \boldsymbol{U} \right) \boldsymbol{b}$$

Sötét állapotokon alapuló koherens kontroll eljárások

Sötét állapotokon alapuló hullámterjedési jelenségek

Adiabatikus populációtranszfer

Adiabatikus közelítés

Komponensenként kiírva:

$$i\frac{d}{dt}\begin{bmatrix} b_{-}\\ b_{+}\end{bmatrix} = \begin{bmatrix} \varepsilon_{-} & -i\dot{\vartheta}\\ i\dot{\vartheta} & \varepsilon_{+}\end{bmatrix}\begin{bmatrix} b_{-}\\ b_{+}\end{bmatrix}$$

Adiabatikus közelítés:

$$|\langle \dot{\varphi}_+ | \varphi_- \rangle| \ll |\varepsilon_+ - \varepsilon_-|$$

avagy

$$|\dot{\vartheta}| \ll |\varepsilon_+ - \varepsilon_-| \,.$$

Időfejlődés adiabatikus határesetben

$$egin{aligned} b_q(t) = \exp\left(-i\int_{t_0}^tarepsilon(t')dt'
ight)\langlearphi_q(t_0)|\psi(t_0)
angle\ |\psi(t)
angle = b_-(t)|arphi_-(t)
angle+b_+(t)|arphi_+(t)
angle \end{aligned}$$

Sötét állapotokon alapuló koherens kontroll eljáráso

Sötét állapotokon alapuló hullámterjedési jelenségek

Adiabatikus populációtranszfer

Kísérleti megvalósítás

Atomnyaláb folytonos (CW) lézersugarakat keresztez

Sötét állapotokon alapuló koherens kontroll eljárásol

Sötét állapotokon alapuló hullámterjedési jelenségek

Adiabatikus populációtranszfer

Tulajdonságok összefoglalása

Előnyök:

- az impulzusok alakja és időzítése tág határok között szabadon választható
- a Δ elhangolást nem szükséges pontosan beállítani
- a populációtranszfer robusztus a kísérleti paraméterek ingadozásával szemben

Hátrányok:

- intenzív lézerfény szükséges
- viszonylag lassú a Rabi oszcillációhoz képest

Sötét állapotokon alapuló koherens kontroll eljárások

Sötét állapotokon alapuló hullámterjedési jelenségek

Adiabatikus populációtranszfer

Tulajdonságok összefoglalása

Előnyök:

- az impulzusok alakja és időzítése tág határok között szabadon választható
- a Δ elhangolást nem szükséges pontosan beállítani
- a populációtranszfer robusztus a kísérleti paraméterek ingadozásával szemben

Hátrányok:

- intenzív lézerfény szükséges
- viszonylag lassú a Rabi oszcillációhoz képest

Sötét állapotokon alapuló hullámterjedési jelenségek

▲ロト ▲圖 ト ▲ 国 ト ▲ 国 ト

Adiabatikus populációtranszfer három-szintes rendszerben

Ω_p/

Stimulált Raman adiabatikus átmenet (STIRAP)

Csatolási séma és a Schrödinger egyenlet:

$$\begin{array}{ccc}
\Omega_{\rm S} \\
\hline \end{array} & i \frac{d}{dt} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} = \begin{bmatrix} 0 & \frac{1}{2}\Omega_{\rho}(t) & 0 \\ \frac{1}{2}\Omega_{\rho}(t) & \Delta & \frac{1}{2}\Omega_{\rm S}(t) \\ 0 & \frac{1}{2}\Omega_{\rm S}(t) & 0 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix}$$

Sötét állapotokon alapuló hullámterjedési jelenségek

▲ロト ▲圖 ト ▲ 国 ト ▲ 国 ト

Adiabatikus populációtranszfer három-szintes rendszerben

Ω_p/

Stimulált Raman adiabatikus átmenet (STIRAP)

Csatolási séma és a Schrödinger egyenlet:

$$\begin{array}{c} \Omega_{\rm S} \\ \hline \end{array} \\ i \frac{d}{dt} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} = \begin{bmatrix} 0 & \frac{1}{2}\Omega_{\rho}(t) & 0 \\ \frac{1}{2}\Omega_{\rho}(t) & \Delta & \frac{1}{2}\Omega_{\rm S}(t) \\ 0 & \frac{1}{2}\Omega_{\rm S}(t) & 0 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix}$$

Sötét állapotokon alapuló hullámterjedési jelenségek

Adiabatikus populációtranszfer három-szintes rendszerben

Stimulált Raman adiabatikus átmenet (STIRAP)

Csatolási séma és a Schrödinger egyenlet:

$$\Omega_{p} \qquad \Omega_{S} \qquad i\frac{d}{dt} \begin{bmatrix} c_{1} \\ c_{2} \\ c_{3} \end{bmatrix} = \begin{bmatrix} 0 & \frac{1}{2}\Omega_{p}(t) & 0 \\ \frac{1}{2}\Omega_{p}(t) & \Delta & \frac{1}{2}\Omega_{S}(t) \\ 0 & \frac{1}{2}\Omega_{S}(t) & 0 \end{bmatrix} \begin{bmatrix} c_{1} \\ c_{2} \\ c_{3} \end{bmatrix}$$

Az $\varepsilon_0 = 0$ sajátértékhez tartozó sajátállapot:

 $|\varphi_0\rangle = \cos \vartheta |\psi_1\rangle - \sin \vartheta |\psi_3\rangle,$

ahol tan $\vartheta(t) = \frac{\Omega_p(t)}{\Omega_S(t)}$. A $|\varphi_0\rangle$ állapot egy ún. sötét állapot. A rendszernek még két további fényes állapota is van. Adiabatikussági feltétel ($\Delta = 0$):

$$|\dot{artheta}| \ll \sqrt{\Omega_{
ho}(t)^2 + \Omega_{
m S}(t)^2}$$
 .

Amennyiben az adiabatikussági feltétel teljesül, a rendszer időfejlődése a sötét altérben történik.

Sötét állapotokon alapuló koherens kontroll eljáráso

Sötét állapotokon alapuló hullámterjedési jelenségek

Adiabatikus populációtranszfer három-szintes rendszerben

Anti-intuitív impulzusszekvencia

$$|\varphi_0(t)\rangle = \cos(\vartheta(t))|\psi_1\rangle - \sin(\vartheta(t))|\psi_3\rangle$$
, abol $\tan \vartheta(t) = \frac{\Omega_p(t)}{\Omega_S(t)}$

•
$$|\psi_i\rangle = |\varphi_0(t_i)\rangle \rightarrow |\psi_f\rangle = |\varphi_0(t_f)\rangle$$

• leaven $\vartheta(t_i) = 0$ és $\vartheta(t_i) = \pi/2$

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

Kísérleti megvalósítás

Atomnyaláb CW lézersugarakat keresztez

Robusztusság:

- nem szükséges pontosan kontrollálni az impulzusok időzítését és alakját
- az impulzus területe A = ΩT nagy legyen
- a *Q_{2i}* koherenciák bomlása nagy impulzusterülettel ellensúlyozható
- két-fotonos rezonancia fenntartása elengedhetetlen

000000000000

Koherens kontroll sötés altérben

- a rendszer hatását a reservoir-ra elhanyagoljuk (spontán emisszió szabad térben)
- megkülönböztetünk populáció-relaxációs $T_1 = \Gamma^{-1}$ és koherencia-relaxációs $T_2 = \gamma^{-1}$ időket

$$\dot{\varrho}_{ee} = -i([H, \varrho])_{ee} - \Gamma \varrho_{ee}$$

 $\dot{\varrho}_{eg} = -i([H, \varrho])_{eg} - \gamma \varrho_{eg}$

A dekoherencia hatása elkerülhető/csökkenthető:

- (α) a folyamat hossza rövidebb a relaxációs időknél
- $(\beta)\,$ a folyamat sötét altérben zajlik, ekkor a populáció-relaxáció nem játszik szerepet, de a koherencia-relaxáció igen

Az adiabatikus kontroll-módszerekkel a rendszer állapota sötét altérben tartható

э

・ロット (雪) (日) (日)

Tartalom

Bevezetés

- Sötét állapotok felfedezése
- Adiabatikus populációtranszfer
- Adiabatikus populációtranszfer három-szintes rendszerben
- Koherens kontroll sötés altérben

Sötét állapotokon alapuló koherens kontroll eljárások

- Adiabatikus populációtranszfer tripod rendszerben
- Általános degenerált STIRAP
- Hat- és kilenc-szintes csatolt rendszer
- Kvantumbit forgatás

Sötét állapotokon alapuló hullámterjedési jelenségek

- Bevezetés
- Elektromágnesesen indukált transzparencia
- Fotonok koherens tárolása

Sötét állapotokon alapuló hullámterjedési jelenségek

▲ロ → ▲圖 → ▲ 画 → ▲ 画 → …

Adiabatikus populációtranszfer tripod rendszerben

A tripod csatolás

2

Csatolási séma és a Schrödinger egyenlet:

$$P = \begin{bmatrix} 2 & \Delta & 0 & 0 & 0 \\ 0 & S & i \frac{d}{dt} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \end{bmatrix} = \begin{bmatrix} 0 & \frac{1}{2}P(t) & 0 & 0 & 0 \\ \frac{1}{2}P(t) & \Delta & \frac{1}{2}S(t) & \frac{1}{2}Q(t) \\ 0 & \frac{1}{2}S(t) & 0 & 0 \\ 0 & \frac{1}{2}Q(t) & 0 & 0 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \end{bmatrix}$$

Sötét állapotokon alapuló hullámterjedési jelenségek

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

Adiabatikus populációtranszfer tripod rendszerben

A tripod csatolás

2

Csatolási séma és a Schrödinger egyenlet:

$$P = \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \end{bmatrix} = \begin{bmatrix} 0 & \frac{1}{2}P(t) & 0 & 0 \\ \frac{1}{2}P(t) & \Delta & \frac{1}{2}S(t) & \frac{1}{2}Q(t) \\ 0 & \frac{1}{2}S(t) & 0 & 0 \\ 0 & \frac{1}{2}Q(t) & 0 & 0 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \end{bmatrix}$$

Sötét állapotokon alapuló hullámterjedési jelenségek

(日)

Adiabatikus populációtranszfer tripod rendszerben

A tripod csatolás

2

Csatolási séma és a Schrödinger egyenlet:

$$\Phi_{1}$$

$$\Phi_{2}$$

$$\Phi_{4}$$

$$\Phi_{4}$$

$$i \frac{d}{dt} \begin{bmatrix} c_{1} \\ c_{2} \\ c_{3} \\ c_{4} \end{bmatrix} = \begin{bmatrix} 0 & \frac{1}{2}P(t) & 0 & 0 \\ \frac{1}{2}P(t) & \Delta & \frac{1}{2}S(t) & \frac{1}{2}Q(t) \\ 0 & \frac{1}{2}S(t) & 0 & 0 \\ 0 & \frac{1}{2}Q(t) & 0 & 0 \end{bmatrix} \begin{bmatrix} c_{1} \\ c_{2} \\ c_{3} \\ c_{4} \end{bmatrix}$$

$$Az \text{ adiabatikus bázisban és az adiabatikus határesetben:}$$

$$\Phi_{1}$$

$$\Phi_{2} \text{ ahol}$$

$$\tan \vartheta(t) = \frac{P(t)}{S(t)}, \quad \tan \varphi(t) = \frac{Q(t)}{\sqrt{S(t)^{2} + P(t)^{2}}}$$

Sötét állapotokon alapuló koherens kontroll eljárások

Sötét állapotokon alapuló hullámterjedési jelenségek

(日)

Általános degenerált STIRAP

Összetett csatolások szeparálása

Az általános, degenerált STIRAP Hamilton-operátora:

$$\boldsymbol{H}(t) = \hbar \begin{bmatrix} \mathbf{0} & p(t)\boldsymbol{P}^{\dagger} & \mathbf{0} \\ p(t)\boldsymbol{P} & \boldsymbol{\Delta} & s(t)\boldsymbol{S} \\ \mathbf{0} & s(t)\boldsymbol{S}^{\dagger} & \mathbf{0} \end{bmatrix}$$

Első kérdés: hány sötét állapot van ?

Sötét állapotokon alapuló koherens kontroll eljárások

Sötét állapotokon alapuló hullámterjedési jelenségek

Általános degenerált STIRAP

Morris-Shore transzformáció

- tekintsünk két csatolt állapothalmazt
- az energia-sajátállapot bázisban a Hamilton-operátor

$$m{H} = \hbar \left[egin{array}{cc} m{\Delta} & rac{1}{2} m{\Omega} \ rac{1}{2} m{\Omega}^\dagger & m{0} \end{array}
ight]$$

található egy olyan unitér mátrix pár, A és B, hogy a belőlük képzett

$$oldsymbol{U} = \left[egin{array}{cc} oldsymbol{B} & oldsymbol{0} \\ oldsymbol{0} & oldsymbol{A} \end{array}
ight]$$

unitér mátrixszal transzformálva a Hamilton-operátort

$$oldsymbol{UHU}^{\dagger}=\hbar\left[egin{array}{cc} \Delta & rac{1}{2}\widetilde{\Omega} \ rac{1}{2}\widetilde{\Omega}^{\dagger} & oldsymbol{0} \end{array}
ight]$$

kvázi-diagonális $\tilde{\Omega}$ csatoló mátrixot kapunk. Az új bázisban $N_> - N_<$ nem csatolt és $N_<$ pár csatolt állapotot kapunk.

Sötét állapotokon alapuló koherens kontroll eljárások

Sötét állapotokon alapuló hullámterjedési jelenségek

(日)

Általános degenerált STIRAP

Sötét állapotok az általános STIRAP-ban

A STIRAP esetében a *g*- és *f*-halmazok alkotják az *a*-halmazt, míg az *e*-halmaz alkotja a *b*-halmazt. Általában a sötét állapotok száma $N_D = N_g + N_f - N_e$.

Elégséges feltétel a teljes populációtranszferre: $N_g \le N_e \le N_f$. A kezdeti állapot tetszőleges tiszta vagy kevert állapot lehet a *g*-halmazban.

Sötét állapotokon alapuló koherens kontroll eljárások

٥

٥

Sötét állapotokon alapuló hullámterjedési jelenségek

Általános degenerált STIRAP

Sötét állapotok az általános STIRAP-ban

Második kérdés: hogyan lehet meghatározni a sötét és a fényes állapotokat ? MS transzformáció a Stokes mezőn

$$\widetilde{\mathbf{S}} = \begin{cases} \begin{bmatrix} \widetilde{\boldsymbol{\Sigma}} & \mathbf{0} \end{bmatrix} & \text{if } N_f > N_e, \\ \widetilde{\boldsymbol{\Sigma}} & \text{if } N_f = N_e, \\ \begin{bmatrix} \widetilde{\boldsymbol{\Sigma}} \\ \mathbf{0} \end{bmatrix} & \text{if } N_f < N_e, \end{cases}$$
a sajátérték egyenlet
$$\widetilde{\boldsymbol{H}}(t)\widetilde{\Phi}_k(t) = \varepsilon_k(t)\widetilde{\Phi}_k(t)$$

$$N_g \le N_e \le N_f, \text{ az } \varepsilon_0 = 0 \text{ -hoz tartozó}$$
sajátvektor
$$\widetilde{\boldsymbol{\Phi}}_0^{(I)}(t) = \frac{1}{\mathcal{N}_0^{(I)}(t)} \begin{bmatrix} \mathbf{S}(t)\mathbf{x}_0^{(I)} \\ \mathbf{0} \\ -p(t)\widetilde{\boldsymbol{\Sigma}}^{-1}\widetilde{\boldsymbol{P}}\mathbf{x}_0^{(I)} \\ \mathbf{0} \end{bmatrix} \quad \begin{array}{c} \mathbf{g} \\ \mathbf{f} \\ \mathbf{f} \end{cases}$$

Sötét állapotokon alapuló koherens kontroll eljárások

٥

Sötét állapotokon alapuló hullámterjedési jelenségek

Általános degenerált STIRAP

Sötét állapotok az általános STIRAP-ban

Második kérdés: hogyan lehet meghatározni a sötét és a fényes állapotokat ? MS transzformáció a Stokes mezőn

$$\widetilde{\mathbf{S}} = \begin{cases} \left[\begin{array}{cc} \widetilde{\boldsymbol{\Sigma}} & \mathbf{0} \end{array} \right] & \text{if } N_f > N_e, \\ \widetilde{\boldsymbol{\Sigma}} & \text{if } N_f = N_e, \\ \left[\begin{array}{cc} \widetilde{\boldsymbol{\Sigma}} \\ \mathbf{0} \end{array} \right] & \text{if } N_f < N_e, \end{cases}$$
a sajátérték egyenlet
$$\widetilde{\boldsymbol{H}}(t) \widetilde{\boldsymbol{\Phi}}_k(t) = \varepsilon_k(t) \widetilde{\boldsymbol{\Phi}}_k(t)$$

$$N_g \leq N_e \leq N_f, \text{ az } \varepsilon_0 = 0 \text{ -hoz tartozó}$$
sajátvektor
$$\widetilde{\boldsymbol{\Phi}}_0^{(l)}(t) = \frac{1}{\mathcal{N}_0^{(l)}(t)} \begin{bmatrix} \mathbf{s}(t) \mathbf{x}_0^{(l)} \\ \mathbf{0} \\ -\boldsymbol{\rho}(t) \widetilde{\boldsymbol{\Sigma}}^{-1} \widetilde{\boldsymbol{P}} \mathbf{x}_0^{(l)} \\ \mathbf{0} \end{bmatrix} \begin{bmatrix} g \\ f \\ f' \end{bmatrix}$$

Sötét állapotokon alapuló koherens kontroll eljárások

Sötét állapotokon alapuló hullámterjedési jelenségek

Általános degenerált STIRAP

Időfejlődés

Harmadik kérdés: adiabatikus időfejlődés feltétele ?

- az adiabatikusság feltételei hasonlóak a háromállapotú STIRAP-éhoz
- adiabatikus határesetben a sötét és fényes állapotok között elhanyagolhatók a csatolások

 $\hbar |\langle {{{\widetilde \Phi}_0^{(\prime)}}(t)} |{\dot {{\widetilde \Phi}_k}(t)}
angle | \ll |arepsilon_k(t)|$

amely enyenértékű

 $|s(t)\dot{p}(t) - p(t)\dot{s}(t)|M(t) \ll |\varepsilon_k(t)|$

Sötét állapotokon alapuló koherens kontroll eljárások

Sötét állapotokon alapuló hullámterjedési jelenségek

Általános degenerált STIRAP

Időfejlődés

Harmadik kérdés: adiabatikus időfejlődés feltétele ?

- az adiabatikusság feltételei hasonlóak a háromállapotú STIRAP-éhoz
- adiabatikus határesetben a sötét és fényes állapotok között elhanyagolhatók a csatolások

$$\hbar |\langle {{{\widetilde \Phi}_0^{(\prime)}}(t)} |{\dot {{\widetilde \Phi}_k}(t)}
angle | \ll |arepsilon_k(t)|$$

amely enyenértékű

 $|s(t)\dot{p}(t) - p(t)\dot{s}(t)|M(t) \ll |\varepsilon_k(t)|$

Sötét állapotokon alapuló koherens kontroll eljárások

Sötét állapotokon alapuló hullámterjedési jelenségek

Általános degenerált STIRAP

Időfejlődés

Harmadik kérdés: adiabatikus időfejlődés feltétele ?

- az adiabatikusság feltételei hasonlóak a háromállapotú STIRAP-éhoz
- adiabatikus határesetben a sötét és fényes állapotok között elhanyagolhatók a csatolások

 $\hbar |\langle \widetilde{\Phi}_0^{(l)}(t) | \dot{\widetilde{\Phi}}_k(t) \rangle| \ll |\varepsilon_k(t)|$

amely enyenértékű

 $|s(t)\dot{p}(t) - p(t)\dot{s}(t)|M(t) \ll |\varepsilon_k(t)|$

Sötét állapotokon alapuló koherens kontroll eljárások

Sötét állapotokon alapuló hullámterjedési jelenségek

Általános degenerált STIRAP

Időfejlődés

Harmadik kérdés: adiabatikus időfejlődés feltétele ?

- az adiabatikusság feltételei hasonlóak a háromállapotú STIRAP-éhoz
- adiabatikus határesetben a sötét és fényes állapotok között elhanyagolhatók a csatolások

 $\hbar |\langle \widetilde{\Phi}_0^{(l)}(t) | \dot{\widetilde{\Phi}}_k(t) \rangle| \ll |\varepsilon_k(t)|$

amely enyenértékű

 $|s(t)\dot{p}(t) - p(t)\dot{s}(t)| M(t) \ll |\varepsilon_k(t)|$

・ロット (雪) (日) (日)

Összefoglalva:

Nincs csatolás a sötét állapotok között.

A g-halmaz bármely tiszta vagy kevert állapota teljesen átvihető az f-halmazba.

Sötét állapotokon alapuló koherens kontroll eljárások

Sötét állapotokon alapuló hullámterjedési jelenségek

Hat- és kilenc-szintes csatolt rendszer

Kvantuminterferencia az átmeneti útvonalak között

Sötét állapotokon alapuló koherens kontroll eljárások

Sötét állapotokon alapuló hullámterjedési jelenségek

Hat- és kilenc-szintes csatolt rendszer

Kvantuminterferencia az átmeneti útvonalak között

Sötét állapotokon alapuló koherens kontroll eljárások

Sötét állapotokon alapuló hullámterjedési jelenségek

▲ロ → ▲圖 → ▲ 画 → ▲ 画 → …

Hat- és kilenc-szintes csatolt rendszer

Kvantuminterferencia az átmeneti útvonalak között

Sötét állapotokon alapuló koherens kontroll eljárások

Sötét állapotokon alapuló hullámterjedési jelenségek

▲ロ → ▲圖 → ▲ 画 → ▲ 画 → …

Hat- és kilenc-szintes csatolt rendszer

Kvantuminterferencia az átmeneti útvonalak között

Sötét állapotokon alapuló koherens kontroll eljárások

Sötét állapotokon alapuló hullámterjedési jelenségek

・ロット (雪) (日) (日)

Hat- és kilenc-szintes csatolt rendszer

Kvantuminterferencia az átmeneti útvonalak között

Sötét állapotokon alapuló hullámterjedési jelenségek

Hat- és kilenc-szintes csatolt rendszer

A sötét állapotok meghatározása

Tekintsük a hat-szintes alrendszert:

- két sötét állapot van, az egyiknek $\psi_D^{(1)}$ csak az *f*-halmazban vannak elemei
- a Stokes mező MS transzformációja matematikailag komplikált
- ehelyett, a *transzfer* sötét-állapotra $\psi_D(t)$ reljesül

$$H(t)\Psi_D(t) = 0$$
, (2 eqs.)
 $\langle \Psi_D^{(1)} | \Psi_D(t) \rangle = 0$.

Sötét állapotokon alapuló hullámterjedési jelenségek

Hat- és kilenc-szintes csatolt rendszer

A sötét állapotok meghatározása

Tekintsük a hat-szintes alrendszert:

- két sötét állapot van, az egyiknek $\psi_D^{(1)}$ csak az *f*-halmazban vannak elemei
- a Stokes mező MS transzformációja matematikailag komplikált
- ehelyett, a *transzfer* sötét-állapotra $\psi_D(t)$ reljesül

$$H(t)\Psi_D(t) = 0$$
, (2 eqs.)
 $\langle \Psi_D^{(1)} | \Psi_D(t) \rangle = 0$.

Az egyenletrendszer megoldása

$$\begin{aligned} d_{0,0}(t) &= \frac{s(t)}{\mathcal{N}(t)} (|S_{+}|^{4} + |S_{-}|^{4} + 6|S_{-}|^{2}|S_{+}|^{2}), \\ d_{2,-2}(t) &= \frac{p(t)}{\mathcal{N}(t)} \frac{\sqrt{5}}{3} S_{+}^{*} (P_{-}^{*} S_{-} S_{+}^{*} - P_{+}^{*}[6|S_{-}|^{2} + |S_{+}|^{2}]), \\ d_{2,0} &= -\frac{p(t)}{\mathcal{N}(t)} \frac{\sqrt{10}}{\sqrt{3}} (P_{-}^{*}|S_{+}|^{2} S_{+}^{*} + P_{+}^{*}|S_{-}|^{2} S_{-}^{*}), \\ d_{2,2}(t) &= \frac{p(t)}{\mathcal{N}(t)} \frac{\sqrt{5}}{3} S_{-}^{*} (P_{+}^{*} S_{-}^{*} S_{+} - P_{-}^{*}[6|S_{+}|^{2} + |S_{-}|^{2}]). \end{aligned}$$

Sötét állapotokon alapuló koherens kontroll eljárások Bevezetés

Sötét állapotokon alapuló hullámteriedési ielenségek

・ロット (雪) (日) (日)

Hat- és kilenc-szintes csatolt rendszer

A sötét állapotok meghatározása

A kilenc-szintes teljesen csatolt rendszernek a következő tulajdonságai vannak: • három sötét állapot van, kettő $\psi_D^{(k)}$ (k = 1, 2) teljesen az *f*-halmazban fekszik

- a *transzfer* sötét állapot $\psi_D(t)$ a következő egyenletrendszer megoldásával ٢ határozható meg:

$$H(t)\Psi_D(t) = 0,$$
 (3 eqs.)
 $\langle \Psi_D^{(k)}|\Psi_D(t)\rangle = 0,$ $k = 1, 2$

Sötét állapotokon alapuló koherens kontroll eljárások

Sötét állapotokon alapuló hullámterjedési jelenségek

Hat- és kilenc-szintes csatolt rendszer

Teljesség

Nincs olyan ψ_f , hogy $\langle \psi_D | \psi_f \rangle = 0$ minden ψ_D esetén.

• hat-szintes rendszerre ($\psi_f = [v_{-2} v_0 v_2]^T$)

$$\tan(\varphi_{S}) = e^{i(\alpha_{+}^{(S)} - \alpha_{-}^{(S)})} \frac{\sqrt{6}v_{0} \pm \sqrt{6v_{0}^{2} - 4v_{-2}v_{2}}}{v_{2}}.$$

Sötét állapotokon alapuló hullámterjedési jelenségek

Hat- és kilenc-szintes csatolt rendszer

Teljesség

Nincs olyan ψ_f , hogy $\langle \psi_D | \psi_f \rangle = 0$ minden ψ_D esetén.

• hat-szintes rendszerre ($\psi_f = [v_{-2} v_0 v_2]^T$)

$$\tan(\varphi_{S}) = e^{i(\alpha_{+}^{(S)} - \alpha_{-}^{(S)})} \frac{\sqrt{6}v_{0} \pm \sqrt{6}v_{0}^{2} - 4v_{-2}v_{2}}{v_{2}}$$

• kilenc-szintes rendszerre ($a = S_{-}^{*}/S_{0}^{*}, b = S_{+}^{*}/S_{0}^{*}, \text{ és } \psi_{f} = [v_{-2} \dots v_{2}]^{T}$))

$$\begin{array}{lcl} b & = & \displaystyle \frac{v_{-1}a^3 + \sqrt{3}v_0a^2 + 2v_1a + \sqrt{2}v_2}{(v_1a + \sqrt{2}v_2)a} \,, \\ \\ 0 & = & \displaystyle \frac{1}{(v_1a + \sqrt{2}v_2)^2a^4} \sum_{k=0}^6 \mathsf{Q}_k(\mathbf{v}_f)a^k \,, \end{array}$$

Sötét állapotokon alapuló hullámterjedési jelenségek

Hat- és kilenc-szintes csatolt rendszer

Teljesség

Nincs olyan ψ_f , hogy $\langle \psi_D | \psi_f \rangle = 0$ minden ψ_D esetén.

• hat-szintes rendszerre ($\psi_f = [v_{-2} v_0 v_2]^T$)

$$\tan(\varphi_{S}) = e^{i(\alpha_{+}^{(S)} - \alpha_{-}^{(S)})} \frac{\sqrt{6}v_{0} \pm \sqrt{6}v_{0}^{2} - 4v_{-2}v_{2}}{v_{2}}$$

kilenc-szintes rendszerre (a = S^{*}₋/S^{*}₀, b = S^{*}₊/S^{*}₀, és ψ_f = [v₋₂ ... v₂]^T))

$$b = \frac{v_{-1}a^3 + \sqrt{3}v_0a^2 + 2v_1a + \sqrt{2}v_2}{(v_1a + \sqrt{2}v_2)a},$$

$$b = \frac{1}{(v_1a + \sqrt{2}v_2)^2a^4}\sum_{k=0}^6 Q_k(\mathbf{v}_f)a^k,$$

Johann Carl Friedrich Gauss (Doctoral Dissertation, 1799): "The Fundamental Theorem of Algebra: Every polynomial equation of degree n with complex coefficients has n roots in the complex numbers."

Sötét állapotokon alapuló koherens kontroll eljárások

Sötét állapotokon alapuló hullámterjedési jelenségek

Hat- és kilenc-szintes csatolt rendszer

Alkalmazások

- populációtranszfer atomokban Zeeman-multiplettek között
- populációtranszfer molekulák rovibrációs állapotai között
- molekuláris gépek mozgásának kontrollja
- kvantumbiteken végzett műveletek implementációja

o ...

Sötét állapotokon alapuló koherens kontroll eljárások

Sötét állapotokon alapuló hullámterjedési jelenségek

Hat- és kilenc-szintes csatolt rendszer

Alkalmazások

- populációtranszfer atomokban Zeeman-multiplettek között
- populációtranszfer molekulák rovibrációs állapotai között
- molekuláris gépek mozgásának kontrollja
- kvantumbiteken végzett műveletek implementációja

• . . .

Bevezetés	Sötét állapotokon alapuló koherens kontroll eljárások	Sötét állapotokon alapuló hullámterjedési jelenségek
00000000000	000000000000000000000000000000000000000	00000000000
Kvantumbit forgatás		

A tripod-kvantumbit

- a kvantumbit egy kéttagú szuperponált állapot: $|i\rangle = a|1\rangle + b|2\rangle$
- elforgatott állapotot: |f⟩ = Â_n(ζ)|i⟩, ahol n a forgatás tengelye és ζ a forgatás szöge
- $\hat{R}_n(\zeta) \in SU(2)$: $\hat{R}_n(\zeta) = \exp\left(-i\frac{\zeta}{2} \boldsymbol{n} \cdot \hat{\boldsymbol{\sigma}}\right)$

Bevezetés	Sötét állapotokon alapuló koherens kontroll eljárások	Sötét állapotokon alapuló hullámterjedési j
	000000000000000000000000000000000000000	

Kvantumbit forgatás

A tripod-kvantumbit

- a kvantumbit egy kéttagú szuperponált állapot: $|i\rangle = a|1\rangle + b|2\rangle$
- elforgatott állapotot: |f⟩ = R̂_n(ζ)|i⟩, ahol n a forgatás tengelye és ζ a forgatás szöge
- $\hat{R}_{n}(\zeta) \in SU(2)$: $\hat{R}_{n}(\zeta) = \exp\left(-i\frac{\zeta}{2} \boldsymbol{n} \cdot \hat{\boldsymbol{\sigma}}\right)$

Megvalósítás négy-szintes csatolt rendszerben:

A rendszer Hamilton-operátora:

$$\hat{\mathcal{H}}(t) = \hbar \Delta | e \rangle \langle e | + rac{\hbar}{2} \sum_{i=1,2,a} (\Omega_i(t) | i \rangle \langle e | + h.c.) ,$$

lenséaek

ahol az 1 és 2 indexű impulzusok definíciója:

$$\Omega_1(t) = \overline{\Omega}(t) \cos \alpha, \qquad \Omega_2(t) = \overline{\Omega}(t) \sin \alpha e^{i\beta}$$

Új bázis:

$$\begin{aligned} |C\rangle &= \cos \alpha |1\rangle + \sin \alpha \, e^{i\beta} |2\rangle \,, \quad \text{csatolt} \,, \\ |D\rangle &= -\sin \alpha |1\rangle + \cos \alpha \, e^{i\beta} |2\rangle \,, \quad \text{nem csatolt} \end{aligned}$$

Sötét állapotokon alapuló koherens kontroll eljárások

Sötét állapotokon alapuló hullámterjedési jelenségek

Kvantumbit forgatás

Adiabatikus forgatás

 a |C>, |D> bázisban a Hamilton-operátor három-szintes rendszert ír le:

$$\hat{H}(t) = \hbar \Delta |e\rangle \langle e| + rac{\hbar}{2} \sum_{i=C,a} (\Omega_i(t)|i\rangle \langle e| + h.c.).$$

a kvantumbit az új bázisban:

$$|i\rangle = \langle D|i\rangle |D\rangle + \langle C|i\rangle |C\rangle$$
.

(日) (圖) (E) (E)

Sötét állapotokon alapuló koherens kontroll eljárások

Sötét állapotokon alapuló hullámterjedési jelenségek

Kvantumbit forgatás

Adiabatikus forgatás

 a |C>, |D> bázisban a Hamilton-operátor három-szintes rendszert ír le:

$$\hat{H}(t) = \hbar \Delta |e\rangle \langle e| + \frac{\hbar}{2} \sum_{i=C,a} (\Omega_i(t)|i\rangle \langle e| + h.c.).$$

a kvantumbit az új bázisban:

 $|i\rangle = \langle D|i\rangle |D\rangle + \langle C|i\rangle |C\rangle$.

• □ > • (□) • • □ > • □ >

A forgatás két lépésben történik:

 Az első STIRAP impulzus-szekvencia során Ω_C(t) a pumpa és Ω_a(t) a Stokes impulzus. Az impulzusok elhaladása után a rendszer állapota:

$$|\psi\rangle = \langle D|i\rangle |D\rangle - \langle C|i\rangle |a\rangle.$$

Sötét állapotokon alapuló koherens kontroll eljárások

Sötét állapotokon alapuló hullámterjedési jelenségek

Kvantumbit forgatás

Adiabatikus forgatás

 a |C>, |D> bázisban a Hamilton-operátor három-szintes rendszert ír le:

$$\hat{H}(t) = \hbar \Delta |e\rangle \langle e| + rac{\hbar}{2} \sum_{i=C,a} (\Omega_i(t)|i\rangle \langle e| + h.c.).$$

a kvantumbit az új bázisban:

 $|i\rangle = \langle D|i\rangle |D\rangle + \langle C|i\rangle |C\rangle.$

・ 日 マ チ 全 司 マ チ 山 マ

A forgatás két lépésben történik:

 Az első STIRAP impulzus-szekvencia során Ω_C(t) a pumpa és Ω_a(t) a Stokes impulzus. Az impulzusok elhaladása után a rendszer állapota:

$$|\psi\rangle = \langle D|i\rangle |D\rangle - \langle C|i\rangle |a\rangle.$$

 A második STIRAP impulzus-szekvencia során Ω_C(t) a Stokes és Ω_a(t)e^{iδ} a pumpa impulzus. Az impulzusok elhaladása után a rendszer végső állapota:

$$|\psi_{f}\rangle = \langle D|i\rangle|D\rangle + e^{-i\delta}\langle C|i\rangle|C\rangle$$

Sötét állapotokon alapuló koherens kontroll eljárások

Sötét állapotokon alapuló hullámterjedési jelenségek

Kvantumbit forgatás

A forgatás időfüggése

A $|C\rangle$ és $|D\rangle$ állapotok kifejtése után kapjuk:

$$\psi_f \rangle = \mathbf{e}^{-i\delta/2} \hat{R}_n(\delta) |i\rangle$$

ahol $\boldsymbol{n} = [\cos(2\alpha)\cos(\beta), \cos(2\alpha)\sin(\beta), \sin(2\alpha)]^T$.

Sötét állapotokon alapuló koherens kontroll eljárások

Sötét állapotokon alapuló hullámterjedési jelenségek

Kvantumbit forgatás

A forgatási eljárás megvalósítása:

- csapdázott atomok, ionok
- ritkaföldfémmel adalékolt egykristályokban: pl. Y₂SiO₅:Pr³⁺
- félvezető nanostruktúrákban, pl. kvantumpöttyökben

A séma kiterjeszthető két-kvantumbites műveletekre is.

Sötét állapotokon alapuló koherens kontroll eljárások

Sötét állapotokon alapuló hullámterjedési jelenségek

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

Tartalom

Bevezetés

- Sötét állapotok felfedezése
- Adiabatikus populációtranszfer
- Adiabatikus populációtranszfer három-szintes rendszerben
- Koherens kontroll sötés altérben

Sötét állapotokon alapuló koherens kontroll eljárások

- Adiabatikus populációtranszfer tripod rendszerben
- Általános degenerált STIRAP
- Hat- és kilenc-szintes csatolt rendszer
- Kvantumbit forgatás

Sötét állapotokon alapuló hullámterjedési jelenségek

- Bevezetés
- Elektromágnesesen indukált transzparencia
- Fotonok koherens tárolása

Sötét állapotokon alapuló koherens kontroll eljárások

Sötét állapotokon alapuló hullámterjedési jelenségek

Bevezetés

Elektromágneses síkhullám terjedése polarizálható közegben

hullámegyenlet

$$\left[\frac{\partial^2}{\partial z^2} - \frac{1}{c^2}\frac{\partial^2}{\partial t^2}\right]\mathcal{E}(t,z) = \mu_0 \sigma \frac{\partial}{\partial t}\mathcal{E}(t,z) + \mu_0 \frac{\partial^2}{\partial t^2}\mathcal{P}(t,z)$$

• $\{t, z\}$ -ben lassan változó burkolójú, monokróm tér esetén ($\sigma = 0$)

$$\left[\frac{\partial}{\partial z} + \frac{1}{c}\frac{\partial}{\partial t}\right] E^{(+)}(t,z) = i\frac{k_{\rm vac}}{2\varepsilon_0}P^{(+)}(t,z)$$

• időben retardált koordinátarendszerben ($\tau = t - z/c$ és $\zeta = z$) a hullámegyenlet

$$\frac{\partial}{\partial \zeta} E^{(+)}(\tau,\zeta) = i \frac{k_{\text{vac}}}{2\varepsilon_0} P^{(+)}(\tau,\zeta)$$

polarizáció két-szintes rendszerben, dipól átmenet esetén

$$\mathcal{P}(\tau,\zeta) = N \operatorname{Tr}\{\hat{\mu}\varrho\} = \mathcal{N}(\mu_{ge}\varrho_{eg} + \mu_{eg}\varrho_{ge}) = \frac{1}{2} \left(\mathcal{P}^{(+)}(\tau,\zeta) e^{-i\omega\tau} + c.c. \right)$$

• a polarizáció felbontható a térben lineáris és nemlineáris tagokra ($P \equiv P^{(+)}$)

$$P(\tau,\zeta) = \varepsilon_0 \chi(-\omega,\omega) E(\tau,\zeta) + P_{\rm NL}(\{E(\tau,\zeta)\})$$

Bevezetés Sötét állapotokon alapuló koherens kontro

Sötét állapotokon alapuló hullámterjedési jelenségek

Elektromágnesesen indukált transzparencia

Csatolási séma

tekintsünk egy effektív három-szintes rendszert:

- ω_p: gyenge próba fényhullám frekvenciája
- ω_C : erős csatoló fényhullám frekvenciája
- Γ_{3i}: bomlási ráták
- a fényhullámok és atomok közötti kölcsönhatást leíró Hamilton-operátor:

$$\mathcal{H}_{int} = -\hbar\Delta_1 |1\rangle \langle 1| - \hbar\Delta_2 |2\rangle \langle 2| - \frac{\hbar}{2} [\Omega_\rho e^{i\Delta_1 \tau} |3\rangle \langle 1| + \Omega_c e^{i\Delta_2 \tau} |3\rangle \langle 2| + h.a.]$$

- az $|a^{\pm}
 angle$ felöltöztetett állapotok
- destruktív kvantuminterferncia az $|a^+\rangle \to |1\rangle$ és $|a^-\rangle \to |1\rangle$ útvonalak között

• □ > • (□) • • □ > • □ >

Sötét állapotokon alapuló hullámterjedési jelenségek

Elektromágnesesen indukált transzparencia

Lineáris szuszceptibilitás

A sűrűségoperátor mozgásegyenlete:

$$\begin{array}{ll} \displaystyle \frac{d}{d\tau} \varrho & = & -\frac{\imath}{\hbar} [\mathcal{H}_{\rm int}, \varrho] \\ & + & \displaystyle \frac{\Gamma_{31}}{2} [2\sigma_{13} \varrho \sigma_{31} - \sigma_{33} \varrho - \varrho \sigma_{33}] + \frac{\Gamma_{32}}{2} [2\sigma_{23} \varrho \sigma_{32} - \sigma_{33} \varrho - \varrho \sigma_{33}] \\ & + & \displaystyle \frac{\gamma_{\rm 2deph}}{2} [2\sigma_{22} \varrho \sigma_{22} - \sigma_{22} \varrho - \varrho \sigma_{22}] + \frac{\gamma_{\rm 3deph}}{2} [2\sigma_{33} \varrho \sigma_{33} - \sigma_{33} \varrho - \varrho \sigma_{33}] \end{array}$$

• stacionárius megoldás (Ω_p -ben első rendig): $\varrho_{11} \simeq 1$, $\varrho_{22} = 0$, $\varrho_{33} = 0$

$$\varrho_{21} = i \frac{\Omega_c^* \varrho_{31}}{\gamma_{21} + i 2(\Delta_1 - \Delta_2)}, \quad \varrho_{31} = i \frac{\Omega_c \varrho_{21} + \Omega_p}{\gamma_{31} + i 2\Delta_1}, \quad \varrho_{23} = -i \frac{\Omega_p^* \varrho_{21}}{\gamma_{32} + i 2\Delta_2}$$

• a közeg polarizációja ($\Delta = \Delta_1, \, \delta = \Delta_1 - \Delta_2$):

$$\mathcal{P}(\tau,\zeta) = N\left(\mu_{13}\varrho_{31}(\tau,\zeta)e^{-\imath\omega_{31}\tau} + \mu_{23}\varrho_{32}(\tau,\zeta)e^{-\imath\omega_{32}\tau} + c.c.\right)$$

$$\mathcal{P}_{\rho}(\tau,\zeta) = \frac{1}{2}\varepsilon_{0}\left[\chi^{(1)}(-\omega_{\rho},\omega_{\rho})E^{(+)}_{\rho}(\tau,\zeta)e^{-\imath\omega_{\rho}\tau} + c.c.\right]$$

Sötét állapotokon alapuló koherens kontroll eljáráso

Sötét állapotokon alapuló hullámterjedési jelenségek

Elektromágnesesen indukált transzparencia

EIT vs két-szintes rendszer szuszceptibilitása

- egyszerűbb modell: $\gamma_{21} = 0$ és $\Delta_2 = 0$
- Ineáris szuszceptibilitás:

$$\chi^{(1)}(-\omega_{p},\omega_{p}) = \frac{N|\mu_{13}|^{2}}{\varepsilon_{0}\hbar} \times \frac{4\Delta(|\Omega_{c}|^{2} - 4\Delta^{2}) + i8\Delta^{2}\gamma_{31}}{(|\Omega_{c}|^{2} - 4\Delta^{2})^{2} + 4\gamma_{31}^{2}\Delta^{2}}$$

• a próbamezőre vonatkozó szuszceptibilitás: $\Omega_c = 0.5 \gamma_{31}$

Sötét állapotokon alapuló hullámterjedési jelenségek

Elektromágnesesen indukált transzparencia

Hullámterjedés EIT közegben

folytonos hullám átviteli függvénye: T(ω_p, L) = exp[ιkLχ⁽¹⁾(-ω_p, ω_p)/2]

 az átviteli függvény spektrális szélessége:

$$\Delta\omega_{\rm tr} = \frac{\Omega_c^2}{\sqrt{\Gamma_{31}\gamma_{31}}} \frac{1}{\sqrt{N\sigma L}}$$

• □ > • (□) • • □ > • □ >

impulzusterjedés csoportsebessége:

$$v_{
m gr} = \left. rac{d\omega_{
ho}}{dk_{
ho}}
ight|_{\delta=0} = rac{c}{1+n_{
m gr}} = rac{c}{1+N\sigma c\Gamma_{31}/|\Omega_c|^2}$$

csoportkésleltetés:

$$\tau_{\rm d} = L\left(\frac{1}{v_{\rm gr}} - \frac{1}{c}\right) = L\frac{n_{\rm gr}}{c}$$

 Bevezetés
 Sötét állapotokon alapuló koherens kontroll eljárások
 Sötét állapotokon alapuló hullámterjedési jelenségek

 00000000000
 00000000000
 00000000000

 Elektromágnesesen indukált transzparencia
 Kísérleti megvalósítás

Hau, L.V. et al.:*Light speed reduction to 17 metres per second in an ultracold atomic gas*; Nature **397**, 594 (1999).

Sötét állapotokon alapuló hullámterjedési jelenségek ○○○○○○●○○○○○

Elektromágnesesen indukált transzparencia

Kísérleti eredmények

EIT Bose-Einstein kondenzátumban (Na atom):

Figure 2 Effect of probe detuning. **a**, Transmission profile. Calculated probe transmission as a function of detuning from the $|1\rangle \rightarrow |3\rangle$ resonance for an atom cloud cooled to 450 nK, with a peak density of 3.3×10^{9} cm $^{-3}$ and a length of 229 μm (corresponding to the cloud in inset (ii) of Fig. 1a). The coupling laser is resonant with the $|2\rangle \rightarrow |3\rangle$ transition and has a power density of 52 mW cm $^{-2}$, **b**,

(日)

Bevezetés Sötét állapoto

Sötét állapotokon alapuló koherens kontroll eljárások

Sötét állapotokon alapuló hullámterjedési jelenségek

Elektromágnesesen indukált transzparencia

Alkalmazások: rezonáns nemlineáris optika

- nagy hatékonyságú frekvenciakonverzió
- néhány-fotonos optikai kapcsoló
- nagyon gyenge mágneses terek mérése
- fényimpulzus koherens tárolása ("stopping of light")

...

Bevezetés Sötét :

Sötét állapotokon alapuló koherens kontroll eljárások

Sötét állapotokon alapuló hullámterjedési jelenségek

Elektromágnesesen indukált transzparencia

Alkalmazások: rezonáns nemlineáris optika

- nagy hatékonyságú frekvenciakonverzió
- néhány-fotonos optikai kapcsoló
- nagyon gyenge mágneses terek mérése
- fényimpulzus koherens tárolása ("stopping of light")

Ο ...

Sötét állapotokon alapuló koherens kontroll eljárások

Sötét állapotokon alapuló hullámterjedési jelenségek

Fotonok koherens tárolása

Kollektív atomi állapotok

 gázcella atomjai kölcsönhatnak klasszikus és kvantált térrel (a)

a mezők az atomok Dicke-típusú, teljesen szimmetrikus állapotait csatolják (b)

$$\begin{aligned} |\boldsymbol{b}\rangle &= |\boldsymbol{b}_1, \boldsymbol{b}_2, \dots, \boldsymbol{b}_N\rangle, \\ |\boldsymbol{a}(\boldsymbol{c})\rangle &= \frac{1}{\sqrt{N}} \sum_{j=1}^N |\boldsymbol{b}_1, \dots, \boldsymbol{a}_j(\boldsymbol{c}_j), \dots, \boldsymbol{b}_N\rangle, \\ |\boldsymbol{a}\boldsymbol{a}\rangle &= \frac{1}{\sqrt{2N(N-1)}} \sum_{i\neq j=1}^N |\boldsymbol{b}_1, \dots, \boldsymbol{a}_i, \dots, \boldsymbol{a}_j, \dots, \boldsymbol{b}_N\rangle, \end{aligned}$$

Sötét állapotokon alapuló hullámterjedési jelenségek

・ロット (雪) (日) (日)

Fotonok koherens tárolása

Dinamika a sötét altérben

definiálhatók sötét állapotok

$$|D, 1\rangle = \cos(\vartheta(t))|b, 1\rangle - \sin(\vartheta(t))|c, 0\rangle$$

$$\vdots$$

$$|D, n\rangle = \sum_{k=0}^{n} \sqrt{\binom{n}{k}} (\cos \vartheta)^{n-k} (-\sin \vartheta)^{k} |c^{k}, n-k\rangle$$

adiabatikus közelítésben a rendszer adiabatikusan követi a sötét állapotot

$$artheta: \mathbf{0}
ightarrow \pi/2, (\mathbf{\textit{n}} \leq \mathbf\textit{\textit{N}}), \qquad |\textit{\textit{D}}, \mathbf\textit{n}\rangle: |\textit{\textit{b}}, \textit{n}
angle
ightarrow |\textit{\textit{c}}^{\textit{n}}, \mathbf{0}
angle$$

kvantummechanikai leírás: Heisenberg kép + Maxwell egyenlet a kvantált térre

$$\left(\frac{\partial}{\partial t} + c\frac{\partial}{\partial z}\right)\hat{E}(t,z) = igN\widetilde{\sigma}_{ba}(t,z)$$

3

Sötét állapotokon alapuló hullámterjedési jelenségek

Fotonok koherens tárolása

Sőtét-állapot polaritonok

definiáljunk két új kvantált mezőt (polaritont)

$$\hat{\psi} = \cos(\vartheta(t))\hat{E}(t,z) - \sin(\vartheta)\sqrt{N}\widetilde{\sigma}_{bc}(t,z)e^{i\Delta k}, \quad \text{sotter},$$

$$\hat{\Phi} = \sin(\vartheta(t))\hat{E}(t,z) + \cos(\vartheta)\sqrt{N}\widetilde{\sigma}_{bc}(t,z)e^{i\Delta k}$$
, fényes

ahol tan $\vartheta(t) = \frac{g\sqrt{N}}{\Omega(t)}$

• adiabatikus határesetben ($\varepsilon \equiv g\sqrt{N}T \ll$ 1) $\hat{\Phi} =$ 0 és

$$\left(\frac{\partial}{\partial t} + c\cos^2\vartheta(t)\frac{\partial}{\partial z}\right)\hat{\psi}(t,z) = 0$$

• továbbá $\hat{E}(t,z) = \cos \vartheta(t) \hat{\psi}(t,z)$, $\sqrt{N} \tilde{\sigma}_{bc}(t,z) = -\sin \vartheta(t) \hat{\psi}(t,z) e^{-i\Delta kz}$

megoldás

$$\hat{\psi}(t, \mathbf{z}) = \hat{\psi}\left(0, \mathbf{z} - \mathbf{c} \int \cos^2 \vartheta(\tau) d\tau\right)$$

Sötét állapotokon alapuló koherens kontroll eljáráso

Sötét állapotokon alapuló hullámterjedési jelenségek

Fotonok koherens tárolása

Időfejlődés

Köszönöm a figyelmet!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで