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Can rotation solve the Hubble Puzzle?

Balédzs Endre Szigeti,'? Istvan Szapudi *’,>* Imre Ferenc Barna”? and Gergely Gabor Barnafoldi >

Unstitute of Physics, Eétvis Lordnd University, 11/A Pdzmdny Péter Stny, Budapest H-1117, Hungary
2HUN-REN Wigner Research Centre for Physics, P.O. Box 49, Budapest H-1525, Hungary
3 Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, Hawaii 96822, USA

Accepted 2025 March 4. Received 2025 March 4; in original form 2024 December 18

ABSTRACT

The discrepancy between low and high redshift Hubble constant Hy measurements is the highest significance tension within
the concordance Lambda cold dark matter paradigm. If not due to unknown systematics, the Hubble Puzzle suggests a lack
of understanding of the universe’s expansion history despite the otherwise spectacular success of the theory. We show that a
Godel inspired slowly rotating dark-fluid variant of the concordance model resolves this tension with an angular velocity today
wop =~ 2 x 1073 Gyr~!. Curiously, this is close to the maximal rotation, avoiding closed time-like loops with a tangential velocity

less than the speed of light at the horizon.
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1 INTRODUCTION

The Hubble tension, the inconsistency of the late and early time
measurements of the universe’s expansion rate, emerges as the
most significant chink in the otherwise shiny armour of the con-
cordance Lambda cold dark matter (ACDM) model (see e.g. for
reviews by Verde, Treu & Riess 2019; Di Valentino et al. 2021a;
Kamionkowski & Riess 2023). The discrepancy has been estab-
lished in a wide range of data sets and reached a 5o significance
between cepheid-calibrated local supernovae and cosmic microwave
background (CMB) measurements (for counterpoint and calibration
uncertainties see Freedman et al. 2024).

The CMB constraints at recombination are indirect: they assume
an expansion history governed by the ACDM model. The latest
analyses of Planck CMB maps imply a Hubble constant Hevp =
67.4 & 0.5 kms~'Mpc~! (Aghanim et al. 2020).

Type la supernovae directly constrain the late-time (local) ex-
pansion rate. In a definitive study of Riess et al. (2022) used
the Hubble Space Telescope (HST) to observe Cepheid variables
in the host galaxies of 42 Type la supernovae (SNe Ia) crucial
for calibrating the local Hubble constant (Hgye). They utilized all
suitable SNe Ia discovered at redshift z < 0.01 over the past four
decades, significantly expanding the sample size with observations
from over 1000 HST orbits. They performed geometric calibration
of Cepheids using Gaia EDR3 parallaxes, masers in NGC 4258,
and detached eclipsing binaries in the Large Magellanic Cloud.
Their baseline result is Hgye = 73.04 & 1.07 kms~'Mpc~!, with
systematic uncertainties, closely aligned with the median of various
analysis variants. Notably, they found a significant So discrepancy
with the Planck CMB analysis.
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A burst of activity resulted, including alternative (tip of the red
giant branch) calibrations by Freedman et al. (2019), and extensions
or modifications of ACDM by Di Valentino, Melchiorri & Silk
(2020a), such as massive neutrino or weakly interacting massive
particles (WIMP) models of Pan & Knox (2015), dark photon of
Aboubrahim, Klasen & Nath (2022), and an extended dark sector by
Di Valentino et al. (2020b). Next, we propose rotating space—time as
a novel solution. Godel Godel (1947) introduced a rotating universe
followed by Heckmann & Schiicking (1955, 1956a, b) and Heckmann
(1961) later Silk (1966) and Hawking (1969). Visualization of the
Godel’s universe is made by Buser, Kajari & Schleich (2013).
While anisotropies in a variety of Bianchi models with large vector
perturbations corresponding to rotation are tightly constrained from
Planck CMB data by Saadeh et al. (2016), generalizations of the
Godel model by Obukhov (2000) with global rotation are still viable
and free of the pathologies of the original. This paper considers
a Newtonian approximation of these models in the context of the
Hubble anomalies.

All objects within our universe rotate, including planets, stars,
solar systems, galaxies, and galaxy clusters. Moreover, black holes,
spherically symmetric objects with horizons, display near maximal
rotation as presented by Daly (2019). The idea that everything
revolves (mavta kviiovtar) naturally extends to the whole
universe, as hinted by recent claims of anisotropic Hubble expansion
in X-ray observations by Migkas et al. (2021). Furthermore, a
plausible syllogism is that the universe has near-maximal rotation,
motivated by cosmologies where the universe is the interior of
a black hole (Pathria 1972). There are many proposed solutions
to the Hubble Puzzle (e.g. Di Valentino et al. 2021b) and any
modification of the standard model expansion and growth history
has to consider the entire concordance model (e.g. Knox & Millea
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2020). Nevertheless, as we show later, the average rotation effect
has a similar functional form to that of dark photons (Fabbrichesi,
Gabrielli & Lanfranchi 2021; Aboubrahim et al. 2022), one of the
promising contenders (Cyr-Racine, Ge & Knox 2022) for solving the
Hubble Puzzle. Therefore, exploring how a rotating model would
affect the Hubble constant is worthwhile. In the next section, we
outline our methodology, Section 3 presents the results, while the
last section contains our conclusions.

2 METHODOLOGY

The expansion history of Newtonian cosmological simulations is in
precise agreement with Friedmann models (e.g. Racz et al. 2018).
Thus, we expect that the classical framework is sufficient for an
initial estimate of rotational effects on the Hubble constant; we leave
general relativistic considerations for future work.

Describing the evolution of the Hubble parameter in Newtonian
non-rotating and rotating universe models is still challenging. The
Sedov—von Neumann-Taylor blast wave models inspired us to
construct a non-relativistic dark fluid model. We apply a non-linear
partial differential equation system describing a non-viscous, non-
relativistic, and self-gravitating fluid with zero thermal conductivity
(Euler—Poisson system) and solve it with a time-dependent Sedov-
type self-similar ansatz. This analytic approach incorporates various
scaling mechanisms and describes different time decay scenarios
of Taylor (1950). The resulting dynamical model is consistent with
direct solutions from the Friedmann equations by Szigeti, Barna &
Barnafoldi (2023). We generalize our method of intermediate asymp-
totic analysis of the hydrodynamical description for the rotating
dark-fluid universe to investigate the effect of rotation on the Hubble-
constant anomaly. Our partial differential equations read as follows:

0,0 + div(pu) =0, (la)
0/(pu) + div(pu ® u) = —=VP(p) — pV® + pg*, (1b)
Vi® = 4nGp, (lc)

where p, u, P, ®, g are the fluid density, the fluid velocity vector, the
pressure, the gravitation potential and the external force, respectively.
This system has been investigated previously by Deng, Xiang & Yang
(2003) and Wong, Yeung & Yuen (2020). Goldreich & Weber (1980)
studied the homologously collapsing stellar cores with an adiabatic
exponent. Later Yuen (2009) gave analytically periodic solutions to
the 3-dimensional Euler—Poisson equations of gaseous stars with
negative cosmological constants, commonly used to describe a dark-
fluid system. In this model, dark matter and dark energy are two
different aspects of the same substance, the ‘dark fluid’ Farnes
(2018). As illustrated in Fig. 1, the self-similar solution using the
specific dark fluid equation of state (EOS) yields results consistent
with ACDM within the relevant time range.

Spherical symmetry: Initially, we assumed an ideal fluid with
spherical symmetry. Therefore, the multidimensional partial dif-
ferential equation system reduces to a one-dimensional, radius-
dependent ordinary system. We assume a linear EoS by Horedt
(2004), P(p) = wp with the effective w asymptotically tending to
—1 at to. The resulting dark-fluid models describe a mixture of
dark matter and dark energy in a non-rotating, expanding universe
(Szigeti et al. 2023), as long as we neglect dark matter fluctuations
(see extensive studies by Guo & Zhang 2007). The Euler—Poisson
equation in the spherical limit is the following:
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Figure 1. Time evolution (log—log scale) of the Hubble parameter for non-
rotating (analytical) and rotating (numerical) solutions at different w rotation
parameter values as of today. Small figures show the evolution (normal scale)
at the decoupling period fcvp and today 79 = froday-
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where the u(r, r) radial flow velocity. Equations (1a)—(1c) are reduced
to equations (2)—(4) due to the high similarity of the system as
demonstrated by Sedov (1959).

Cylindrical symmetry: If the rotation becomes significant enough,
assuming spherical symmetry is no longer adequate. We assumed that
the system is fully symmetric in the z direction. Thus, we extend our
previous analyses of spherical flows to the Euler—Poisson equation in
a cylindrical coordinate system.

3,0 + (@ pJu+@up+ -5 =0, ®)
|

ou+ (ud,)u =——0,P—0,0(r)+ g*, 6)
P

|

14 o, @) = 4np. %

rdr

Holden et al. (2009) studied self-similar solutions for the infinite
cylindrical collapse. Self-similar exponents similar to the spherical
case exist orthogonal to the z-axis. The u(r, t) again has a similar
meaning as defined in the spherical symmetric case.

We solved both sets of the equations by using the Sedov—Taylor
ansatz for the velocity field u(r, t), the density p(r, ), and the grav-
itational potential density field ®(r, ¢) in both system. For spherical
symmetry we applied the u(r, t) =t~ f(n), p(r,t) =t~V g(n), and
&(r, 1) = t~%h(n) notation, where f(n), g(n), and i (1) are the shape
functions of the reduced ordinary differential equation system with
the reduced variable, n = r/t#. The analogous shape functions for
cylindrical symmetry depend on the z coordinate: u(z, t) = t~*k(§),
oz, 1) =t7VI(&), and ®(z,t) =tV h(£), where £ = z/tP.

The real parameters «, 8, y, and § are the self-similar exponents
responsible for the solution’s temporal decay and spreading. The
numerical values of the exponents:« =0, 8 =1,y =2,and § = 0.
We assumed similarly to the spherical case for the cylindrical case
that the dynamical variables depend only on the n = r/t# variables.
We performed all calculations in physical (non-expanding) rotating
coordinates. The scale factor is the solution of the differential
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equation of a(t) = u(r(z), t) (for details, see technical Szigeti et al.
2023), i.e. the approximately uniform streaming of the particles
in physical coordinates represents the expansion of the universe.
We restricted to expanding solutions of equations (2)—(7) with
r o« a(t). Consequently, the Hubble parameter is expressed as usual
H(t)=al/a.

We solved the two systems under equivalent initial conditions in
1. We have seen that the two systems exhibit analogous behaviour in
regions where the intermediate-asymptotic behaviour yields a valid
solution. Thus, we will use the spherically symmetric limit in our
following analyses (see in Fig. 1). We assumed spherical symmetry
for our self-similar solutions of the Euler—Poisson system. This is
justifiable far from the boundary, and it is numerically more stable
Yuen (2009) and Peng & Lien (2012).

The same mathematical framework describes the Hubble parame-
ter for the non-rotating (¢* = 0) and the rotating model (g* # 0) by
setting initial conditions for the density, the velocity and the gravita-
tional field: u(n;c) = 0.5 and p(nc) = 0.01 1}1 /m3 in geometrized
units (G = ¢ = 1) at tcmp = tic = 380 kyr to determine the shape
functions.? Similarly, in case of cylindrical symmetric system the
k(&ic) = 0.5 and [(¢§) = 0.01. These initial conditions are consistent
with al. (2020), and, as we have shown, they reproduce the no-rotation
Friedman solutions. These initial conditions are consistent with the
Planck initial conditions at the decoupling period. We can add an
effective rotational term to equation (1b),

g" = 2ra*(1)sin(9), ®)

where the angular velocity is w(t) = (wo/fo)/t and 6 is the polar
angle. The effective centrifugal force is given in a non-inertial
rotating frame. The Coriolis force vanishes since the velocity from
expansion is always perpendicular to the rotation axis. Slow rotation
can still be consistent with present observations. A slight global
rotation still preserves a uniform CMB (Obukhov 2000; McEwen
et al. 2013; Saadeh et al. 2016). Soon, such a rotation might be
constrained by comparing the local inertial frame with that of quasars
in Szapudi (2021).

3 RESULTS AND DISCUSSION

We numerically calculate the evolution equations following Szigeti
et al. (2023), transforming the equations into the co-moving frame
and applying the constraints detailed in Section (5). Fig. 1 shows
the time dependence of the Hubble parameter for various angular
frequencies from recombination until the present. Different initial
rotations result in different Hy values today, but all solutions converge
to zero at the asymptotic limit, + — co. The evolution of the
Hubble parameter with initial rotation in w(¢) — 0 limit approaches
the non-rotating model. However, the limit is extrapolated due to
numerical instabilities for extremely small wy values today. As
a test, the black solid line displays the standard ACDM result,?
in perfect agreement with our formalism (the orange solid line
labelled non-rotating). The non-rotating self-similar solution is
consistent between fcyp and tmday.“ Fig. 2 displays the Hubble
constant (Hy) for the non-rotating (analytical) and various slowly

2In SI: ~10~kg/m? and h(nic) = 10712,

3The curve is evaluated by using the matter-dominated scale factor a(r) =
(3Hcemot/2)* @, with the value of Q2 = 0.3089.

4An appropriate choice of initial conditions for the scale factor in equa-
tion (25) in the work of Szigeti et al. (2023) can be reduced, due to
uz ~ 0(1074).
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Figure 2. The predicted Hp values from non-rotating (analytical) and
rotating (numerical) models evaluated at different w values today. The solid
curve interpolates the calculated values (markers). The continuing dashed
curve extrapolates the wy — 0 case. The lower dashed (Hcmp) (Aghanim et
al. 2020) and the upper dashed (Hsne) (Riess et al. 2022) lines correspond
to measurements with 2o uncertainty ranges. The shading approximates the
prohibited region exceeding maximal rotation.

Figure 3. Schematic view of the rotating (non-expanding) spherical and
cylindrical physical coordinate systems, where the outflow of the particles,
u(r(t), t) determines the expansion rate through a(t) = u(r(t), t); w refers to
the angular velocity. Even though u(r(¢), t) has a formal dependence on r,
our solutions produce an outflow uniform enough that it is well described by
a single expansion rate, a(t).

rotating (numerical) cases as a function of the rotational parameter
wp. The solid grey curve represents interpolation to the numerical
calculations (markers), while the dashed curve is an extrapolation
for wy — 0. Numerical extrapolation for the Hubble constant, H,
with wy = 0.002F)000 Gyr~! predicts a value today comparable to
the measured by Hgne. The present day wp rotation corresponds
to an initial, w(fcmp) = 3.543:3 Myr‘l, where Hcyp is measured
at tomp = 380 kyr. In Fig. 3, we illustrate the rotating universe. Its
angular rotation parameter, (), is approximately

lo(t)] = woa™*(1) )

from angular momentum conservation during matter domination,
consistently with equation (8). Next, we estimate the maximal rota-
tion of a dark-matter-filled universe and compare it with wy >~ 0.002
solving the Hubble tension. We require that the speeds remain below
the speed of light within the observable horizon, hence w < H,

during the universe’s entire history. Taking H(a) ~ a~>/?, we limit
w today as,
wo S Hoa'*(teg) ~ 0.002 Gyr™", (10)
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where f is the time of matter—radiation equality. Note that since at
earlier times H(a) ~ 1/a* and w(a) ~ 1/a, the above condition is
satisfactory for the entire evolution of the universe. Most remarkably,
the allowed maximal rotation is approximately the same as the
one required to solve the Hubble Puzzle. Our simplified argument
neglected any late effects of Dark Energy on angular momentum,
but there should be a reasonable estimate for our calculation. Our
results are consistent with Heckmann & Schiicking (1955, 1956a,
b) and Heckmann (1961), despite the differences in techniques and
their original motivation of removing the initial singularity at the
big bang. The required a minimal rotation, w ~ 0.03 Gyr™!, is an
order of magnitude larger than the maximal rotation avoiding closed
time-like loops within the horizon.

4 CONCLUSION

We analyse the time evolution of the Hubble parameter within the
Euler—Poisson model with a self-similar time-dependent Sedov-type
scaling for a linearized dark-fluid EOS. This model is consistent
with a Newton—-Friedmann cosmology when the angular momentum
is zero and facilitates the analysis of cosmologies with slow rotation.

We found that an angular speed near the maximal rotation
wy < 0.002 Gyr~! today predicts a Hubble constant consistent with
local measurements when starting from an expansion rate consistent
with the CMB. Extrapolation to the initial rotation of the early
universe gives the values of w(femp) & 3.54713 Myr—! for the time
of the origin of the CMB. These tantalizing initial results have the
caveat that we only focused on the Hubble constant. Further investi-
gations contrasting the rotating model against the entire intertwined
network of the concordance model observations, confirmation and
development of numerical models using rotating cosmological N-
body simulations’, and extension for a general relativistic treatment
are left for future work.
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