
MNRAS 538, 3038–3041 (2025) https://doi.org/10.1093/mnras/staf446 
Advance Access publication 2025 March 21 

Can rotation solve the Hubble Puzzle? 

Bal ́azs Endre Szigeti, 1 , 2 Istv ́an Szapudi , 3 ‹† Imre Ferenc Barna 

2 and Gergely G ́abor Barnaf ̈oldi 2 

1 Institute of Physics, E ̈otv ̈os Lor ́and University, 11/A P ́azm ́any P ́eter Stny, Budapest H-1117, Hungary 
2 HUN-REN Wigner Research Centre for Physics, P.O. Box 49, Budapest H-1525, Hungary 
3 Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, Hawaii 96822, USA 

Accepted 2025 March 4. Received 2025 March 4; in original form 2024 December 18 

A B S T R A C T 

The discrepancy between low and high redshift Hubble constant H 0 measurements is the highest significance tension within 

the concordance Lambda cold dark matter paradigm. If not due to unknown systematics, the Hubble Puzzle suggests a lack 

of understanding of the universe’s expansion history despite the otherwise spectacular success of the theory. We show that a 
G ̈odel inspired slowly rotating dark-fluid variant of the concordance model resolves this tension with an angular velocity today 

ω 0 � 2 × 10 

−3 Gyr −1 . Curiously, this is close to the maximal rotation, a v oiding closed time-like loops with a tangential velocity 

less than the speed of light at the horizon. 

Key words: distance scale – large-scale structure of Universe – cosmology: observations. 
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 I N T RO D U C T I O N  

he Hubble tension, the inconsistency of the late and early time
easurements of the universe’s expansion rate, emerges as the
ost significant chink in the otherwise shiny armour of the con-

ordance Lambda cold dark matter ( � CDM) model (see e.g. for
e vie ws by Verde, Treu & Riess 2019 ; Di Valentino et al. 2021a ;
amionkowski & Riess 2023 ). The discrepancy has been estab-

ished in a wide range of data sets and reached a 5 σ significance
etween cepheid-calibrated local supernovae and cosmic microwave
ackground (CMB) measurements (for counterpoint and calibration
ncertainties see Freedman et al. 2024 ). 
The CMB constraints at recombination are indirect: they assume

n expansion history governed by the � CDM model. The latest
nalyses of Planck CMB maps imply a Hubble constant H CMB =
7 . 4 ± 0 . 5 km s −1 Mpc −1 (Aghanim et al. 2020 ). 
Type Ia supernovae directly constrain the late-time (local) ex-

ansion rate. In a definitive study of Riess et al. ( 2022 ) used
he Hubble Space Telescope ( HST ) to observe Cepheid variables
n the host galaxies of 42 Type Ia supernovae (SNe Ia) crucial
or calibrating the local Hubble constant ( H SNe ). They utilized all
uitable SNe Ia disco v ered at redshift z ≤ 0 . 01 o v er the past four
ecades, significantly expanding the sample size with observations
rom o v er 1000 HST orbits. The y performed geometric calibration
f Cepheids using Gaia EDR3 parallaxes, masers in NGC 4258,
nd detached eclipsing binaries in the Large Magellanic Cloud.
heir baseline result is H SNe = 73 . 04 ± 1 . 07 km s −1 Mpc −1 , with
ystematic uncertainties, closely aligned with the median of various
nalysis variants. Notably, they found a significant 5 σ discrepancy
ith the Planck CMB analysis. 
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A burst of activity resulted, including alternative (tip of the red
iant branch) calibrations by Freedman et al. ( 2019 ), and extensions
r modifications of � CDM by Di Valentino, Melchiorri & Silk
 2020a ), such as massive neutrino or weakly interacting massive
articles (WIMP) models of Pan & Knox ( 2015 ), dark photon of
boubrahim, Klasen & Nath ( 2022 ), and an extended dark sector by
i Valentino et al. ( 2020b ). Next, we propose rotating space–time as
 no v el solution. G ̈odel G ̈odel ( 1947 ) introduced a rotating universe
ollowed by Heckmann & Sch ̈ucking ( 1955 , 1956a , b ) and Heckmann
 1961 ) later Silk ( 1966 ) and Hawking ( 1969 ). Visualization of the
 ̈odel’s universe is made by Buser, Kajari & Schleich ( 2013 ).
hile anisotropies in a variety of Bianchi models with large vector

erturbations corresponding to rotation are tightly constrained from
lanck CMB data by Saadeh et al. ( 2016 ), generalizations of the
 ̈odel model by Obukhov ( 2000 ) with global rotation are still viable

nd free of the pathologies of the original. This paper considers
 Newtonian approximation of these models in the context of the
ubble anomalies. 
All objects within our universe rotate, including planets, stars,

olar systems, galaxies, and galaxy clusters. Moreo v er, black holes,
pherically symmetric objects with horizons, display near maximal
otation as presented by Daly ( 2019 ). The idea that everything
evolves ( παντα κυκλoυται) 1 naturally extends to the whole
niverse, as hinted by recent claims of anisotropic Hubble expansion
n X-ray observations by Migkas et al. ( 2021 ). Furthermore, a
lausible syllogism is that the universe has near-maximal rotation,
oti v ated by cosmologies where the universe is the interior of
 black hole (Pathria 1972 ). There are many proposed solutions
o the Hubble Puzzle (e.g. Di Valentino et al. 2021b ) and any
odification of the standard model expansion and growth history

as to consider the entire concordance model (e.g. Knox & Millea
 Panta kykloutai paraphrasing the ancient Greek philosopher Heraclitus. 
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Figure 1. Time evolution (log–log scale) of the Hubble parameter for non- 
rotating (analytical) and rotating (numerical) solutions at different ω 0 rotation 
parameter values as of today. Small figures show the evolution (normal scale) 
at the decoupling period t CMB and today t 0 = t today . 
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020 ). Ne vertheless, as we sho w later, the average rotation ef fect
as a similar functional form to that of dark photons (Fabbrichesi, 
abrielli & Lanfranchi 2021 ; Aboubrahim et al. 2022 ), one of the
romising contenders (Cyr-Racine, Ge & Knox 2022 ) for solving the 
ubble Puzzle. Therefore, exploring how a rotating model would 

ffect the Hubble constant is worthwhile. In the next section, we 
utline our methodology, Section 3 presents the results, while the 
ast section contains our conclusions. 

 M E T H O D O L O G Y  

he expansion history of Newtonian cosmological simulations is in 
recise agreement with Friedmann models (e.g. R ́acz et al. 2018 ).
hus, we expect that the classical framework is sufficient for an 

nitial estimate of rotational effects on the Hubble constant; we leave 
eneral relativistic considerations for future work. 
Describing the evolution of the Hubble parameter in Newtonian 

on-rotating and rotating universe models is still challenging. The 
edov–von Neumann–Taylor blast wave models inspired us to 
onstruct a non-relativistic dark fluid model. We apply a non-linear 
artial differential equation system describing a non-viscous, non- 
elativistic, and self-gravitating fluid with zero thermal conductivity 
Euler–Poisson system) and solve it with a time-dependent Sedov- 
ype self-similar ansatz . This analytic approach incorporates various 
caling mechanisms and describes different time decay scenarios 
f Taylor ( 1950 ). The resulting dynamical model is consistent with
irect solutions from the Friedmann equations by Szigeti, Barna & 

arnaf ̈oldi ( 2023 ). We generalize our method of intermediate asymp-
otic analysis of the hydrodynamical description for the rotating 
ark-fluid universe to investigate the effect of rotation on the Hubble- 
onstant anomaly. Our partial differential equations read as follows: 

 t ρ + div ( ρu ) = 0 , (1a) 

 t ( ρu ) + div ( ρu ⊗ u ) = −∇P ( ρ) − ρ∇� + ρg ∗ , (1b) 

 

2 � = 4 πGρ, (1c) 

here ρ, u , P , �, g are the fluid density, the fluid v elocity v ector, the
ressure, the gravitation potential and the external force, respectively. 
his system has been investigated previously by Deng, Xiang & Yang 
 2003 ) and Wong, Yeung & Yuen ( 2020 ). Goldreich & Weber ( 1980 )
tudied the homologously collapsing stellar cores with an adiabatic 
xponent. Later Yuen ( 2009 ) gave analytically periodic solutions to 
he 3-dimensional Euler–Poisson equations of gaseous stars with 
e gativ e cosmological constants, commonly used to describe a dark- 
uid system. In this model, dark matter and dark energy are two
ifferent aspects of the same substance, the ‘dark fluid’ Farnes 
 2018 ). As illustrated in Fig. 1 , the self-similar solution using the
pecific dark fluid equation of state (EOS) yields results consistent 
ith � CDM within the rele v ant time range. 

Spherical symmetry: Initially, we assumed an ideal fluid with 
pherical symmetry. Therefore, the multidimensional partial dif- 
erential equation system reduces to a one-dimensional, radius- 
ependent ordinary system. We assume a linear EoS by Horedt 
 2004 ), P ( ρ) = wρ with the ef fecti ve w asymptotically tending to
1 at t ∞ 

. The resulting dark-fluid models describe a mixture of
ark matter and dark energy in a non-rotating, expanding universe 
Szigeti et al. 2023 ), as long as we neglect dark matter fluctuations
see e xtensiv e studies by Guo & Zhang 2007 ). The Euler–Poisson
quation in the spherical limit is the following: 
 t ρ + ( ∂ r ρ) u + ( ∂ r u ) ρ + 

2 u ρ

r 
= 0 , (2) 

 t u + ( u ∂ r ) u = − 1 

ρ
∂ r P − ∂ r � ( r) + g ∗ , (3) 

1 

r 2 

d 

d r 

(
r 2 ∂ r � 

) = 4 πρ , (4) 

here the u ( r, t) radial flow velocity. Equations ( 1a )–( 1c ) are reduced
o equations ( 2 )–( 4 ) due to the high similarity of the system as
emonstrated by Sedov ( 1959 ). 

Cylindrical symmetry: If the rotation becomes significant enough, 
ssuming spherical symmetry is no longer adequate. We assumed that 
he system is fully symmetric in the z direction. Thus, we extend our
revious analyses of spherical flows to the Euler–Poisson equation in 
 cylindrical coordinate system. 

 t ρ + ( ∂ r ρ) u + ( ∂ r u ) ρ + 

u ρ

r 
= 0 , (5) 

 t u + ( u ∂ r ) u = − 1 

ρ
∂ r P − ∂ r � ( r) + g ∗ , (6) 

1 

r 

d 

d r 
( r ∂ r � ) = 4 πρ . (7) 

olden et al. ( 2009 ) studied self-similar solutions for the infinite
ylindrical collapse. Self-similar exponents similar to the spherical 
ase exist orthogonal to the z-axis. The u ( r, t) again has a similar
eaning as defined in the spherical symmetric case. 

We solved both sets of the equations by using the Sedov–Taylor
nsatz for the velocity field u ( r, t), the density ρ( r, t), and the grav-
tational potential density field � ( r, t) in both system. For spherical
ymmetry we applied the u ( r, t) = t −αf ( η), ρ( r, t) = t −γ g( η), and
 ( r, t) = t −δh ( η) notation, where f ( η), g( η), and h ( η) are the shape

unctions of the reduced ordinary differential equation system with 
he reduced variable, η = r/t β . The analogous shape functions for
ylindrical symmetry depend on the z coordinate: u ( z, t) = t −αk( ξ ),
( z, t) = t −γ l( ξ ), and � ( z, t) = t −γ h ( ξ ), where ξ = z/t β . 
The real parameters α, β, γ , and δ are the self-similar exponents

esponsible for the solution’s temporal decay and spreading. The 
umerical values of the exponents: α = 0, β = 1, γ = 2, and δ = 0.
e assumed similarly to the spherical case for the cylindrical case

hat the dynamical variables depend only on the η = r/t β variables.
e performed all calculations in physical (non-expanding) rotating 

oordinates. The scale factor is the solution of the differential 
MNRAS 538, 3038–3041 (2025) 
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Figure 2. The predicted H 0 values from non-rotating (analytical) and 
rotating (numerical) models e v aluated at dif ferent ω 0 v alues today. The solid 
curve interpolates the calculated values (markers). The continuing dashed 
curv e e xtrapolates the ω 0 → 0 case. The lower dashed ( H CMB ) (Aghanim et 
al. 2020 ) and the upper dashed ( H SNe ) (Riess et al. 2022 ) lines correspond 
to measurements with 2 σ uncertainty ranges. The shading approximates the 
prohibited region exceeding maximal rotation. 

Figure 3. Schematic view of the rotating (non-expanding) spherical and 
cylindrical physical coordinate systems, where the outflow of the particles, 
u ( r( t ) , t ) determines the expansion rate through ̇a ( t) = u ( r( t ) , t ); ω refers to 
the angular v elocity. Ev en though u ( r( t ) , t ) has a formal dependence on r , 
our solutions produce an outflow uniform enough that it is well described by 
a single expansion rate, a( t). 
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quation of ȧ ( t) = u ( r( t) , t) (for details, see technical Szigeti et al.
023 ), i.e. the approximately uniform streaming of the particles
n physical coordinates represents the expansion of the universe.

e restricted to expanding solutions of equations ( 2 )–( 7 ) with
 ∝ a( t). Consequently, the Hubble parameter is expressed as usual
 ( t) = ȧ /a. 
We solved the two systems under equi v alent initial conditions in

. We have seen that the two systems exhibit analogous behaviour in
egions where the intermediate-asymptotic behaviour yields a valid
olution. Thus, we will use the spherically symmetric limit in our
ollowing analyses (see in Fig. 1 ). We assumed spherical symmetry
or our self-similar solutions of the Euler–Poisson system. This is
ustifiable far from the boundary, and it is numerically more stable
uen ( 2009 ) and Peng & Lien ( 2012 ). 
The same mathematical framework describes the Hubble parame-

er for the non-rotating ( g ∗ = 0) and the rotating model ( g ∗ 	= 0) by
etting initial conditions for the density, the velocity and the gravita-
ional field: u ( ηIC ) = 0 . 5 and ρ( ηIC ) = 0 . 01 l −1 

P / m 

3 in geometrized
nits ( G = c = 1) at t CMB = t IC = 380 kyr to determine the shape
unctions. 2 Similarly, in case of cylindrical symmetric system the
( ξIC ) = 0 . 5 and l( ξ ) = 0 . 01. These initial conditions are consistent
ith al. ( 2020 ), and, as we hav e shown, the y reproduce the no-rotation
riedman solutions. These initial conditions are consistent with the
lanck initial conditions at the decoupling period. We can add an
f fecti ve rotational term to equation ( 1b ), 

 

∗ = 2 rω 

2 ( t) sin ( θ ) , (8) 

here the angular velocity is ω( t) = ( ω 0 /t 0 ) /t and θ is the polar
ngle. The ef fecti ve centrifugal force is given in a non-inertial
otating frame. The Coriolis force vanishes since the velocity from
xpansion is al w ays perpendicular to the rotation axis. Slow rotation
an still be consistent with present observations. A slight global
otation still preserves a uniform CMB (Obukhov 2000 ; McEwen
t al. 2013 ; Saadeh et al. 2016 ). Soon, such a rotation might be
onstrained by comparing the local inertial frame with that of quasars
n Szapudi ( 2021 ). 

 RESU LTS  A N D  DISCUSSION  

e numerically calculate the evolution equations following Szigeti
t al. ( 2023 ), transforming the equations into the co-moving frame
nd applying the constraints detailed in Section ( 5 ). Fig. 1 shows
he time dependence of the Hubble parameter for various angular
requencies from recombination until the present. Different initial
otations result in dif ferent H 0 v alues today, but all solutions converge
o zero at the asymptotic limit, t → ∞ . The evolution of the
ubble parameter with initial rotation in ω( t) → 0 limit approaches

he non-rotating model. Ho we ver, the limit is extrapolated due to
umerical instabilities for extremely small ω 0 values today. As
 test, the black solid line displays the standard � CDM result, 3 

n perfect agreement with our formalism (the orange solid line
abelled non-rotating). The non-rotating self-similar solution is
onsistent between t CMB and t today . 4 Fig. 2 displays the Hubble
onstant ( H 0 ) for the non-rotating (analytical) and various slowly
NRAS 538, 3038–3041 (2025) 

 In SI: ∼10 −15 kg / m 

3 and h ( ηIC ) = 10 −12 . 
 The curve is e v aluated by using the matter-dominated scale factor a( t) = 

3 H CBM;0 t/ 2 
)2 / 3 

�
1 / 3 
m 

, with the value of �m 

= 0 . 3089. 
 An appropriate choice of initial conditions for the scale factor in equa- 
ion (25) in the work of Szigeti et al. ( 2023 ) can be reduced, due to 
 2 ∼ O(10 −4 ). 
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otating (numerical) cases as a function of the rotational parameter
 0 . The solid grey curve represents interpolation to the numerical
alculations (markers), while the dashed curve is an extrapolation
or ω 0 → 0. Numerical extrapolation for the Hubble constant, H 0 

ith ω 0 = 0 . 002 + 0 . 001 
−0 . 0009 Gyr −1 predicts a value today comparable to

he measured by H SNe . The present day ω 0 rotation corresponds
o an initial, ω( t CMB ) = 3 . 54 + 1 . 3 

−1 . 2 Myr −1 , where H CMB is measured
t t CMB = 380 kyr. In Fig. 3 , we illustrate the rotating universe. Its
ngular rotation parameter, ω ( t), is approximately 

 ω ( t) | = ω 0 a 
−2 ( t) (9) 

rom angular momentum conservation during matter domination,
onsistently with equation ( 8 ). Next, we estimate the maximal rota-
ion of a dark-matter-filled universe and compare it with ω 0 � 0 . 002
olving the Hubble tension. We require that the speeds remain below
he speed of light within the observable horizon, hence ω � H ,
uring the universe’s entire history. Taking H ( a) ∼ a −3 / 2 , we limit
 0 today as, 

 0 � H 0 a 
1 / 2 ( t eq ) � 0 . 002 Gyr −1 , (10) 
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here t eq is the time of matter–radiation equality. Note that since at
arlier times H ( a) � 1 /a 2 and ω( a) � 1 /a, the abo v e condition is
atisfactory for the entire evolution of the universe. Most remarkably, 
he allowed maximal rotation is approximately the same as the 
ne r equir ed to solve the Hubble Puzzle. Our simplified argument
e glected an y late effects of Dark Energy on angular momentum,
ut there should be a reasonable estimate for our calculation. Our 
esults are consistent with Heckmann & Sch ̈ucking ( 1955 , 1956a ,
 ) and Heckmann ( 1961 ), despite the differences in techniques and
heir original moti v ation of removing the initial singularity at the
ig bang. The required a minimal rotation, ω � 0 . 03 Gyr −1 , is an
rder of magnitude larger than the maximal rotation a v oiding closed
ime-like loops within the horizon. 

 C O N C L U S I O N  

e analyse the time evolution of the Hubble parameter within the 
uler–Poisson model with a self-similar time-dependent Sedov-type 
caling for a linearized dark-fluid EOS. This model is consistent 
ith a Newton–Friedmann cosmology when the angular momentum 

s zero and facilitates the analysis of cosmologies with slow rotation. 
We found that an angular speed near the maximal rotation 
 0 � 0 . 002 Gyr −1 today predicts a Hubble constant consistent with

ocal measurements when starting from an expansion rate consistent 
ith the CMB. Extrapolation to the initial rotation of the early 
ni verse gi ves the values of ω( t CMB ) ≈ 3 . 54 + 1 . 3 

−1 . 2 Myr −1 for the time
f the origin of the CMB. These tantalizing initial results have the
aveat that we only focused on the Hubble constant. Further investi- 
ations contrasting the rotating model against the entire intertwined 
etwork of the concordance model observations, confirmation and 
evelopment of numerical models using rotating cosmological N - 
ody simulations 5 , and extension for a general relativistic treatment 
re left for future work. 
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