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Abstract. This work presents an analytic angular differential cross section formula for the electromagnetic
radiation field-assisted electron scattering on impurities in semiconductors. These impurities are approximated
with various model potentials. The scattered electrons are described with the well-known Volkov wave function,
which has been used to describe strong laser field matter interaction for more than half a century, which exactly
describes the interaction of the electron with the external oscillating field. These calculations show that the
electron conductance in a semiconductor could be enhanced by an order of magnitude if an infrared
electromagnetic field is present with 1011 W/cm2< I< 1013 W/cm2 intensity.
1 Introduction

The key issue in understanding the electric conduction
phenomena in semiconductors is the study of the
corresponding scattering processes of electrons by impuri-
ties. One possible way to evaluate the rate of scattering
transition probabilities is to solve the one-electron time-
dependent Schrödinger equation up to the first order (Born
approximation). Numerous models exist to approximate
the electron-impurity interaction via a central potential
of U(r) the standard description can be found in textbooks
[1–4]. This study extends this description to the case where
an electromagnetic (EM) field is simultaneously present in
addition to impurity induced scattering.

The main motivation for this work comes from the field
of laser–matter interactions. In this topic the non-linear
response of atoms, molecules and plasmas can be
investigated both theoretically and experimentally [5].
These result in many phenomena including high harmonic
generations or plasma-based laser-electron acceleration.
The original theory of potential scattering in external EM
fields was developed about half a century ago and can be
found in various papers of [6–13]. Numerous studies on
laser-assisted electron collisions on atoms are also available
[14]. Kanya andYamanouchi generalized the Kroll-Watson
formula [15] for a single-cycle infrared pulse and applied it
to time-dependent electron diffraction. There are only two
studies where heavy particles e.g., protons, are scattered by
nuclei in strong electromagnetic fields [16,17]. Similar
theoretical studies of solid states or semiconductors in such
strong electromagnetic fields are rare, and recently, it has
become possible to investigate the band-gap dynamics [18]
arna.imre@wigner.mta.hu

20101
and the strong-field resonant dynamics [19] of semi-
conductors in the attosecond (as) time scale.

This paper contains a self-contained overview of electron
conduction calculations in a doped semiconductor; the
theory of laser-assisted potential scattering; and the
numerical calculation of the Lindhard dielectric function �
all of which are essential tools for the presented theoretical
description.

Finally, numerical calculations were performed for a
model potential in infrared electromagnetic fields with
intensities 1011W/cm2< I < 1013 W/cm2. The photon
energy of such fields are below 1 eV which is comparable
to some semiconductor bandgaps. Itwas shownbyKibis [20]
that thebackscatteringof conductionelectrons is suppressed
bystronghigh-frequencyelectromagneticfieldandthiseffect
does not depend on the shape of the scattering potential.
Later,Morinaetal. [21] calculatedthetransportpropertiesof
a two-dimensional electron gas which interacts with light.
This can be considered as the precursor of this study.

This investigation shows that electrical conductivity of
doped semiconductors can be changed by more than an
order of magnitude in the presence of a strong infrared
radiation field. This may open the way to a new forms of
electronic gating. These kind of coherent infrared radia-
tions will be soon available e.g., at the ELI-ALPS Research
institute in Szeged, Hungary [22].
2 Theory

2.1 Electron scattering on impurities
in semiconductors

A short overview of the derivation, using first quantum
mechanical and statistical physical principles, of the
-p1
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Fig. 1. The geometry of the scattering process. The impurity
atom is located in the center of the circle, pi and pf are the
initial and final scattered electron momenta, u is the electron
scattering angle, the EM pulse propagates parallel to the x-axis
and is linearly polarized in the z direction. The x angle is needed
for calculating the EM-electron momentum transfer.
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electron conductivity without the laser field is now
presented. A much detailed derivation can be found in
many theoretical solid state physics textbooks e.g., [1–4].

Free electrons are considered in three dimensions with
the initial and final states defined as plane waves with the
following form

fiðrÞ ¼
A

ð2p�hÞ3=2
exp

i

�h
pi⋅r

� �
;

ffðrÞ ¼
A

ð2p�hÞ3=2
exp

i

�h
pf ⋅r

� �
:

ð1Þ

The considered perturbation is simply due to the extra
potential energy of the impurity U(r) and therefore the
transition rates can be evaluated as

Ufi ¼
Z

ffðrÞ�UðrÞfiðrÞdr ¼ 1

A

Z
UðrÞe�iq⋅rd2r: ð2Þ

This is the two-dimensional Fourier transform of the
scattering potential and q=pi�pf is the momentum
transfer of the scattering electron, where pi and pf stand
for initial and final electron momenta, respectively. The
differential Born cross section of the corresponding

potential is given by dsB

dV ¼ m
2p�h2

� �2
jUðqÞj2. The well-known

total scattering cross section sT for the elastic process can
be calculated from the differential scattering cross section
viaanangular integration,wherethebackscatteredelectrons
gives significant contributions therefore a [1� cos(u)] factor
appears

sT ¼ 2p

Z p

0

dsBðuÞ
dV

� �
½1� cosðuÞ�sinðuÞdu: ð3Þ

The relaxation time or the t single-particle life time
against impurity scattering is defined in terms of the total
scattering cross section by multiplying with the number of
impurities nimp

1=t ¼ sTnimp: ð4Þ
Finally, the electron mobility and the conductivity are

defined by

m= et/me, G= emne, (5)

where e, me, ne are the elementary charge, effective mass
and the number of the scattered electrons, respectively.
Further technical details including references and an
overview over various additional methods e.g., the
derivation of equation (3) from Boltzmann equations,
are given in the review of Chattopadhyay [23]. This model
is only valid for “dilute” semiconductors where the
concentration of the doping atoms is below a given
threshold and thus, the effects of multiple scattering can
be neglected. For silicon this value lies around 1015 cm�3,
the degeneracy level is at 1018 cm�3.
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2.2 Electromagnetic field-assisted potential scattering

The following section contains a detailed summarization
of the non-relativistic quantum mechanical description
of this system. The coherent infrared field is treated semi-
classically via the minimal coupling. The IR beam is
taken to be linearly polarized and the dipole approxima-
tion is used. The non-relativistic description in dipole
approximation is only valid if the dimensionless intensity
parameter (or the normalized vector potential)

a0 ¼ 8:55 � 10�10
ffiffiffiffiffiffiffiffiffiffiffiffi
Ið W

cm2Þ
q

lðmmÞ of the external field is
less than unity. A laser wavelength of 3 mm correlates to a
critical intensity of I =1.52 ⋅ 1017 W/cm2, however, much
smaller laser intensities will be assumed and a moderate
electron kinetic energy below 1 eV will be considered.

To avoid the ionization of the lattice atoms, silicon will
be considered to have a band gap of 1.12 eV and a 3 mm
infrared (IR) electromagnetic field has a photon energy of
0.41 eV. Therefore, the ionization of the highest energy
bound valence electron would require a three photon
absorption process in the perturbative regime. The
probability of absorbing N photons depends on the laser
intensity, I, as IN. The characteristic field strengths in an
atom are rather high and correspond to a laser intensity
of 3.5 ⋅ 1016 W/cm2. In this work, it is considered that
the intensity of the IR field is much lower than the
characteristic atomic intensitites.

The following Schrödinger equation has to be solved in
order to describe the non-relativistic scattering process of
an electron on an impurity by an external EM field

1

2m
p̂ � e

c
A

� �2
þ UðrÞ

� �
C ¼ i�h

∂C
∂t

; ð6Þ

where p̂ ¼ �i�h∂=∂r is the momentum operator of the
electron and U(r) represents the scattering potential of the
impurity atom, A(t)=A0ecos(vt) is the vector potential
-p2
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of the radiation field with unit polarization vector of e.
Figure 1 shows the geometry of the scattering process.
Without thescatteringpotentialU(r) theparticular solution
of (6) can be immediately written as non-relativistic Volkov
states fp(r, t) which analytically incorporate the interaction
with the EM field,

The Volkov states are modulated de Broglie waves;
parametrized by momenta p and form an orthonormal and
complete set

fpðr; tÞ¼
1

ð2p�hÞ3=2
exp

i

�h
p⋅r�

Z t

t0

dt0
1

2m
p� e

c
Aðt0Þ

� �2" #
;

ð7ÞZ
d3rf�

pðr; tÞfp0 ðr; tÞ ¼ d3ðp� p0Þ;Z
d3pfpðr; tÞf�

pðr0; tÞ ¼ d3ðr� r0Þ: ð8Þ

To solve the original problem of equation (6) the exact
wave function is written as a superposition of an incoming
Volkov state and a correction term, which vanishes at
the beginning of the interaction (in the t0!�∞ limit). The
correction term can also be expressed in terms of the
Volkov states as these form a complete set (see Eq. (8)),

Cðr; tÞ¼ fpi
ðr; tÞ þ

Z
d3papðtÞfpðr; tÞ; apðt0Þ ¼ 0: ð9Þ

It is clear that the unknown expansion coefficients ap(t)
describe the non-trivial transition symbolized as pi!p,
from a Volkov state of momentum pi to another Volkov
state with momentum p. The projecton of some Volkov
state fp(t) to C results inZ

d3rf�
pðr; tÞCðr; tÞ ¼ dðp� piÞ þ apðtÞ: ð10Þ

The insertion of C of equation (9) into the complete
Schrödinger equation (6) results in the following integro-
differential equation for the coefficients ap(t),

i�h _ap0 ðtÞ ¼
Z

d3rf�
p0 ðr; t0ÞUðrÞfpi

ðr; t0Þ

þ
Z

d3papðtÞ
Z

d3rf�
p0 ðr; t0ÞUðrÞfpðr; t0Þ; ð11Þ

where the scalar product was takenwith fp0 ðtÞ on both sides
of the resulting equation and the orthogonality relation
of the Volkov sates was taken after all (see the first
Eq. of (8)). The initial condition ap(t0)=0, already shown in
(8), means that the formal solution of (6) can be written as

ap0 ðtÞ ¼ � i

�h

Z t

t0

dt0
Z

d3rf�
p0 ðr; t0ÞUðrÞfpi

ðr; t0Þ

� i

�h

Z t

t0

dt0
Z

d3papðt0Þ
Z

d3rf�
p0 ðr; t0ÞUðrÞfpðr; t0Þ:

ð12Þ
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In the spirit of the iteration procedure used in scattering
theory, the (k+1)th iterate of ap(t) is expresses by the kth
iterate on the right-hand side in (12) as

aðkþ1Þ
p ðtÞ ¼ � i

�h

Z t

t0

dt0
Z

d3rf�
p0 ðr; t0ÞUðrÞfpi

ðr; t0Þ

� i

�h

Z t

t0

dt0
Z

d3paðkÞp ðt0Þ
Z

d3rf�
p0 ðr; t0ÞUðrÞfpðr; t0Þ:

ð13Þ
In the first Born approximation, where the transition

amplitude is linear in the scattering potential U(r), the
transition amplitude has the form

Tfi ¼ lim
t!∞

lim
t0!�∞

að1Þpf
ðtÞ

¼ � i

�h

Z ∞

�∞
dt0
Z

d3rf�
pf
ðr; t0ÞUðrÞfpi

ðr; t0Þ:
ð14Þ

The A2 term drops out from the transition matrix
element (14), because it represents a uniform time-
dependent phase. By taking the explicit form of the
Volkov states (7)with thevectorpotentialA(t)=eA0cos(vt)
means that Tfi becomes

Tfi ¼
X∞

n¼�∞
T

ðnÞ
fi ;

T
ðnÞ
fi ¼ �2pid

p2f � p2i
2m

þ n�hv

 !
JnðzÞ UðqÞ

ð2p�hÞ3 :
ð15Þ

Before time integration, the exponential expression can
be expanded into a Fourier series with the help of the
Jacobi-Anger formula [24]. This results in the next formula
including the Bessel functions of the first kind

eizsinðvtÞ ¼
X∞

n¼�∞
JnðzÞeinvt: ð16Þ

The U(q) is the Fourier transform of the scattering
potential with the momentum transfer of q≡pi�pf
where pi is the initial and pf is the final electron
momenta, respectively, and its absolute value is

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2i þ p2f � 2pipfcosðupi;pf Þ

q
. In the case where electrons

have 0.1–1 eV energy in the n=0 channel (which means
elastic scattering), the following approximation is valid
q≈ 2pi|sin(u/2)|.

In general, the Dirac delta function describes photon
absorptions (n< 0) and emissions (n> 0). Jn(z) is the
Bessel function of the first kind with the argument
depending on the parameters of the laser field, the intensity
and the frequency z≡ 2a0qsinðu=2ÞcosðxÞ

�hv=c where a0, q, x are the
dimensionless intensity parameter, the momentum trans-
fer of the electron, and the angle between the momentum
transfer and the polarization direction of the EM field,
respectively.
-p3
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The general differential cross section formula for the
laser-assisted collision with simultaneous nth-order photon
absorption and stimulated emission processes are

dsðnÞ

dV
¼ pf

pi
J2
nðzÞ

dsB

dV
: ð17Þ

The dsB

dV ¼ m
2p�h2

� �2
jUðqÞj2 is the usual Born cross section

for the scattering on the potential U(r) alone, without the
external EM field. The expression equation (17) was cal-
culated by several authors using different methods [6–13]
and if the Born cross section is exactly known, equation
(17) can be substituted in equation (3) and the single-
particle lifetime can be easily calculated.

2.6 Scattering model potentials in semiconductors

Different kinds of analytic model potentials are available to
model the electron scattering on impurities in a semicon-
ductor and four are presented within this paper. The
simplest model is the “box potential” which is well-known
from quantum mechanics textbooks. It is capable to mimic
the two-dimensional impurity scattering provided by a
cylindrical-barrier of radius a. It can be used to describe a
neutral impurity such as an Aluminum atom that has
diffused from a barrier into a GaAs well [3].

Mathematically,U(r)=U0 if r� a andU(r)= 0 if r> a,
whereU0 is the depth of the potential well in eV and a is the
radius in nm. The two dimensional Fourier transformation
of the potential yields the first-order Bessel function of the
form of UðqÞ ¼ pa2U0

J1ð2qaÞ
qa . The infinite range Coulomb

potential has an infinite total scattering cross section in the
first-order Born approximation. However, considering a
maximal limiting impact parameter due to electron
screening in semiconductors the isotropic elastic cross
section can be evaluated (3) and has been done by Conwell
andWeisskopf [25]. This is the Brooks-Herring (BH) model
[26–28] and it is applicable to describe electron scattering
on an ionized impurity atom

UðrÞ ¼ ee�r=lD

4pe0err
; ð18Þ

where lD ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
e0erkBT
q2n0

q
is the Debye screening length, e0 and

er are the vacuum permittivity and the dielectric constant
of the present media. To avoid confusion e is used for the
charge of the ionized impurity atom instead of q which is
fixed for the momentum transfer of the electrons. The
Debye screening is just the solution of the linearized
Poisson-Boltzmann theory and is the simplest way to treat
the problem. More general theory that describe screening
would be Landau’s approach known as Fermi liquid theory
where the electron–electron interaction has been taken into
account quantitatively [29].

The Fourier transform of this potential is as follows [2],

UðqÞ ¼ e2l2D
e0erð1þ q2l2DÞ

: ð19Þ
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More realistic screening lengths can be calculated with
the Friedel sum and the phase shift analysis of the
potential [23]. There are numerous models available from
the original BH interaction which include various
additional effects e.g., dielectric of Thomas-Fermi screen-
ing, electron–electron interaction [23]. The original BH
can also be calculated from a realistic electron concentra-
tion of the ionized impurity containing the Fermi-Dirac
integral [30].

There are two additional potentials which are widely
used to model impurities in semiconductors. The first has
been developed to investigate the electron charged
dislocation scattering in an impure electron gas. The
derivation of the formula can be found in [1]. The radial

potential has the form of UðrÞ ¼ e
2perc

K0
r
lD

� �
where K0 is

the zeroth-order modified Hankel function, e, er, 1/c, lD
are the elementary charge, dielectric constant, linear
charge density and the Debye screening length,
respectively. This dislocation is a two-dimensional inter-
action and has a cylindrical symmetry. The Fourier
transform of the potential is UðqÞ ¼ el2

ercð1þq2l2Þ : Jena and
Mishra [31] used this interaction to evaluate the quantum
and classical scattering times due to charged dislocation in
an impure electron gas. Half a century earlier, Pödör [32]
gave an analytic formula for relaxation time and
investigated the electron mobility in plastically deformed
germanium. These are remarkably similar to the three-
dimensional BH potential.

The last most advanced model is dipole scattering
in polarization-induced two-dimensional electron gas.
This considers the electrical field of a dipole above a plane
[33]. In the following, the BH model will be analyzed in
details.
2.7 Generalized field-assisted potential scattering
in a media

The previously outlined laser-assisted potential scattering
model with the listed potentials is not sufficient for a
realistic model to evaluate electron conduction in a solid at
finite temperature. Therefore, two additional improve-
ments are considered.

Firstly, the scattering electrons now move in a media
(doped semiconductor) instead of a vacuum, therefore the
effect of the media, the dielectric response functions, has to
be taken into account. Equation (17) is modified and
generalized and the numerically evaluated Lindhard
dielectric function [34] is included in the scattering
potential. It can be shown, using quantum Vlasov theory,
in the first Born approximation using the Wigner
representation of the density matrix of the electron [35]
that the total interaction potential in the frequency domain
is equivalent to the Fourier transform of the interaction
potential in vacuum multiplied by the Lindhard dielectric
function. Therefore, the final differential cross section
formula is

dsðnÞ

dV
¼ pf

p1

m

2p�h2

� �2

J2
nðzÞjUðq; er½k;v�Þj2: ð20Þ
-p4
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The dielectric function now depends on the angular
frequency of the external applied field, the coherent IR
field, and the wave vector of the scattering electron. The
correct form of the interaction for the BH model is

Uðq; k;vÞ ¼ e2l2D
e0erðk;vÞð1þ q2l2DÞ

; ð21Þ

where e in the numerator is the charge of the impurity. The
next technical step in themodel is to calculate the Lindhard
dielectric function. For a fermion gas with electronic
density n at a finite temperature, T, the form can be
expressed in terms of real and imaginary part [36]

erðk;vÞ ¼ erRðk;vÞ þ ierI ðk;vÞ: ð22Þ
At finite temperatures, the dielectric function contains

singular integrals of the Fermi function where the
singularities can be eliminated with various mathematical
transformations. According to [37], the following expres-
sions have to be evaluated:

erRðk;vÞ ¼ 1þ 1

4pkFk3
½gtðlþ ¼ uþ kÞ � gtðl� ¼ u� kÞ�;

ð23Þ
and

erI ðk;vÞ ¼
t

8kFk3
ln

1þ expðaðtÞ � l2�Þ=t
1þ expðaðtÞ � l2þÞ=t

" #
: ð24Þ

Here the Fermi wave number is kF= [3p2n]1/3, the
reduced temperature is t=T/TF, the Fermi energy is
EF ¼ k2F=2 ¼ kBTF (where the electron mass and �h were
set to unity). The reduced variables u and k introduced by
Lindhard are defined as

u ¼ v

vFk
; k ¼ k

2kF
; ð25Þ

where v is the angular frequency of the IR field and k is the
wave vector or the scattered electron in the model. First,
the reduced chemical potential a(t)=m/Ef has to be
evaluated at a finite temperature from the integral ofZ þ∞

0

x2 1

1þ expðx2�aðtÞ
t Þ

dx ¼ 1

3
: ð26Þ

After determining the chemical potential, the function
gt(l) can be calculated via an integral where the usual
singularity is successfully eliminated by a proper mathe-
matical transformation

gtðlÞ ¼ l2
Z ∞

0

�2A
XexpðAX2 �BÞ

1þ expðAX2 �BÞ2
" #

� �X þ 1�X2

2
lnjX þ 1

X � 1
j

� �
dX:

ð27Þ
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where A= l/t and B=a(t)/t. Exhaustive technical details
can be found in the original paper [37].

At this point, the static e(q, v!0) and the long
wavelength limit e(q!0, v) of the Lindhard function can
be reduced to analytic formulas [29,34]. For the static limit
eðq; 0Þ ¼ 1þ k2

q2, the 3D screening wave number, k, (3D

inverse screening length) is defined as k ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
4pe2

e
∂n
∂m

q
where n,

m, e are the particle density N/L3, the chemical potential
and the charge, respectively. However, in the long

wavelength limit in 3D, eð0;vÞ ¼ 1� v2
plasma

v2 where the
angular frequency of the plasma reads v2

plasma ¼ 4pe2N
eL3m

.
At a finite temperature in a realistic semiconductor, the

scattering electrons are not monoenergetic and thus an
averaging over the distribution has to be evaluated

⟨G⟩ ¼ e2ne

m�nimp⟨sT ⟩
: ð28Þ

This means that there is an additional numerical
integration of the total cross section multiplied by the
Fermi-Dirac distribution function f(E) (for non-degenerate
electrons) times the density of states g(E) according to
Shang [2],

⟨sT ⟩ ¼
R∞
0 sT ðEÞfðEÞgðEÞdER∞

0 fðEÞgðEÞdE ð29Þ

with EðkÞ ¼ �h2k2

2m being the energy of the electrons. In this
representation, the integration can be traced back to an
integral over k. The numerical value of the density of state
function is well-known for one-, two- or three-dimensional
solids. A two-dimensional system gðEÞ2D ¼ me

2p�h2 is inde-
pendent of the electron energy. In three dimensions,

considering BH potential, gðEÞ3D ¼ m
3=2
effiffi

2
p

p2�h2

ffiffiffiffi
E

p
. The

charged dislocation potential mentioned above corre-
sponds to a two dimensional model.

If the number of donors are enhanced, the Fermi level
will rise towards the conduction band. At some stage the
approximations will no longer hold because a larger part of
the Fermi Dirac function overlaps with the band edge. The
approximations break down when the Fermi level is closer
than 3kBT to one of the band edges. This is approximately
75 meV at room temperature. In this case, the semicon-
ductor becomes degenerate and the Boltzmann distribu-
tion function has to be applied, instead of the Fermi-Dirac
function. According to our best knowledge these two
completions were never added to the general laser-assisted
potential scattering to model electron scattering in realistic
solid states.

In practical calculations, the upper limit of the integral
can be cut at the Fermi energy which is about 1 eV at room
temperature for semiconductors. Numerical values
obtained from (29) with or without external electromag-
netic field can be directly compared in the future to
experimental data.
-p5



Fig. 2. The averaged cross section ⟨sT⟩ (Eq. (29)) as the function
of the field intensity for a l=3mm laser wavelength at room
temperature. The upper curve corresponds to the frequency-
dependent Lindhard dielectric function. The lower curve
corresponds to the er=35 dielectric constant case.

Fig. 3. The intensity dependence of the ratio of the twomodels at
l=3 mm.

Fig. 4. The averaged cross section ⟨sT⟩ (Eq. (29)) as the function
of the wavelengths for I=1012 W/cm2

field intensity at room
temperature. The upper curve corresponds to the frequency-
dependent Lindhard dielectric function. The lower curve
corresponds to the er=35 dielectric constant case.
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3 Results

Doped silicon has been considered as a semiconductor with
a Fermi energy of 1 eV and the external EM field has been
considered as a coherent IR field with wavelengths in the
l=1–5 mm regime. According to the ELI-ALPS’ white
book [38], a l=3.2 mm wavelength mid-IR laser will
operate, which will be similar to the one presented in [39].
An intensity range of 1012W/cm2< I< 1013W/cm2 is used
to avoid laser damage of the silicon sample. Stuart et al. [40]
and Tien et al. [41] published experimental results for
radiation damage of silica for l=1 mm wavelength laser
pulses with different pulse length and found that the
threshold lies at 1013 W/cm2 for 100 fs pulse duration.
Unfortunately, no experimental measurement values for
l=3mm could be found. However, there is an empirical
power law dependence for damage threshold for silica glass
at various wavelengths Ith(l)= 1.55 � l0.43 � Ith, where
the wavelength and the intensities should be given in mm
and W/cm2 units, respectively [42]. This means that the
threshold at 3 mm should be 2.5� 1013 W/cm2.

According to [23], electron mobility versus electron
concentration measurement were presented and compared
within the confines of BH model on a logarithmic-linear
scale below 200K giving discrepancy of a factor of 2�5
which validates the original electron conduction model.
These results encouraged to develop the model mentioned
above. The lowest level of the kinetic energy of the
electrons considered was thermal noise E= kBT which is
0.025 eV at room temperature. The parameters of the BH
potential are the following: the screening range ld=30 nm,
the dielectric constant er=35, and the charge e=1.

In the following, calculations for two distinct models are
presented. The first system simply considers a semicon-
ductor media with a dielectric constant. The literature
value is 35 for semiconductor Silicon. The second more
realistic model fully includes the frequency dependent
Lindhard function, see equation (22). This model even
includes the energy dependence of the scattering electrons.
The two field independent cross sections are sT,e=35=
1.9 nm2 and sT,e(v,k) = 39.6 nm2, respectively. The e(k)
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dependence and averaging over the electron energy makes
the ratio less than 35 – the numerical value is 20.8.

Figure 2 shows the averaged cross sections as the
function of the external field intensity for l=3 mm wave-
length. The more realistic model gives larger cross
sections which means that there is a smaller electron
conductance. By considering the field independent cross
section sT,e=35= 1.9 nm2 as a standard value gives the
suppression of the electron conductance by the external
field by a factor of 15.

Figure 3 presents the ratio of the two models as the
function of thefield intensitywith values between 21 and 26.
At larger field intensities the gradient of the ratio is reduced.

Figure 4 shows the averaged cross sections as the
function of the external field wavelength for the intensity
of I =1012 W/cm2. The cross sections obtained from the
model incorporating the Lindhard function are still larger
than the simpler model. The cross sections of both models
decay at large intensities. Note, that for 1 mm wavelength,
the ratio of the original cross section (1.9 nm2) goes up to
310 nm2 a gain factor of 155. Calculations below 1 mm
wavelength were not performed because such fields may
excite valence electrons into the conductance band and that
would lie out of the scope of this elastic scattering model.
Figure 5 shows the wavelength dependence of the ratio of
these twomodels. Largerwavelengths correspond to smaller
-p6



Fig. 5. Thewavelength dependence of the ratio of the twomodels
at I=1012 W/cm2 intensity.
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cross sections or larger conductance. These results are in full
agreement with the general theory of Kibis [20]. The ratio
between the two models still lie between a factor of 23–25.
Multiplyingwiththeremainingconstantsof e2ne

menimp
wheree is

the charge of the electron, me is the effective mass of an
electron in a semiconductor and is about 0.5 � 9.0 � 10�31

kgandnimp thenumberof the impuritiespercm3 liesbetween
109 and 1016, therefore, the obtained final conductance
values would lie between 10�6 and 105 S/cm [43]. This is a
very broad range of conductance, hence not reporting exact
numerical conductance values. However, these ratio of the
conductances with or without strong external IR fields can
vary by more than an order of magnitude.

A doped semiconductor has a complex nature and the
physical value of the resistivity varies in an external IR field
can of course only be investigated in a real physical
experiment but these calculation shows that it would be an
interesting project.

These models only include elastic scattering processes,
without any photon absorption or emission. The inclusion
of one photon absorption only requires changing the
zeroth-order Bessel function to the first-order term,
otherwise the process and the way of calculation are the
same. Note, that the corresponding cross sections or the
probabilities of a first–order process are at least one order of
magnitude lower than elastic ones.

Our calculations cannot include additional effects
coming from the complex nature of a real solid state like,
valence dielectric screening, band-structure details, elec-
tron-electron scattering, non-linear screening, multiple
electron scattering, and impurity dressing � all of which
are mentioned reference [23].

The twofold numerical integrations of (29) for various
laser parameters were evaluated with Wolfram Mathema-
tica (Copyright 1988� 2012WolframResearch, Inc.)where
the global adaptive integration built-in method was used
with recursion number of 300. The numerical tolerances,
i.e. the absolute and relative error have both set to 10−10.

4 Summary

A formalism based on an interrelated model to calculate
electron conductance in a doped semiconductor in
20101
strong external IR fields with intensities lying between
1011 and 1013 W/cm2 with the wavelength ranging from
1–5 mm. The mathematical description of multi-photon
processes was coupled to the well-established potential
scattering model based on the first-Born approximation.
An application of this general formalism in the present
paper has been the modification of the scattering elastic
cross sections in the elastic channel.

In solid-sate physics, the elastic scattering of electrons
on impurities modeled by the BH potential can model the
electric conductance up to a factor of 2–5 [23]. Electron
scattering has been treated in a perturbativemanner whilst
the influence of the external strong radiative IR field
(which can cause photon absorption) has been treated non-
perturbatively. The solid-state scattering model has been
improved in two areas. A frequency-dependent Lindhard
function, which mimics the response of the solid to a quick
varying external field has replaced the inclusion of
dielectric constant, which models the semiconductor.
The second improvement is that the final electron energy
distribution above the Fermi function at room temperature
is averaged. These two improvements give at least a factor
of 15 suppression in the final conductance. It has been
demonstrated that due to the joint interaction of the
conduction electrons with the impurity scattering potential
and the laser field that there could be a considerable change
in the conduction as was expected at the beginning of this
studies. These theoretical results have inspired our
experimental colleagues in ELI-ALPS to perform measure-
ments on silicon samples at 3 mm wavelength. Work is in
progress to build up a setup to measure the prognosticated
change in the conductivity. If the change of the conductivity
lies in the same order of timescale as the duration of themid-
IR laser pulse (tens of femtoseconds) then only pump-probe
type measurements can be applied to measure the change of
the optical properties of the sample [44]. If the experiments
verify these theoretical predictions then it may be possible
to start speculating about possible physical application of
the phenomena, like a quick gating, a quick moldulator, or
even a mid-IR light intensity sensor.
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