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a b s t r a c t

In this article we will present pure two-dimensional analytic solutions for the coupled non-

compressible Newtonian–Navier–Stokes — with Boussinesq approximation — and the heat

conduction equation. The system was investigated from E.N. Lorenz half a century ago with

Fourier series and pioneered the way to the paradigm of chaos. We present a novel analysis of

the same system where the key idea is the two-dimensional generalization of the well-known

self-similar Ansatz of Barenblatt which will be interpreted in a geometrical way. The results,

the pressure, temperature and velocity fields are all analytic and can be expressed with the

help of the error functions. The temperature field shows a strongly damped single periodic

oscillation which can mimic the appearance of Rayleigh–Bénard convection cells. Finally, it is

discussed how our result may be related to nonlinear or chaotic dynamical regimes.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The investigation of the dynamics of viscous fluids has a

long past. Enormous scientific literature is available from the

last two centuries for fluid motion even without any kind

of heat exchange. Thanks to new exotic materials like nan-

otubes, heat conduction in solid bulk phase (without any

kind of material transport) is an other quickly growing in-

dependent research area as well. The combination of both

processes is even more complex which lacks general exis-

tence theorems for unique solutions. The most simple way to

couple these two phenomena together is the Boussinesq [1]

approximation which is used in the field of buoyancy-driven

flow (also known as natural convection). It states that den-

sity differences are sufficiently small to be neglected, except

where they appear in terms multiplied by g, the acceleration

due to gravity. The main idea of the Boussinesq approxima-
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tion is that the difference in inertia is negligible but gravity

is sufficiently strong to make the specific weight appreciably

different between the two fluids. When the Boussinesq ap-

proximation is used than no sound wave can be described in

the fluid, because sound waves move via density variation.

Boussinesq flows are quite common in nature (such as

oceanic circulations, atmospheric fronts or katabatic winds),

industry (fume cupboard ventilation or dense gas disper-

sion), and the built environment (like central heating, natu-

ral ventilation). The approximation is extremely accurate for

such flows, and makes the mathematics and physics much

simpler and transparent.

The advantage of the approximation arises because when

investigation a flow of, say, warm and cold waters with den-

sities ρ1 and ρ2 are considered, the difference �ρ = ρ1 − ρ2

is negligible and one needs only a single density ρ . It can be

shown with the help of dimensional analysis, under these

circumstances, the only sensible way that acceleration due

to gravity g should enter into the equations of motion is in

the reduced gravity g′ = g(ρ1 − ρ2). The corresponding di-

mensionless numbers for such flows are the Richardson and
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Rayleigh numbers. The used mathematics is therefore much

simpler because the density ratio (ρ1/ρ2 a dimensionless

number) is exactly one and does not affect the features of

the investigated flow system.

In the following we analyze the dynamics of a two-

dimensional viscous fluid with additional heat conduction

mechanism. Such systems were first investigated by Boussi-

nesq [1] and Oberbeck [2] in the 19th century. Oberbeck used

a finite series expansion. He developed a model to study the

heat convection in fluids taking into account the flow of

the fluid as a result of temperature difference. He applied

the model to the normal atmosphere.

More than half a century later Saltzman [3] tried to solve

the same model with the help of Fourier series. At the same

time Lorenz [4] analyzed the solution with computers and

published the plot of a strange attractor which was a pioneer-

ing results and the advent of the studies of chaotic dynamical

systems. The literature of chaotic dynamics is enormous but

a modern basic introduction can be found in [5].

Later till to the first beginning years of the millennium

[4] Lorenz analyzed the final first order chaotic ordinary dif-

ferential equation (ODE) system with different numerical

methods. This ODE system becomes an emblematic object of

chaotic systems and attracts much interest till today [6].

On the other side critical studies came to light which

go beyond the simplest truncated Fourier series. Curry for

example gives a transparent proof that the finite dimen-

sional approximations have bounded solutions [7]. Roy and

Musielak [8] in three papers analyzed large number of trun-

cated systems with different kinds and found chaotic and pe-

riodic solutions as well. The messages of these studies will be

shortly mentioned later.

In our study we apply a completely different investiga-

tion approach, namely the two-dimensional generalization

of the self-similar Ansatz which is well-known for one di-

mension from more than half a century [9–11]. This gener-

alized Ansatz was successfully applied to the three dimen-

sional compressible and non-compressible Navier–Stokes

equations [12,13] from us in the last years. We investigated

one dimensional Euler equations with heat conduction as

well [14] which can be understood as the precursor of the

recent study.

To our knowledge this kind of investigation method was

not yet applied to the Oberbeck–Boussinesq (OB) system.

In the next section we outline our theoretical investiga-

tion together with the results. The paper ends with a short

summary.

2. Theory and results

We consider the original partial differential equa-

tion(PDE) system of Saltzman [3] to describe heat conduc-

tion in a two dimensional viscous incompressible fluid. In

Cartesian coordinates and Eulerian description these equa-

tions have the following form:

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
+ ∂P

∂x
− ν

(
∂2u

∂x2
+ ∂2u

∂z2

)
= 0,

∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z
+ ∂P

∂z
− eGT1 − ν

(
∂2w

∂x2
+ ∂2w

∂z2

)
= 0,
∂T1

∂t
+ u

∂T1

∂x
+ w

∂T1

∂z
− κ

(
∂2T1

∂x2
+ ∂2T1

∂z2

)
= 0,

∂u

∂x
+ ∂w

∂z
= 0, (1)

where u, w, denote respectively the x and z velocity coor-

dinates, T1 is the temperature difference relative to the av-

erage (T1 = T − Tav) and P is the scaled pressure over the

density . The free physical parameters are ν , e, G, κ kine-

matic viscosity, coefficient of volume expansion, accelera-

tion of gravitation and coefficient of thermal diffusivity. (To

avoid further misunderstanding we use G for gravitation ac-

celeration and g which is reserved for a self-similar solu-

tion.) The first two equations are the Navier–Stokes equa-

tions, the third one is the heat conduction equation and the

last one is the continuity equation all are for two spatial

dimensions. The Boussinesq approximation means the way

how the heat conduction is coupled to the second NS equa-

tion. Chandrasekhar [15] presented a wide-ranging discus-

sion of the physics and mathematics of Rayleigh–Benard con-

vection along with many historical references.

Every two dimensional flow problem can be reformu-

lated with the help of the stream function � via u = �y and

v = −�x which automatically fulfills the continuity equation.

The subscripts mean partial derivations. After introducing di-

mensionless quantities the system of (1) is reduced to the

next two PDEs

�xx + �yy)t + �x(�xxz + �yyz) − �z(�xxx + �zzx)

−σ(θx − �xxxx − �zzzz − 2�xxzz) = 0,

t + �xθz − �zθx − R�x − (θxx + θzz) = 0, (2)

where 
 is the scaled temperature, σ = ν/κ is the Prandtl

number and R = GeH3�T0
κν is the Rayleigh number and H is the

height of the fluid. A detailed derivation of (2) can be found

in [3].

All the mentioned studies in the introduction, investi-

gated these two PDEs with the help of some truncated

Fourier series, different kind of truncations are available

which result different ordinary differential equation (ODE)

systems. The derivation of the final non-linear ODE system

from the PDE system can be found in the original papers

[3,4]. Bergé et al. [16] contains a slightly different develop-

ment of the Lorenz model equations, and in addition, pro-

vides more details on how the dynamics evolve as the re-

duced Rayleigh number changes. The book of Sparrow [17]

gives a detailed treatment of the Lorenz model and its behav-

ior as well. Hilborn [18] presents the idea of the derivation in

a transparent and easy way. Therefore, we do not mention

this derivation in our manuscript.

Some truncations violates energy conservation [6] and

some not. Roy and Musiliak [8] in his exhausting three pa-

pers present various energy-conserving truncations. Some of

them contain horizontal modes, some of them contain ver-

tical modes and some of them both kind of modes in the

truncations. All these models show different features some of

them are chaotic and some of them — in well-defined param-

eter regimes — show periodic orbits in the projections of the

phase space. This is a true indication of the complex nature

of the original flow problem. It is also clear that the Fourier
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Fig. 1. A self-similar solution of Eq. (3) for t1 < t2. The presented curves are

Gaussians for regular heat conduction.
expansion method which is a 200 year old routine tool for

linear PDEs fails for a relevant non-linear PDE system.

Therefore, we apply another investigation method which

is common for non-linear PDEs. At first we introduce the two

dimensional generalization of the self-similar Ansatz

v(x, t) = t−α f

(
x

tβ

)
:= t−α f (η) (3)

where v(x, t) can be an arbitrary variable of a PDE and t

means time and x means spatial dependence. The similar-

ity exponents α and β are of primary physical importance

since α represents the rate of decay of the magnitude v(x,

t), while β is the rate of spread (or contraction if β < 0 )

of the space distribution for t > 0. The most powerful re-

sult of this Ansatz is the fundamental or Gaussian solution of

the Fourier heat conduction equation (or for Fick’s diffusion

equation) with α = β = 1/2. These solutions are exhibited on

Fig. 1 for time-points t1 < t2. This transformation is based on

the assumption that a self-similar solution exists, i.e., every

physical parameter preserves its shape during the expansion.

Self-similar solutions usually describe the asymptotic behav-

ior of an unbounded or a far-field problem; the time t and the

space coordinate x appear only in the combination of f(x/tβ ).

It means that the existence of self-similar variables implies

the lack of characteristic lengths and times. These solutions

are usually not unique and do not take into account the initial

stage of the physical expansion process. It is also transparent

from (3) that to avoid singularity at t = 0 the following trans-

formation t̃ = t + t0 is valid.

There is a reasonable generalization of (3) in the form of

v(x, t) = h(t) · f [x/g(t)], where h(t), g(t) are continuous func-

tions. The choice of h(t) = g(t) = √
t0 − t is called the blow-

up solution, which means that the solution becomes infinity

after a well-defined finite time duration.

These kind of solutions describe the intermediate asymp-

totic of a problem: they hold when the precise initial con-
ditions are no longer important, but before the system has

reached its final steady state. For some systems it can be

shown that the self-similar solution fulfills the source type

(Dirac delta) initial condition. They are much simpler than

the full solutions and so easier to understand and study in

different regions of parameter space. A final reason for study-

ing them is that they are solutions of a system of ODEs and

hence do not suffer the extra inherent numerical problems

of the full PDEs. In some cases self-similar solutions helps to

understand diffusion-like properties or the existence of com-

pact supports of the solution.

Finally, it is important to emphasize that the self-similar

Ansatz has an important but not well-known and not rig-

orous connection to phase transitions and critical phenom-

ena. Namely to scaling, universality and renormalization. As

far as we know even genuine pioneers of critical phenom-

ena like Stanley [19] have analyzed and made some progress,

although to rigorous clear-cut definitions of these concepts

one can add something more. We feel that all have a com-

mon root. The starting point could be the generalized ho-

mogeneous function like the Gibbs potential Gs(H, ε) for a

spin system. Close to the critical point the scaling hypoth-

esis can be expressed via the following mathematical rule

Gs(λaH, λbε) = λGs(H, ε). Where H is the order parameter

the magnetic field and ε is the reduced temperature, a, b are

the critical exponents. The same exponents mean the same

universality classes. The equation gives the definition of ho-

mogeneous functions. Empirically, one finds that all systems

in nature belong to one of a comparatively small number of

such universality classes. The scaling hypothesis predicts that

all the curves of this family M(H, ε) can be ”collapse” onto a

single curve provided one plots not M versus ε but rather a

scaled M (M divided by H to some power) vs a scaled ε (ε
divided by H to the appropriate power). The renormalization

approach to critical phenomena leads to scaling. In renormal-

ization the exponent is called the scaling exponent. The scal-

ing principle can be also found in the study of networks [20]

and in research related to neural networks [21]. We hope that

this small turn-out helps the reader to a much better under-

standing of our approach .

Let us introduce the two dimensional generalization of

the self-similar Ansatz (3) which might have the general form

of

v(x, z, t) = t−α f

(
F(x, z)

tβ

)
(4)

where F(x, z) could be understood as an implicit parameter-

ization of a one-dimensional space curve with continuous

first and second derivatives. In our former studies [12,13] we

explain in heavy details that for the Navier–Stokes type of

non-linearity unfortunately only the F(x, z) = x + z + c func-

tion is valid in Cartesian coordinates which is a straight line.

It basically comes from the symmetry properties of the left-

hand of the NS equation. Only this function fulfills the fol-

lowing relation ux = uz. (Other locally orthogonal coordinate

systems e.q. spherical are not investigated yet.)

We may investigate both dynamical systems, the original

hydrodynamical (1) or the other one (2) which is valid for the

stream functions.
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Fig. 2. Different shape functions of the temperature Eq. (9) as a function of

η for different thermal diffusivity. The integration constants are c1 = c2 = 1

the same for all the three curves. The solid the dashed and the dotted lines

are for κ = 1, 2, 5, respectively.
Similar to the former studies [3,4] try to solve the PDEs

for the dimensionless stream and temperature functions in

the form of

� = t−α f (η), θ = t−εh(η), η = x + z

tβ
. (5)

Unfortunately, after some algebra it becomes clear that

the constraints which should fix the values of the exponents

become contradictory, therefore no unambiguous ODE can

be derived. This means that the PDE of the stream function

and the dimensionless temperature do not have self-similar

solutions. In other words these functions have no such a dif-

fusive property which could be investigated with the self-

similar Ansatz, which is a very instructive example of the ap-

plicability of the trial function of (5). Our experience shows

that, most of the investigated PDEs have a self-similar ODE

system and this is a remarkable exception.

Now investigate the original hydrodynamical system with

the next Ansatz

u(η) = t−α f (η), w(η) = t−δg(η),

P(η) = t−εh(η), T1(η) = t−ωl(η), (6)

where the new variable is η = (x + z)/tβ . All the five expo-

nents α, β , δ, ε, ω are real numbers. (Solutions with inte-

ger exponents are the self-similar solutions of the first kind

and sometimes can be obtained from dimensional consider-

ations.) The f, g, h, l objects are called the shape functions of

the corresponding dynamical variables.

After some algebraic manipulations the following con-

strains are fixed among the self-similarity exponents : α =
δ = β = 1/2, ε = 1 and ω = 3/2 which are called the univer-

sality relations. At this point it is worth to mention that now

all the exponents have a fix numerical value which simplifies

the structure of the solutions. There is no free exponential pa-

rameter in the original dynamical system, like an exponent in

the equation of state. As an example we mention one of our

former study where the compressible NS equation was inves-

tigated [13] with a free parameter which described different

materials.

These universality relations dictate the corresponding

coupled ODE system which has the following form of

− f

2
− f ′η

2
+ f f ′ + g f ′ + h′ − 2ν f ′′ = 0,

− g

2
− g′η

2
+ f g′ + gg′ + h′ − eGl − 2νg′′ = 0,

−3l

2
− l′η

2
+ f l′ + gl′ − 2κ l′′ = 0,

f ′ + g′ = 0. (7)

From the last (continuity) equation we automatically get

the f + g = c and f ′′ + g′′ = 0 conditions which are necessary

in the following. For the sake of simplicity we consider the

c = 0 case in the following. If c �= 0 then the Eq. (8) is slightly

modified and the results are the KummerM and KummerU

functions, but the shape of the functions remains the same

which is crucial for the forthcoming analysis. Going through a

straightforward derivation the next single ODE for the shape

function of the temperature distribution can be separated

2κ l′′ + l′η + 3l = 0. (8)

2 2
The solution is

l = c1

[
4er f i

(√
2η

4
√

κ

)√
2π

(
κ − η2

4

)
e− η2

8κ + 4
√

κη

]

+c2e− η2

8κ (4κ − η2) (9)

where c1, c2 are free integration constants. The erfi means

the imaginary error function defined via the integral

2/
√

π
∫ x

0 exp(x2)dx for more details see [22]. It is interest-

ing, that the temperature distribution is separated from the

other three dynamical variables an does not depend on the

viscosity coefficients as well. We may say, that among the so-

lution obtained from the self-similar Ansatz the temperature

has the highest priority and this quantity defines the pres-

sure and the velocity field. That is a remarkable feature. In a

former study, where the one-dimensional Euler system was

investigated with heat conduction [14] we found the oppo-

site property, the density and the velocity field were much

simpler than the temperature field. Fig. 2 presents different

shape functions of the temperature for different thermal dif-

fusivity values. The first message is clear, the larger the ther-

mal diffusivity the larger the shape function of the tempera-

ture distribution. A detailed analysis of Eq. (9) shows that for

any reasonable κ and c values the main property of the func-

tion is not changing — has one global maximum and min-

imum with a strong decay for large ηs. A second remark-

able feature is the single oscillation which is not a typical

behavior for self-similar solutions. We investigated numer-

ous non-linear PDE systems till today [12–14] some of them

are even not hydrodynamical [23] and never found such a

property. This analysis clearly shows that at least the tem-

perature distribution in this physical system has a single-

period anharmonic oscillation. For a fixed time value and a

well-chosen z the difference of values of η where l(η) yields

a minima and a maxima corresponds to that �x at which the
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Fig. 3. Different shape functions of the pressure Eq. (12) as a function

of η for different thermal diffusivity. The integration constants are taken

c1 = c2 = 1 for all the three curves. We fixed the value of eG = 1 as well. The

solid, the dashed and the dotted lines are for κ = 1, 2, 5 numerical values,

respectively.
temperature (and density) fluctuation may start the Bé-

nard convection. To go a step further we may calculate the

Fourier transform of the shape function, Eq. (9) l(η), and if

we consider η as a generalized time dependence we may

get the generalized spectral distribution. (An analytic expres-

sion for the Fourier transform is available, which we skip

now.) The first term (which is proportion to c1) becomes

a complex function, however the general overall shape re-

mains the same, a single-period anharmonic oscillation with

a global minimum and maximum like on Fig. 2. Of course,

the zero transition of the function depends on the value

of κ . The second term of the Fourier transformed function

which is proportional to c2 remains a Gaussian which is not

interesting.

For completeness we give the full two dimensional

temperature field as follows:

T1(x, z, t) = c1t−3/2
[

4er f i

(
x + z

4(κt)1/2

)√
2π

×
(

κ − (x + z)2

4t

)
e− (x+z)2

8κt + 4
√

κ(x + z)

t1/2

]

+c2t−3/2e− (x+z)2

8κt

(
4κ − (x + z)2

t

)
. (10)

The shape function of the pressure field can be obtained from

the temperature shape function via the following equation:

h′ = eGl

2
(11)

with a similar solution to (9)

h = c1

[
2κ

√
2πeG · er f i

(√
2η

4
√

κ

)
ηe− η2

8κ

]

+c22eGκηe− η2

8κ + c3, (12)

this can be understood that the derivative of the pressure is

proportional to the temperature (Fig. 3). With the known nu-

merical value of the exponent ε = 1 the scaled pressure field

can be expressed as well P(x, z, t) = t−1h([x + z]/t−1/2). Note,

the difference between the ω and the ε exponents, which are

responsible for the different asymptotic decays. The temper-

ature field has a stronger damping for large η than the pres-

sure field. (It is worth to mention that for the three dimen-

sional NS equation, without any heat exchange the decay ex-

ponent of the pressure term is also different to the velocity

field [12].)

At last the ODE for the shape function of the velocity com-

ponent z reads

4νg′′ + g′η + g + eGl = 0 (13)

which directly depends on the temperature on l(η) and all

the physical parameters ν , e, G, κ , of course. In contrast to

the pressure and temperature field there is no closed solu-

tions available for a general parameter set. The formal, most

general solution is

g = c̃2e− η2

8ν + e− η2

8ν

{∫
1

4ν

[(
c̃1 − 4eGκc2ηe− η2

8κ

−4eGκ
√

2πc1er f i

(√
2η

4
√

κ

)
ηe− η2

8κ

)
e

η2

8ν

]
dη

}
(14)
where c̃1 and c̃2 are the recent integration constants. Note,

that the integral can be analytically evaluated if and only if

ν = κ which is a great restriction to the physical system. We

skip this solution now. The other way is to fix c1 = 0 and let

κ and μ free. The solution has the next form of

g = c̃1e− η2

8ν er f

(
η

4

√
− 2

ν

)
+ c̃2e− η2

8ν − 4eGc2κ
2e− η2

8κ

κ − ν
. (15)

Note, that now the ν �= κ condition is obtained. The c̃1 and c̃2

are the recent integration constants as above, it is interesting

that if both of them are set to zero, the solution is still not

trivial. For a physical system the kinematic viscosity ν > 0 is

always positive, therefore in the case of c̃1 �= 0 the solution

becomes complex. Fig. 4 shows the shape function of the z

velocity component. It is clear that the real part is a Gaussian

function and the complex part is a Gaussian distorted with

an error function, which is an interesting final result. In the

literature we can find system which shows similarities like

the work of Ernst et al. [24] who presented a study where a

the asymptotic normalized velocity autocorrelation function

calculated from the linearized Navier–Stokes equation has an

error function shape.

At this point we investigate how our results can be inter-

related to other general concepts which are more familiar for

scientists in the field of chaotic dynamics. In turbulence stud-

ies the quantity of enstrophy is defined in the following form:

E(u) = 1

2

∫
S

(∇ × u)2dS (16)

where u is the flow velocity vector and ∇ × u is the vortic-

ity. Physically, enstrophy can be interpreted as another type

of potential density or more correctly, the quantity related
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Fig. 4. The shape functions of the z velocity field g(η) Eq. (15) as a function

of η. The solid line is the real and the dotted is the complex part. All the

integration constants are taken c̃1 = c̃2 = c2 = 1. The physical constant eG =
1 as well. The κ = 0.04 and ν = 0.8. .
to kinetic energy in the flow model that corresponds to dis-

sipation effects. The integral has to be taken over a closed

surface. Taken into account the incompressibility condition

in two spatial dimensions the enstrophy can be computed by

E(u) = 1

2

∫
S

|∇u|2dS. (17)

In the theory of 2D turbulence it is well accepted that enstro-

phy is the relevant quantity in small-scale turbulence accord-

ing to energy in the 3D case. In 2D enstrtophy is a conserved

quantity but in 3D not. According to a new-classical theory

proposed in 1967 Kraichnan [26] there will be for viscosity ν
→ 0 an ultraviolet range with constant mean enstrophy flux

E(u). His theory also predicts that the spectrum of the en-

strophy cascade is proportional to E(u)2/3k−3 where k means

the wave number. Similarly, the energy integral of the system

is

E(t, u) = 1

2

∫
S

u2dS. (18)

In our case the integrands of both quantities can be easily

computed from the analytic velocity field described via the

shape function Eq. (15) and the exponents. Just neglecting

all the irrelevant constants the enstrophy density is propor-

tional to the following function with the corresponding time

and spatial dependences

|∇u|2 ∝ (x + z)2e
(x+z)2

t

t4
v
(

1 − er f

[
x + z

t

]
+ er f

[
x + z

t

]2
)

(19)

At this point we may investigate two physically dif-

ferent and relevant quantities. The final enstrophy den-

sity function depends on x,z,t. We may calculate two

different Fourier transformations. The first one, is the
classical 1√
2π

∫ +∞
−∞ exp(iωt)|∇u(x, z, t)|2dt which gives us

the frequency spectra. For (19) the transformation can

be evaluated analytically only for the first term get-

ting the MeijerG function in the form of 4i
√

2
π ωMei jerG

[{{}, {}}, {{1/2, 3/2, 2}, {0}}, ((x + z)4ω2)/16] function.

To find a comparison to turbulence studies, the other

Fourier transformation 1√
2π

∫ +∞
−∞ exp(ixkx)|∇u(x, z, t)|2dx is

more relevant and gives us the wave number distribution.

Only the first term of Eq. (19) can be evaluated analytically

giving the next proportionality factor of −Exp

(
− k2t

4

)
(2 −

k2t). Compared to the Kraichnan 2D enstrophy cascade result

E2/3k−3 this is a short range distribution.

As a very last step we investigate how to couple our re-

sults to some additional conceptions which are well-known

for chaos studies. The first order Lorenz differential equa-

tion system can be generalized to fractional derivatives [25].

For such systems chaoticity, bifurcations, intermittency etc.

and all the classical dynamical properties can be studied

in details. Regarding intermittency, it is the irregular al-

ternation of phases of apparently periodic and chaotic dy-

namics (Pomeau–Manneville dynamics), or different forms

of chaotic dynamics (crisis-induced intermittency) [27]. We

consider the original hydrodynamical system — which is a

PDE - and the derived an ODE system (7) which is ana-

lytic. We also expect less regular behavior when the Reynolds

number increases. A possible high Reynolds number emerges

from low values of viscosity. As one can see in Eq. (14), if the

kinematic viscosity tends to zero, then divergences appear in

the expression of velocity field. Where the analytic descrip-

tion reaches its limits, there a more complex dynamics may

emerge, as it is the chaotic dynamics or turbulence.

Our original PDE system contains no Reynolds averaging

procedure therefore no considerations are given for the av-

erage and the fluctuating part of the velocity, pressure and

temperature [28]. In a natural sense that would be a proper

way to generalize the recent model eg. considering the pop-

ular k − ε turbulence model which would add two additional

diffusion-like PDEs. It is very probable that such a system

could have self-similar or other complex solutions as well.

Testing such models is our long-term purpose.

3. Summary

We investigated the classical OB equation which is the

starting point of countless dynamical and chaotic systems.

Instead of the usual Fourier truncation method we ap-

plied the two-dimensional generalization of the self-similar

Ansatz and found a coupled non-linear ODE system which

can be solved with quadrature. The main result is that even

these kind of solutions — build up from error functions —

show some oscillating behavior. The shape of the velocity

distribution may help us to explain how Rayleigh–Bénard

convection cells emerge. The resulting expressions show the

decay of temperature and pressure fluctuations and veloc-

ity field in time. The enstrophy flux density was calculated

and compared to 2D enstrophy cascade models as well. The

question of fractional derivatives, intermittency of chaos are

addressed as well. Due to our knowledge certain parts of the

climate models are based on the OB equations therefore our

results might be an interesting sign to climate experts.
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