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Abstract. In this paper, the two-dimensional incompressible rotating and stratified equations are analytically investigated. We 
examine rotating and stratified Euler equations and the normal Euler equations with the self-similar Ansatz. The analytic solutions 
are available for our all models for velocity, density and pressure fields. In general, they have a rich mathematical structure involving 
compound power-law dependent functions. Some of them show unphysical explosive properties, others are physically acceptable 
and have finite numerical values with power law decays. For a better transparency we present some figures for the most complicated 
velocity and pressure fields.

INTRODUCTION

There is no need to prove the evidence that both geophysics and meteorology have crucial importance for human 
society and civilization. Part of it is the special interest in science. Overwhelm problems in meteorology are hydrody-
namical in origin. This statement is partially true for geophysics as well. On the surface of Earth due to axial rotation 
and the additional gravity the question of stratified flows play an important role. Various hydrodynamical models of 
such kind for meteorology and geophysics can be found in numerous monographs [1, 2, 3, 4, 5].

In this study we investigate the time-dependent dispersive self-similar solutions [6, 7] (not the blow-up type) 
of these kind of multidimensional Euler-type equations. The form of the original one-dimensional Ansatz reads as 
follows

V(x, t) = t−α f (x/tβ) = t−α f (η), (1)

where V(x, t) is the dynamical variable, f (η) is the shape function with the reduced variable η and α, β are the self-
similar exponents. Usually α, β > 0 present physically relevant power-law decaying physical solutions of the problem.
This transformation is based on the assumption that a self-similar solution exists, i.e., every physical parameter pre-
serves its shape during the expansion. Self-similar solutions usually describe the asymptotic behavior of an unbounded
or a far-field problem; the time t and the space coordinate x appear only in the combination of η = x/tβ. It means that
the existence of self-similar variables implies the lack of characteristic lengths and times. The geometrical and physi-
cal interpretations of this Ansatz were exhaustively explained in all our former studies [8, 9, 10], therefore we skip it
here.

This study is part of our long-time program which systematically goes over fundamental hydrodynamical sys-
tems. Till now we published about half a dozen papers [8, 9] and a book chapter [10] in this field. To the best of our
knowledge, there are no such time-dependent self-similar solutions known, presented and analyzed in the scientific
literature for these systems. The structure of this paper is the following: to give a broader overview we investigate and
compare the solutions of two dimensional rotating and stratified Euler equations with just stratified, just rotating and
pure Euler equations. So four different flow systems will be discussed, We already published studies with the similar
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logic where several cases were investigated like the surface growth KPZ equation with numerous different noise terms
[11] or the compressible one dimensional Euler equations where various equation-of-states were applied [12].

THEORY

To have a complex analysis for all four cases we present the corresponding original partial differential equation
(PDE) systems, the applied Ansatz with the obtained self-similar exponents, the obtained coupled ordinary differential
equation (ODE) system and the solutions for the dynamical variables, the velocity and pressure fields (in two cases
even for the densities). For a better transparency and for a clearer understanding we present figures for the most
complicated solutions. These non-trivial shape functions and the corresponding final dynamical variables (velocity
and pressure) are plotted and analyzed. We think that it is unnecessary to plot all shape functions and all dynamical
variables for all four models for trivial solutions.

THE ROTATING AND STRATIFIED SYSTEM

We start our study with the most complex flow. The stability or turbulence of such systems were extensively studied
by Koba [13] and Davidson [14]. According to the book of Dolzhansky [2] the rotating stratified fluid equations in
two Cartesian dimensions in vectorial notation read as follows:

∇v = 0, (2)

ρt + (v∇)ρ = 0, (3)

vt + (v∇)v + 2Ω0 × v = −∇p
ρ0

+
G
ρ0

ρ, (4)

where v, ρ, p,Ω0,G denote respectively the two-dimensional velocity field, density, pressure, angular velocity and an
external force (now gravitation) of the investigated fluid. In the following ρ0, is one physical parameter of the flow.
For a better overview we use the coordinate notation v(x, y, t) = u(x, y, t), v(x, y, t) for the velocity and p(x, y, t) for the
scalar pressure field. To have a trivial rotation contribution we consider the Ω0 = (0, 0,Ωz

0
(x, y, t)) angular velocity

vector. The direct form, (coordinate form) of the equations are:

ux + vy = 0, (5)

ρt + uρx + vρy = 0, (6)

ut + uux + vuy − 2vΩ0 = − px

ρ0

, (7)

vt + uvx + vvy + 2uΩ0 = − py

ρ0

+
G
ρ0

ρ, (8)

where the subscripts mean partial derivations with respect to time and spatial coordinates. (For the following three
models we skip the vectorial form, and just write out all the coordinates.) Let’s consider the self-similar Ansatz for
the variables in the form of:

ρ(x, y, t) = t−α f (η), u(x, y, t) = t−δg(η),

v(x, y, t) = t−εh(η), p(x, y, t) = t−γi(η), (9)

with the new variable η = x+y
tβ . All the exponents α, β, γ, δ, ε, are real numbers. (Solutions with integer exponents are

called self-similar solutions of the first kind, non-integer exponents generate self-similar solutions of the second kind.)
The shape functions f , g, h, i could be any continuous functions and will be evaluated later on. The logic, the physical
and geometrical interpretation of the Ansatz were exhaustively analyzed in all our former publications [8, 9, 10, 11, 12]
therefore we neglect it.

To have consistent coupled ODE system for the shape functions the exponents have to have the following values
of

α = 3/2, β = δ = ε = 1/2, γ = 1. (10)
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Note, that all exponents have a fixed numerical value, which clearly defines the solutions. Each exponent is
positive so the solutions are expected to be physical (will have power law decay at large times). It is important to
emphasize, that only the Ωz

0
= ω0/t angular velocity function (which is trivial from dimensional consideration) leads

the following clean-cut ordinary differential equation (ODE) system

f ′ + g′ = 0, (11)

−3

2
f − 1

2
η f ′ + g f ′ + h f ′ = 0, (12)

−1

2
g − 1

2
ηg′ + gg′ + hg′ − 2hω0 = − i′

ρ0

, (13)

−1

2
h − 1

2
ηh′ + gh′ + hh′ + 2gω0 = − i′

ρ0

+
G
ρ0

f . (14)

From the first (continuity) equation we automatically get f + g = c0, where c0 is proportional with the constant mass
flow rate.

From equations 11 and 12 the solution is almost trivial

f =
c1

(2c0 − η)3
, (15)

where c1 stands for the usual integration constant. The density has a power-law decay for large times which is physi-
cally desirable

ρ(x, y, t) =
1

t
3
2

· c1

2c0 − (x+y)3

t
3
2

� c1

t
3
2

. (16)

Extracting equation 13 the ODE for the shape function of the velocity component v(x, y, t) is of the form

h =
η(−c0 − 4c0ω0)

2c0 − η − Gc1

ρ0(η − 2c0)3
+

c2

2c0 − η . (17)

The function has a singularity at η = 2c0 and it it strictly monotonous growing for all positive η where η > 2c0.
The solution is the sum of a shifted first and third order hyperbola. All the parameters are responsible for the scaling
and the shift of the singularity. It is straightforward to show that the asymptotic behavior of the velocity field is

v(x, y, t) � t−
1
2 , which makes it a physically acceptable solution.

The equations 13 and 14 the solution for i can be easily evaluated with quadrature

i = 2ω0ln(η − 2c0)(c2 − 4ω0c0 − ρ0c2
0) + Gc1

2(η−2c0)2

(
1
2
− ω0

)
+

η
(

1
2
ω0ρ0c0 − 4ρ0ω

2
0c0 − c0ρ0

4

)
+ c3. (18)

To exhibit the general properties of the pressure, Figure 1 and 2 present the ten-based logarithm of the solution
for two different angular velocities. In bouth cases the pressure functions have clear asymptotic values.

WITHOUT ROTATION AND STRATIFICATION

The solution to system of equations 2, 4 and 5 with ω0 = 0 can be given in closed form.

SUMMARY

We investigated the two-dimensional incompressible rotating and stratified Euler equations and the normal Euler
equations applying the self-similar Ansatz. To emphasize the scientific relevance of these equations and disciplines
we mentioned numerous textbooks and monographs which were written in the recent decades. We found analytic
solutions for all dynamical variables of all four models. The solutions of the rotating stratified flows are much more
complex, therefore we presented additional figures to enlighten the details. Overall the physically relevant, power-law
time decaying solutions were emphasized. We think that due to the lack of higher order viscous terms in the Euler
equations all solutions are quite simple contains no additional internal finer structure e.g. some waves or oscillations.
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FIGURE 1. The ten-based logarithm of the pressure
Log(p(x, y = 0, t)) for ω0 = 0.125 angular velocity, other pa-
rameters c0 = 0.5, c1 = 3.25, c2 = −3.1, c3 = 15,G = 10, ρ0 =

3.

FIGURE 2. The ten-based logarithm of the pressure
Log(p(x, y = 0, t)) for ω0 = 0.9 angular velocity, other pa-
rameters c0 = 0.5, c1 = 3.25, c2 = 3.1, c3 = 15,G = 10, ρ0 = 3.

ACKNOWLEDGMENTS

This work was supported by project no. 129257 implemented with the support provided from the National Research,
Development and Innovation Fund of Hungary, financed under the K 18 funding scheme.

REFERENCES

[1] K. G. Vallis, Atmospheric and oceanic fluid dynamics (Cambridge University Press, 2017).
[2] F. V. Dolzhansky, Fundamentals of geophysical hydrodynamics, Vol. 103 (Springer Science & Business

Media, 2012).
[3] V. Zeitlin, Geophysical fluid dynamics: understanding (almost) everything with rotating shallow water mod-

els (Oxford University Press, 2018).
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