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Abstract. A new Coulomb distorted-wave method with coupled-channel target functions is used to cal-
culate total ionization cross-sections for helium in positron collisions. Besides Slater-like orbitals we use
regular Coulomb wave packets in our configurational interaction basis to describe the target continuum.
The incident positron energy was varied between the ionization threshold and 500 a.u. The results are in
good agreement with experimental data and other theoretical calculations. Comparing to other sophisti-
cated distorted wave methods our model is much easier to implement and gives accurate results. As a new
feature we present ionization cross-sections where the He+ ion remains in the 1s ground state or excited
to the 2s or 2p state. As we know there are no experimental work done to determine such cross-sections.
In the case of ionization followed by 2s or 2p excitation we compared our results with other calculations.

PACS. 34.85.+x Positron scattering

1 Introduction

Ionization of helium in positron collisions has been exten-
sively studied both theoretically and experimentally [1–5].
Positron-impact ionization calculations are simpler than
electron-impact ionization calculations because there are
no exchange effects. The first quantum-mechanical study
of the ionization cross-section for positron impact of he-
lium was carried out with the first order Born approx-
imation using different kind of wave functions by [6].
The classical trajectory Monte-Carlo method agrees well
with experimental data below 200 eV impact energy [7].
The time-dependent coupled-channel method was imple-
mented with hyperbolic positron trajectories in the en-
ergy range 6−1000 eV by [8]. A much more elaborate
coupled-channel method was presented in [9] including
positronium formation. A distorted-wave method with
close-coupled target states was developed to calculate to-
tal ionization cross-sections for noble gases in positron im-
pact upto about 1 keV by [10]. Another distorted wave
model was performed in the work of [11] and applied for
noble gases also. Further details including references cov-
ering various methods are given in [9].

Here, we report on the new implementation of our
coupled-channel method combined with Coulomb wave
Born approximation for ionization of helium in positron
collisions. So far, our original coupled-channel method has
been successfully applied for time-dependent ionization
processes such as heavy ion helium collisions to calculate
total cross-sections [12,13] and for laser driven atomic pro-
cesses in helium [14].

a e-mail: barna@mpipks-dresden.mpg.de

We take the electron-electron interaction fully into
consideration which is important in single- and double-
ionization processes. To represent bound states and res-
onances we use Slater-type orbitals. A special feature in
our explicitly correlated basis are regular Coulomb wave
packets, which we use to discretise the continua. As we will
show, the low lying single- and double-Coulomb continua
can be approximated well for positron ionization with the
help of these wave packets. We use only single-centre ex-
pansion for the wave function and neglect positronium for-
mation. To identify the double excited states embedded in
the single electron continuum (e.g. 2s2s) we adopted the
method of complex scaling [15]. Atomic units are used
throughout the paper unless otherwise indicated.

2 Theory

The centre-of-mass frame is used to describe positron im-
pact on a helium atom. Our model is defined by the Hamil-
tonian

H = −1
2
∇2

p + HHe + Vp−He. (1)

The first term stands for the kinetic energy of the positron,
HHe is the Hamiltonian of the unperturbed helium atom

ĤHe =
p2

1

2
+

p2
2

2
− 2

r1
− 2

r2
+

1
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and Vp−He is the interaction operator between the positron
and the target helium

Vp−He =
2
R

− 1
|R − r1| −

1
|R − r2| . (3)
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r1, r2 and R are the coordinates of electrons 1 and 2 and
the projectile positron with respect to the centre of mass,
respectively. For the wave function we use the coupled-
channel expansion

Ψ(r1, r2,R) =
∑

n

ϕn(R)Φn(r1, r2) (4)

where the {Φn(r1, r2)} eigenfunctions are obtained by di-
agonalizing the time independent Schrödinger equation

ĤHeΦn = EnΦn (5)

in a basis of orthogonal symmetrized two-particle func-
tions fµ so that

Φn(r1, r2) =
∑

µ

b[n]
µ fµ(r1, r2). (6)

The choice of the single-particle functions will be specified
later.

Substituting the total wave function (4) into the
Schrödinger equation with the Hamiltonian (1) and pro-
jecting onto the helium channel wave functions Φn(r1, r2)
gives the equations of motion

(
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2
∇2

p +
2
R

− k2

2

)
ϕn(R) + Vn(R)ϕn(R) = 0 (7)

where

Vn(R) =
〈

Φn(r1, r2)
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|R− r1| −
1
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〉

(8)
with the energy conservation

Etot = EHe + Ep = EHe +
k2

2
. (9)

Equation (7) is to be solved with the following boundary
condition, in the final channels as R goes to infinity:

ϕn(R) → fn(θ, ϑ)
ei(knRn−ηln2knR)

R
(10)

where η = µ/k0 and fk(θ, ϑ) is the scattering amplitude
in the channel n at angle (θ, ϑ) defined with respect to
the direction of the incident momentum. Following Mott
and Massey [16] and considering that the impact energy
interval is larger than the threshold for singe-ionization,
one may obtain the following expression for the differential
cross-section:

dσ

dΩ
= |fn(θ, ϑ)|2 =

4π2µ2k0

kn

∫∫∫
dr1dr2dR

×
∑

n

ϕ∗
n(R)Ψ∗

n(r1, r2)[ Vp−He − 2/R ]ϕ0(R)Ψg(r1, r2)

(11)

where k0 is the incident channel wavenumber and ϕ∗
n(R)

is the solution to the homogeneous part of (7) compatible

with the asymptotic boundary condition (10) i.e. ϕ∗
n(R)

is the outgoing Coulomb wavefunction for positrons. For
the ϕ0(R) initial positron wave function we take a plane
wave with incident wavenumber k0. The total ionization
cross-section, σ+, is obtained by integrating (11) over the
solid angle dΩ. For final states we sum over the possible n
and, considering energy conservation (9). As initial helium
state we take the ground state wave function Ψg(r1, r2).
This approximation helps us to take advantage of our con-
tinuum wave function built up from a large number of
different configurations.

We now consider the helium channel wave function. In
the following we restrict ourselves to singlet helium states
only. For the single-particle wave functions we use an an-
gular momentum representation with spherical harmon-
ics Yl,m, hydrogen-like radial Slater functions and radial
regular Coulomb wave packets. The Slater function reads

Sn,l,m,κ(r) = c(n, κ)rn−1e−κrYl,m(θ, ϕ) (12)

where c(n, κ) is the normalization constant. A regular
Coulomb wave packet

Ck,l,m,Z(r) = q(k, ∆k)Yl,m(θ, ϕ)

Ek+∆Ek/2∫
Ek−∆Ek/2

Fk,l,Z(r) dk

(13)
is constructed from radial Coulomb function of the well-
known form [17]

Fk,l,Z(r) =

√
2k

π
e

πη
2

(2ρ)l

(2l + 1)!
e−iρ | Γ (l + 1 − iη)|

× 1F1(1 + l + iη, 2l + 2, 2iρ), (14)

where η = Z/k, ρ = kr and q(k, ∆k) is the normalization
constant.

The wave packets cover a small energy interval ∆Ek

and thereby form a discrete representation of the contin-
uum which can be incorporated into our finite basis set.
The normalized Coulomb wave packets are calculated up
to 315 a.u. radial distance or more to achieve a deviation
of less then one percent from unity in their norm.

In our approach, two different effective charges Z have
been used to take into account the difference between the
singly- and the doubly-ionized electrons. For singly- and
doubly-ionized states we used Z = 1 and Z = 2 respec-
tively. A slight deviation from the effective charge gives
practically no change in the final spectrum. We cover the
single and double continuum up to energies of 10 a.u.
equidistantly.

Out of the single particle states (12, 13) we have used
17 s-functions (9 Slater functions (sf), 4 wave packets (wp)
with Z = 1.0 and 4 wp with Z = 2.0), 18 p-functions
(6 sf, 6 wp with Z = 1.0 and 6 wp with Z = 2.0) and
12 d-functions (4 sf, 4 wp with Z = 1.0 and 4 wp Z = 2.0)
to construct the symmetrized basis functions fLM

µ (r1, r2).
The non-orthogonality between the single-particle wave
functions was taken fully into consideration throughout
the diagonalization process.
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Fig. 1. Positron impact ionization cross-sections for helium.
Experimental data: (•) Knudsen et al. [2]; (◦) Moxom et al. [5];
(�) Fromme et al. [1]; (�) Mori and Sueoka [3]; (∗) Jacobsen
et al. [4]. The dashed line is from work of Campeanu et al. [11]
and the solid line represents our calculations.

For the L = 0 configurations we have used ss+pp+dd
angular correlated wave functions to get a ground state
energy of −2.901 a.u. which is reasonably accurate com-
pared to the “exact” value of −2.903 a.u. For the L = 1, 2
states we have used only sp or sd configurations. The
diagonalization process gives us 465 basis states up to
27 a.u. energy. Our results clearly demonstrate that the
channels above 17 a.u. contribute very little to the ion-
ization probabilities, which is anticipated from energy
conservation. The maximum positron impact energy is
500 eV/27.2 eV = 18.38 a.u.

Between the first ionization threshold (−2.0 a.u.) and
the lowest autoionizing bound state (−0.6931 a.u. for
L = 1) our basis contains 22 states providing the ma-
jor contribution for single ionization. Below the double-
ionization threshold (0.0 a.u.), autoionizing bound states
(such as 2s2) are embedded in the low-lying single-electron
continuum. With the help of complex scaling these states
can be identified and filtered out from the relevant ion-
ization channels. The convergence checks of the calcula-
tions will be mentioned later. A detailed list of single- and
double-excited states used in our calculation can be found
in [14].

3 Results and discussion

To obtain the total cross-sections we solved equation (11)
for 300 channels. The remaining 465 − 300 = 165 chan-
nels correspond to excited and double-ionized states which
do not contributes to single-ionization cross-sections. We
compare our results for ionization in Figure 1 with the cal-
culation of [11] and experimental data of [1–5] for positron

impact energies between ionization threshold and 500 eV.
Between the first ionization threshold (24.56 eV) and
50 eV our calculation is in good agreement with the exper-
imental data and the results of [11]. Above this energy our
theory gives larger cross-sections than the theory of [11].
Only at 500 eV impact energy our result agrees with [11]
again. In the vicinity of 100 eV our theory exceeds even
the experimental data of [1] by 5 percent and lies between
the older [1] and newer measurements of [2,5]. We explain
these results with the large number of continuum states
which we have in this energy range.

Campeanu [11] used his DCPE5 (distorted wave
Coulomb plus plane waves with full energy range) mod-
ell [18] based on the prior form of the scattering T -matrix
using the atomic static potential and a polarized-orbital
polarization potential of [19]. In this model the final
positron and ionized electrons are represented by free
plane waves. We describe the ionized electron and the
outgoing positron by Coulomb functions as we mentioned
already.

After this basis-set test calculation we concentrated on
ionization processes where the helium ion is in the ground
state or simultaneously excited. We analysed the following
reactions:

e+ + He(1s1s) → He+(1s) + e+ + e− (15A)

e+ + He(1s1s) → He+(2s) + e+ + e− (15B)

e+ + He(1s1s) → He+(2p) + e+ + e− (15C)

where e+ stands for positron and e− for electron, respec-
tively. In the first process the helium ion remains in its
1s ground state and the following two reactions include
excitations. Figure 2 shows a comparison between our re-
sults and the calculations of Moores [10] for cross-sections
obtained for simultaneous ionization and excitation of he-
lium by positron impact (Eqs. (15B, 15C)), and our ion-
ization cross-section results when the helium ion is not
excited (Eq. (15A)).

The first ionization process (Eq. (15A)) gave us the
largest cross-sections. This result meets our physical
intuition saying that sate selective ionization without
additional excitation has the largest cross-section. This
cross-section is a factor of 24 larger than our pre-
dicted cross-section for He+(2p) excitation and a factor
of 40 large than for He+(2s) excitation. To alleviate fur-
ther comparisons our cross-section is σ = 152×10−19 cm2

at 160 eV positron energy. This cross-section curve has
a maxima in the vicinity of 110 eV and has a slow decay
above this energy. Due to our knowledge there is no exper-
imental or theoretical work available about this process.

For ionization with simultaneous excitation we com-
pared our results with the work of Moores [10]. Our re-
sult predicts a cross-section σ = 3.77 × 10−19 cm2 at
160 eV positron energy for simultaneous He+(2s) exci-
tation which is a factor of 5 larger than the prediction
of [10]. For ionization escorted with (2p) excitation our
calculation exceeds the work of [10] by a factor of 4.4 at
160 eV positron energy giving σ = 6.4 × 10−19 cm2. We
explain our higher cross-section predictions with the de-
tailed representation of the corresponding energy range.
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Fig. 2. Ionization cross-sections of helium in positron impact
where the helium ion is in a well defined state. The three high
lying curves represent our results, the solid line shows our re-
sults for equation (15A) process, long dashed curve for He+(2p)
and the dash-dot-dashed is for He+(2s) simultaneous excita-
tion. The dotted line shows the results of Moores [10] for ion-
ization and He+(2s) excitation (Eq. (15B)), the short dashed
curve is Moores [10] calculation for ionization and He+(2p)
excitation (Eq. (15C)).

To check the convergence in the last three calculations
is essential. We solved the eigenvalue equation through the
complex scaling an filtered out the rotating continua from
bound states and resonances. All the single-ionization
states lie on different straight lines which have one end on
the real axis. This end point is the energy value of the ion-
ized helium atom e.g. He+(2s). With this method we know
all the three different helium states He+(1s), He+(2s) and
He+(2p) which we need. Another independent method is
to investigate the helium electron densities and check the
first maxima of the density. The position of this maximum
shows us the radius of the bound electron orbital which is
different for the 1s and the 2s states. Such electron densi-
ties can be found in [13]1. These two independent methods
gave us the same result.

To calculate the cross-sections we solved equation (11)
with real eigenvalues and wave functions, the complex
scaling only helped us to identify the states. We took
more and more states into to sum of equation (11) till we
reached convergence. Our result demonstrated that states
where the ionized electron has more energy than the in-
cident energy of the positron does not contribute to the
sum, which is anticipated from energy conservation.

Moores [10] applied a sophisticated distorted-wave
method with close-coupled target states and needed three
different ab initio computer codes running on a super-
computer to get his results. More technical details can be
found in [20].

1 The cited densities are on pages 42 and 43.

Unfortunately there are no experimental data for these
last two processes. We hope that our work together
with [10] will stimulate experiments.

4 Summary

We have presented Coulomb distorted wave Born approx-
imation calculations with coupled-channel helium target
states for ionization of helium in positron impact. The
channel functions were built up by Slater functions mainly
to describe the bound states and regular Coulomb wave
packets we use to approximate the continua. The inci-
dent positron energy was taken between the ionization
threshold and 500 a.u. The accuracy achieved is excellent
compared to experimental data and other theory. Due to
our Coulomb wave packet basis we can approximate the
helium soft electron continuum in detail, and reach cross-
sections larger than another more sophisticated distorted-
wave model [9]. Our method is easy to implement and
does not need enormous computer capacity such as [10].
At some energies our results are even 5 percent higher
than old experimental data.

Three different partial ionization cross-section calcu-
lations are presented also. For ionization without target
excitation, (the He+ ion remains in the 1s ground state)
no theoretical or experimental work was done till now.
Ionization with simultaneous target excitation was also
examined and compared to another distorted-wave calcu-
lations. Our results are a factor of 4.4 larger for ionization
He+ and (2s) excitation than the results of Moores [10].
For ionization and (2p) excitation we got cross-sections
which are a factor of 5 higher than Moores cross-sections.
As explanation we emphasise the necessity of detailed ap-
proximation of the soft Coulomb continuum.

The motivation for this work was to test and show the
validity of our coupled-channel helium states in positron
helium ionization. This kind of coupled-channel basis set
was successfully used in heavy-ion helium impact ioniza-
tion and photoionization earlier. As a final summary about
our three ionization study we may state that the proper
treating of the soft coulomb continuum is essential. Fur-
ther studies such as laser-assisted positron collisions are
in progress.
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