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Abstract. The Taylor expansion procedure introduced by Apagyi and Scheid (1983 J. Phys. G:

Nucl. Phys. 9 73) for localization of nonlocal potentials has been re-examined and improved to

include third-order corrections. The method has been applied to the real part of the nonlocal

potential describing n–40Ca scattering. Comparison with exact results and investigation of phase

shifts show that inclusion of second-order correction terms may be sufficient to obtain a quick

assessment of the local space effect of the underlying nonlocal potential.

1. Introduction

It is well known that nonlocal potentials arise in the collisions of composite quantum

mechanical systems. These nonlocalities are due to contributions of inelastic and reaction

channels and the Pauli principle. Although the resulting coupled integro-differential equations

can be solved by standard numerical techniques, the accurate solution of the collision problem is

tedious and time-consuming even in the simplest case. Therefore, it is reasonable to investigate

and develop localization procedures which make the potentials local, thus enabling a quick

assessment of the local space effect of the underlying nonlocal potential.

A localization procedure was carried out by Perey and Buck [1]. Bencze and Zimányi,

and Buttle and Goldfarb outlined a similar localization method [2]. These investigations led

to the introduction of the so-called Perey–Buck factor which proved useful in several DWBA

codes to account for the exchange nonlocality in nucleon transfer reactions. Fiedeldey and co-

workers [3] applied a semi-classical WKB method for the localization of nonlocal potentials.

Peierls and Vin Mau [4] used a Wigner transform technique for treating the nonlocality.

Localization of nonlocal potentials arising in a microscopic treatment of nuclear reactions

has been carried out in [5].

In this paper we reconsider and improve the Taylor expansion localization method

introduced by Apagyi and Scheid [6]. This method is quite simple and predicts an energy

and angular momentum dependence of the localized potentials. Although the approximate

local potentials belonging to the different orders of the expansion are formally not phase-

equivalent with the nonlocal potential, they may still provide accurate phase shifts if enough

terms are retained in the procedure. In the original formulation [6], the expansion up to second

order (λmax = 2) was considered and here we also include the third-order correction terms

(λmax = 3). If the sequence of the approximate local potentials corresponding to different
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orders of the Taylor expansion shows a convergence, then these local potentials can describe

the scattering effect of the original nonlocal potential, giving similar phase shifts.

As a simplification of the original method [6] we apply the Taylor expansion technique

to the radial wavefunction fl(r) = rRl(r) instead of Rl(r). In doing so, much simpler

expressions can be obtained than those given in [6]. By retaining terms up to the third order in

the Taylor expansion, the equations can be cast into a Schrödinger equation with an effective

local potential. The localized potentials so obtained depend explicitly on the scattering energy

E and the angular momentum quantum number l. An analytical formulation of the method

has been elaborated elsewhere [7] for the case of a nonlocal model potential of the form

Kl(r, r
′) = (rr ′)l exp(−ar − a′r ′). This analytical model has served as a test case of the

numerical code for localizing more realistic nonlocal potentials.

The method can be applied to nonlocal kernels Kl(r, r
′) which are peaked around the main

diagonal in the r, r ′ space. This condition is usually fulfilled in nuclear physics where Gaussian-

type effective interactions determine the potentials. As an application of the procedure, we

consider the real part of the nonlocal potential arising in the scattering of neutrons by the

nucleus 40Ca. This potential of Frahn–Lemmer-form usually serves as the archetype of different

localization procedures [3–5] so that comparison of results with others is easily possible.

Section 2 contains the theoretical background of the localization procedure. In section 3

the theory is applied to a nonlocal model by calculating the localized potentials in various

orders of the Taylor expansion and the phase shifts generated by them. This paper ends with

a short summary.

2. Theory

In [6] the following Schrödinger equation with nonlocal kernel Kl and spherical symmetric

direct potential VD(r) was investigated:
(

−
h̄2

2µ

1

r

d2

dr2
r +

h̄2

2µ

l(l + 1)

r2
+ VD(r) − E

)

Rl(r) +

∫ ∞

0

Kl(r, r
′)Rl(r

′)r ′2 dr ′ = 0. (1a)

However, it is more useful to introduce the usual transformation Rl(r) = fl(r)/r and

rewrite (1a) as the Schrödinger equation for the radial wavefunction fl(r),
(

−
h̄2

2µ

d2

dr2
+

h̄2

2µ

l(l + 1)

r2
+ VD(r) − E

)

fl(r) +

∫ ∞

0

K̃l(r, r
′)fl(r

′) dr ′ = 0, (1b)

where the radial nonlocal kernel K̃l given by

K̃l(r, r
′) = rKl(r, r

′)r ′ = K̃
†
l (r, r ′)

is assumed as Hermitian.

The known boundary conditions for the radial wavefunctions are

fl(0) = 0, and fl(r → ∞) = Al sin(kr + δl), (1c)

with δl and Al being the phase shift and normalization constant, respectively, in the lth partial

wave. In the following we use a Taylor expansion for the radial wavefunction fl(r
′) valid in

the vicinity of r:

fl(r
′) =

∞
∑

λ=0

(r ′ − r)λ

λ!
∂λ
r fl(r). (2)

In order to apply this expansion we consider general matrix elements of the nonlocal term

in (1b)
∫ ∞

0

∫ ∞

0

g∗
l (r)

1
2
(K̃l(r, r

′) + K̃
†
l (r, r ′))fl(r

′) dr dr ′. (3)
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These matrix elements are Hermitian. They can be written with Taylor expansions for gl(r)

and fl(r) as follows:
∫ ∞

0

g∗
l (r)W

(l)
λ (r)fl(r) dr

with

W
(l)
λ (r) =

1

2λ!
(U

(l)
λ (r)∂λ

r + (−1)λ∂λ
r U

(l)∗
λ (r)) = W

(l)†
λ (r), (4)

where the moments of the radial kernel are defined by

U
(l)
λ =

∫ ∞

0

K̃l(r, r
′)(r ′ − r)λ dr ′. (5)

Therefore, we are allowed to replace the nonlocal kernel in (1b) by a local Hermitian potential:
∫ ∞

0

K̃l(r, r
′)fl(r

′) dr ′ ⇒

∞
∑

λ=0

W
(l)
λ (r)fl(r). (6)

Let us relate, in (2), the quantities (r − r ′) and ∂r to the measure 1 of the nonlocality and the

local wavenumber k(r), respectively. Then one can assess that the Taylor expansion procedure

is useful if 1 × k is small, i.e. in cases of low energies and/or narrow nonlocalities.

In [6] the Taylor expansion has been performed explicitly up to the second order (λmax = 2)

only. However, (6) allows one to go beyond the second-order approximation and to also include

terms arising from the third-order expansion with λmax = 3. The terms containing the bare

third-order derivative occurring in the form g(r)∂3
r , where g(r) is an arbitrary function of

r , drop out if U
(l)
λ = U

(l)∗
λ . This condition is fulfilled for all real-valued nonlocal kernels

Kl(r, r
′) = K∗

l (r, r ′). The bare first-order derivative g(r)∂r occurring in the second- and

third-order terms (W
(l)

2 and W
(l)

3 , see later) will be transformed out as shown below.

In this way, we obtain a scheme where the equation with terms resulting from the expansion

up to third order (λmax = 3) in the Taylor expansion can be cast into a Schrödinger equation

with effective (localized) potentials in which the contributions from the various orders of λ

can explicitly be studied and visualized.

Going up to third order in the Taylor expansion (putting λmax = 3 in (2)), one has to deal

with the following Hermitian potential operators:

W
(l)

0 (r) = U
(l)

0 (r), (7)

W
(l)

1 (r) = − 1
2
U

(l)′

1 (r), (8)

W
(l)

2 (r) = 1
4
U

(l)′′

2 (r) + 1
2
U

(l)′

2 (r)∂r + 1
2
U

(l)

2 (r)∂2
r , (9)

W
(l)

3 (r) = − 1
12

U
(l)′′′

3 (r) − 3
12

U
(l)′′

3 (r)∂r − 3
12

U
(l)′

3 (r)∂2
r , (10)

where primes denote derivatives with respect to the relative distance r . It is a simple matter to

prove that the potential operators given by (7)–(10) are indeed Hermitian.

By using these formulae in (1b) together with (6), the radial Schrödinger equation becomes

Al(r)
d2fl(r)

dr2
+ Bl(r)

dfl(r)

dr
+ (Cl(r) − E)fl(r) = 0, (11)

where fl(r) is now an approximation of the true wavefunction appearing in (1b).

The functions Al(r), Bl(r), and Cl(r) are defined as follows:

Al = −
h̄2

2µ
+

1

2
U

(l)

2 −
3

12
U

(l)′

3 ≡ −
h̄2

2M̃l(r)
, (12)

Bl = 1
2
U

(l)′

2 − 3
12

U
(l)′′

3 = A′
l, (13)

Cl =
h̄2

2µ

l(l + 1)

r2
+ VD(r) + U

(l)

0 −
1

2
U

(l)′

1 +
1

4
U

(l)′′

2 −
1

12
U

(l)′′′

3 . (14)
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In the next step we transform (11) into a usual Schrödinger equation with a constant mass

µ and without a first-order derivative. This can be achieved by introducing a transformation

Tl(r) with the following definition:

Tl(r)fl(r) = f̃l(r), Tl(r → ∞) = 1. (15a)

The condition of disappearance of the first derivative f̃ ′
l from (11) leads to a differential

equation for the transformation function Tl(r):

T ′
l /Tl = Bl/(2Al). (15b)

Finally, we obtain the Schrödinger equation in the required form:

−
h̄2

2µ
f̃ ′′

l +

(

h̄2

2µ

l(l + 1)

r2
+ Ṽl − E

)

f̃l = 0 (16)

with the ‘localized’ potential

Ṽl = E −
h̄2

2µ

l(l + 1)

r2
−

h̄2

2µ

[

Cl − E

Al

−
1

4

(

Bl

Al

)2

−
1

2

B ′
lAl − BlA

′
l

A2
l

]

(17)

which is correct up to third order of the Taylor expansion.

The effective potential (17) depends explicitly on the scattering energy E and the angular

momentum l in the interaction domain of the scattered particles. At large relative distances

where the effect of the nonlocality is negligible and the moments U
(l)
λ of the nonlocal kernel

K̃l(r, r
′) become zero, the effective potential approaches the direct potential VD(r) contained

in the function Cl(r) (see (14)).

The function Al(r) is related to the effective mass M̃l(r) = −h̄2/
(

2Al(r)
)

whose

dependence on r and l originates entirely from the nonlocality via the second- and third-

order moments, U
(l)

2 and U
(l)

3

′
, respectively. In the regions where Al(r) = 0 occurs (in the

case of broad nonlocality), the effective mass becomes infinite; in such cases an investigation

of higher-order corrections is indispensable. The function Bl(r) multiplying the first derivative

of the approximate scattering wavefunction in (11) is related to the momentum. The function

Cl(r) is related to the centrifugal potential and the direct interaction VD(r). It is observed that

both functions Al and Bl acquire constant values in the lower approximations (λmax = 0, 1);

in those cases the nonlocal effects enter via the function Cl(r).

One may generalize the above method to coupled channels along the lines of [6]. In this

case the functions Ṽl , Al , Bl , and Cl are matrices depending on the channel quantum numbers.

Formula (17) for the local potential matrix coincides with the corresponding equation (37)

of [6], the only exception is the different definition of the moments U
(l)
λ .

3. Application and discussion

3.1. Frahn–Lemmer-type nonlocality for n–40Ca scattering

The radial kernel of the Frahn–Lemmer-type nonlocality [3, 5, 8] is given by (all lengths

measured in fm):

K̃l(r, r
′) = 4πrr ′V (R)Hl(r, r

′),

(

R =
r + r ′

2

)

, (18a)

with the form factor

V (R) =
−71

1 + e(R−4.17)/0.65
MeV, (18b)
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Figure 1. Radial nonlocal kernels K̃l(r, r
′) of Frahn–Lemmer-type in units of MeV fm−1 for

scattering of neutrons by 40Ca; (a) l = 0, (b) l = 2, (c) l = 4, (d) l = 6.

and the nonlocality factor

Hl(r, r
′) =

1

(πγ 2)3/2
e−(r2+r ′2)/γ 2

il(2rr ′/γ 2), (γ = 0.85 fm2). (18c)

The modified Bessel functions il originate from the angular integration [9].

This potential fits the low-energy data of neutron scattering on a 40Ca nucleus. The model

has been used in [5] to compare localized potentials with exact ones and in [8] to reconstruct

the nonlocality from the phase shifts. The kernel (18a) is visualized in figures 1(a)–(d) for

l = 0, 2, 4, 6, respectively. The three-dimensional plots clearly show that the nonlocality is

concentrated along the diagonal r ∼ r ′ and its magnitude becomes smaller as l increases.

The functions Al(r), Bl(r), and Cl(r) which play a decisive role in the construction of

the localized potentials by the Taylor expansion method are exhibited in figures 2(a)–(c) for

l = 0, 2, 4, 6 in the third-order approximation (λmax = 3). It can be seen in figure 2(a) that

the function Al(r) admits only negative values. This ensures that the effective mass arising

due to nonlocalities via the second- and third-order moments U
(l)

2 and U
(l)

3 remains positive

on the whole axis of r . The nonlocal effect which decreases the effective mass (increases |Al|)

becomes smaller for higher angular momenta l. As figure 2(b) shows, Bl is generally small

compared withAl indicating that the change of the effective mass is not significant in the domain

of the nonlocality of Frahn–Lemmer-type. Outside the nonlocality range, the function Cl(r)

is equal to the sum of the centrifugal barrier and the direct potential (see (14)). In the present

model, the local potential is set to zero: VD(r) = 0. Therefore, C0 (full curve in figure 2(c)) di-

rectly shows the local contributions of the nonlocal kernel via the various moments up to λmax =

3. The steep up-rising behaviour of C0(r) as r → 0 results from the derivatives of the various

moments U
(0)

1

′
, U

(0)

2

′′
, U

(0)

3

′′′
(see (14)). For l 6= 0, Cl is dominated by the centrifugal potential.
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Figure 2. The functions Al(r), Bl(r), and Cl(r) involved in the Taylor expansion up to λmax = 3 for

localization of the Frahn–Lemmer-type potential of (18); full curves: l = 0, long-dashed curves:

l = 2, dashed curves: l = 4, dotted curves: l = 6.

3.2. Localized potentials

Figure 3 shows the localized (effective) potentials Ṽl(r) at l = 0, 2, 4, 6 and E = 30 MeV,

obtained by the Taylor expansion method using (17) for the Frahn–Lemmer-type nonlocality

given by (18). Each part of figure 3 exhibits at least four curves corresponding to the four

possible orders of the approximation in the Taylor expansion up to λmax = 0, 1, 2, or 3,

respectively. The dot-dashed curves in figures 3(a)–(c) also contain the exact local potentials

which have been taken from [5]. These phase equivalent potentials can be obtained by

manipulating with the Wronskian of the exact solutions fl(r). (For details see [5].)

From figure 3 it is apparent that the localized potentials belonging to the two lower

approximations (λmax = 0, 1; dotted and short-dashed curves) and to the two higher

approximations (λmax = 2, 3; long-dashed and full curves), show a different behaviour. This

can be explained by the structure of the functions Al(r), Bl(r), and Cl(r). According to (12)–

(14) we obtain Al = const 6= 0, Bl = 0, and Cl = h̄2l(l + 1)/2µr2 + VD + U
(l)

0 − U
(l)

1

′
/2

in the lower approximations (λmax = 0, 1) so that the localized potential (17) simplifies

to Ṽl = VD + U
(l)

0 − U
(l)

1

′
/2. The first nontrivial corrections come from the second-order

expansion (λmax = 2) modifying the mass of the scattered particle as a function of r due

to the nonlocal interaction. This modification may be quite large and dramatic, sinceAl(r)
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Figure 3. Localized potentials Ṽl(r) obtained for the Frahn–Lemmer nonlocal potentials in various

orders λ of the Taylor expansion at E = 30 MeV; dotted curves: λ = 0, short-dashed curves: λ = 1,

long-dashed curves: λ = 2, full curves: λ = 3, dot-dashed curves: exact (Wronskian) results as

given by [5]. (a) l = 0, (b) l = 2, (c) l = 4, (d) l = 6.

appears in the denominator in (17). If A(r) becomes very small compared with Bl(r) and

Cl(r), then the localized potential is much enhanced. The first-order term λmax = 3 in (12)

does not contribute much to the mass because 1
2
U

(l)

2 � 3
12

U
(l)′

3 . Going up to higher order in

λmax, higher derivatives with respect to r cannot be eliminated with any kind of transformation

to obtain a second-order Schrödinger equation. Their contributions should be small if the

Taylor expansion (6) of the nonlocal kernel term is rapidly converging with λ. We observe in

figures 3(a)–(c) that localized potentials in the second- and third-order approximation lie much

closer to the exact (Wronskian) ones. Notice that the Taylor expansion localization method, in

the second- and third-order aproximation, also begins to mimic the ‘kink’ of the exact potential

around r ∼ 1 fm in the s-wave channel (see figure 3(a)).

In order that the Taylor expansion procedure be practical, i.e. the second-order

approximation be a good one, the localized potentials in the second and third approximations

(λmax = 2 and 3) should not differ too greatly from each other. That is precisely what we

observe in each part of figure 3, apart from the very interior region of 0 6 r 6 0.5–1.5 fm.

From the difference between the second- and third-order potentials we expect the sequence of

phase shifts generated by the localized potentials of different order λ of approximation to show

a faster convergence to the exact values in the higher partial waves l than in the lower ones.



330 I F Barna et al

Table 1. Tangents of several phase shifts generated by the localized potentials in various orders λ

of approximation at three energies. Values in lines marked by λ = ∞ refer to exact values of tan δl

generated by the nonlocal potential given by (18).

E (MeV) λ tan δ0 tan δ1 tan δ2

1 0 4.666 −0.208 0.166

1 7.433 −0.191 0.141

2 −0.776 −0.463 0.037

3 −0.774 −0.490 0.035

∞ −0.624 −0.436 0.040

E (MeV) λ tan δ0 tan δ1 tan δ3 tan δ5

10 0 −1.188 −8.352 0.068 0.075

1 −0.978 −5.720 0.067 0.063

2 1.236 1.184 −0.196 0.067

3 1.274 1.082 −0.205 0.067

∞ 1.790 1.373 −0.182 0.068

E (MeV) λ tan δ0 tan δ2 tan δ4 tan δ6 tan δ8

30 0 1.206 0.142 −1.098 0.766 0.048

1 1.424 0.201 −1.017 0.690 0.040

2 −0.700 −0.760 −2.077 0.644 0.042

3 −0.656 −0.819 −2.117 0.655 0.043

∞ −0.374 −0.619 −1.951 0.655 0.043

Let us discuss the transformation function Tl(r) = exp(−
∫ ∞

r
Bl(r)/(2Al(r)) dr) obtained

from (15b). In the outer region r > 1.5 − 3, Bl(r) is positive and Al(r) negative as shown in

figure 2. Therefore, Tl(r) increases over 1.0 for decreasing values of r up to a maximum at

Bl(r) = 0. In the interior region Tl(r) is decreasing with decreasing r .

In table 1 the tangents of phase shifts generated by the various localized potentials are

listed at three scattering energies and at several l values, together with the exact values listed

in the lines indicated by λ = ∞. From table 1 we see that it is necessary to go up to second

order in the Taylor approximation since the values of tan δl belonging to the zeroth- and first-

order approximations (λ = 0, 1) differ greatly, sometimes by an order of magnitude and even

in sign, from the exact values. We also observe, as a justification of the earlier analysis in

connection with figure 3, that the convergence is better in the higher partial waves. In the

s-wave the convergence gets better as the energy becomes lower. This is also expected as

remarked above. It is characteristic for the Taylor expansion method that it proceeds with

the power of 1 × k, where 1 denotes the range of the nonlocality and k(r) denotes the local

wavenumber. This wavenumber takes the effects of the potential including the centrifugal part

into account. Therefore, the convergence of the method is faster for larger l-values, because

then the local wavenumber is smaller. As the energy gets smaller, the succesive terms in the

Taylor expansion give even smaller contributions so that the convergence gets better.

Finally, we note that performing calculations of phase shifts without using the symmetrized

form of W
(l)
λ (r) given by (4), but using the localized potential operator W

(l)
λ in a non-Hermitian

form

W̃
(l)
λ (r) =

1

λ!
U

(l)
λ (r)∂λ

r , (19)

gives practically the same results as shown in table 1. Additionally, the underlying localized

potentials are almost the same. However, in more complicated cases such as of coupled channel

reactions or of more sophisticated nonlocal potentials, the use of W
(l)
λ (r) of (4) is the correct
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procedure. In cases of narrow nonlocalities, we may use (19) instead of (4) at the price of not

being able to assess the effect of the third-order corrections. In that case one obtains simpler

expressions for the functions Al , Bl , and Cl , whereas (17) for the localized potentials remains

the same.

4. Summary

The localization procedure with a Taylor expansion of [6] is modified, improved and

investigated. The modification is connected with the use of the transformed radial wavefunction

fl in the Taylor expansion instead of the full radial wavefunction Rl = fl/r considered in [6].

An improvement of the old procedure is the introduction of the third-order terms into the

localization procedure. The inclusion of third-order terms allows one to draw conclusions

about the convergence of the localization procedure since there is a marked difference between

the lower-order (λmax = 0, 1) and higher-order (λmax = 2, 3) approximations.

The modified and improved procedure is applied, for the first time, to the case of nonlocal

potentials of Frahn–Lemmer-type. We found that the approximation up to λmax = 3 should

be calculated in order to draw conclusions about the convergence of the method and the effect

of the underlying nonlocality. The Taylor expansion localization procedure can be used for

nonlocal potentials where the nonlocality is restricted along the main diagonal of the (r, r ′)-

space. In the case of broader nonlocalities, for example in the case of a nonlocality originating

from the exchange of nucleons between clusters, higher orders of the Taylor expansion are

needed [7]. However, this procedure leads to higher than second-order differential equations

whose solution and interpretation in the usual terms of local potentials might be difficult.

In summary, the investigations above suggest that the Taylor expansion localization

technique may be useful in cases when the nonlocality is concentrated along the main diagonal

r ∼ r ′, the local wavenumber is less or comparable with the inverse of the range of the

nonlocality, and/or higher angular momentum channels than s-waves are of interest.
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