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Abstract In this article we will present pure three dimensional analytic solutions for the Navier–Stokes and the

continuity equations in Cartesian coordinates. The key idea is the three-dimensional generalization of the well-known

self-similar Ansatz of Barenblatt. A geometrical interpretation of the Ansatz is given also. The results are the Kum-

mer functions or strongly related. Our final formula is compared with other results obtained from group theoretical

approaches.

PACS numbers: 47.10.ad
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To describe the dynamics of viscous incompressible flu-
ids the Navier–Stokes (NS) partial differential equation
(PDE) together with the continuity equation have to be
investigated. In Cartesian coordinates and Eulerian de-
scription these equations have the following form:

∇v = 0, vt + (v∇)v = ν△v − ∇p
ρ

+ a , (1)

where v, ρ, p, ν, a denote respectively the three-
dimensional velocity field, density, pressure, kinematic vis-
cosity, and an external force (like gravitation) of the in-
vestigated fluid (To avoid further misunderstanding we
use a for external field instead of the letter g, which
is reserved for a self-similar solution). In the follow-
ing ν, a are parameters of the flow. For a better trans-
parency in the following we use the coordinate notation
v(x, y, z, t) = u(x, y, z, t), v(x, y, z, t), w(x, y, z, t) and for
the scalar pressure variable p(x, y, z, t)

ux + vy + wz = 0 ,

ut + uux + vuy + wuz

= ν(uxx + uyy + uzz) −
px

ρ
,

vt + uvx + vvy + wvz

= ν(vxx + vyy + vzz) −
py

ρ
,

wt + uwx + vwy + wwz

= ν(wxx + wyy + wzz) −
pz

ρ
+ a . (2)

The subscripts mean partial derivations. According to
our best knowledge there are no analytic solutions for
the most general three-dimensional case. However, there
are various examination techniques available in the lit-
erature. Manwai[1] studied the N -dimensional (N ≥ 1)
radial Navier–Stokes equation with different kind of vis-
cosity and pressure dependences and presented analytical
blow up solutions. His works are still (1+1)-dimensional

(one spatial and one time dimension) investigations. An-
other well established and popular investigation method
is based on Lie algebra there are numerous studies avail-
able. Some of them are even for the three-dimensional
case, for more see [2]. Unfortunately, no explicit solutions
are shown and analyzed there. Fushchich et al.

[3] con-
structed a complete set of G̃(1, 3)-inequivalent Ansätze of
codimension 1 for the NS system, they present 19 differ-
ent analytical solutions for one or two space dimensions.
Their last solution is very closed to ours one but not iden-
tical, we will come back to these results later. Further two-
and three-dimensional studies based on group analytical
method were presented by Grassi et al.[4] They also pre-
sented solutions, which look almost the same as ours, but
they considered only 2 space dimensions. We will compare
these results to ours one at the end of the paper.

Recently, Hu et al.
[5] presented a study where sym-

metry reductions and exact solutions of the (2+1)-
dimensional NS were presented. Aristov and Polyanin[6]

used various methods like Crocco transformation, gener-
alized separation of variables or the method of functional
separation of variables for the NS and presented large
number of new classes of exact solutions. Sedov in his
classical work[7] presented analytic solutions for the tree-
dimensional spherical NS equation where all three velocity
components and the pressure have polar angle dependence
(θ) only. Even this kind of restricted symmetry led to a
non-linear coupled ordinary differential equation system
which a very rich mathematical structure. Some similarity
reduction solutions of the two-dimensional incompressible
NS equation was presented by [8]. Additional solutions are
avilable for the (2+1)-dimensional NS also via symmetry
reduction techniques by [9].

Beyond the NS system there are other important and
popular PDEs, which attract much interest and investiga-
tion. The applied methods are the same there, too. With-
out completeness we mention some examples. For one-
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dimensional cubic-quintic nonlinear Schrödinger equation
a quite general self-similar type of solution ψ(z, t) =
u(z, t) exp[iv(z, t)] was applied where u and v are real
functions.[10] The results are analytic solutions for an ex-
ternal potential with variable coefficients. A more general
type of this Ansatz u(z, t) = A(z)U [T (z, t)] exp(iϕ(z, t))
was used with success to get chirped and chirp-free self-
similar conoidal solitary wave solutions[11] for the same
equation. Such solutions can be generalized for multi-
dimensional spatial coordinates. There are analytic soli-
tary wave solutions available for the (3+1)-dimensional
Gross–Pitaevskii equation with the following Ansatz ψ =
u(x, y, z, t)R(t) exp[ib(t)(x2 + y2 + z2)].[12]

Fig. 1 A self-similar solution of Eq. (3) for t1 < t2. The
presented curves are Gaussians for regular heat conduc-
tion.

From basic textbooks the form of the one-dimensional
self-similar Ansatz is well-known[7,13−14]

T (x, t) = t−αf
( x

tβ

)

: = t−αf(η) , (3)

where T (x, t) can be an arbitrary variable of a PDE and
t means time and x means spatial dependence. The sim-
ilarity exponents α and β are of primary physical impor-
tance since α represents the rate of decay of the magni-
tude T (x, t), while β is the rate of spread (or contraction
if β < 0) of the space distribution as time goes on. The
most powerful result of this Ansatz is the fundamental or
Gaussian solution of the Fourier heat conduction equa-
tion (or for Fick’s diffusion equation) with α = β = 1/2.
These solutions are visualized on Fig. 1, for time points
t1 < t2. In the pioneering work of Leray[15] in 1934 at
the end of the manuscript he asks whether it is possi-
ble to construct self-similar solutions to the NS system
in R

3 in the form of p(x, t) = [1/(T − 1)]P (x/
√
T − t)

and v(x, t) = (1/
√
T − t)V (x/

√
T − t). In 2001 Miller

et al.
[16] proved the nonexistence of singular pseudo-self-

similar solutions of the NS system with such kind of solu-
tions. Unfortunately, there is no direct analytic calcula-
tion with the 3-dimensional self-similar generalization of
this Ansatz in the literature. We will show later on that
in our case the time dependence has the same exponents
as showed above.

Applicability of this Ansatz is quite wide and comes
up in various transport systems.[7,13−14,17−19] This Ansatz
can be generalized for two or three dimensions in various
ways one is the following

u(x, y, z, t) = t−αf
(F (x, y, z)

tβ

)

: = t−αf
(x+ y + z

tβ

)

:

= t−αf(ω) , (4)

where F (x, y, z) can be understood as an implicit param-
eterization of a two-dimensional surface. If the function
F (x, y, z) = x + y + z = 0, which is presented on Fig. 2,
then it is an implicit form of a plane in three dimensions.
At this point we can give a geometrical interpretation of
the Ansatz. Note that the dimension of F (x, y, z) still has
to be a spatial coordinate. With this Ansatz we consider
all the x coordinate of the velocity field vx = u where the
sum of the spatial coordinates are on a plane on the same
footing. We are not considering all the R3 velocity field
but a plane of the vx coordinates as an independent vari-
able. The Navier–Stokes equation - which is responsible
for the dynamics - maps this kind of velocities, which are
on a surface to another geometry. In this sense we can
investigate the dynamical properties of the NS equation
truly.

Fig. 2 The graph of the x + y + z = 0 plane.

In principle there are more possible generalization of
the Ansatz available. One is the following:

u(x, y, z, t) = t−αf
(

√

x2 + y2 + z2 − a

tβ

)

:

= t−αf(ω) , (5)

which can be interpreted as an Euclidean vector norm or
L2 norm. Now we contract all the x coordinate of the
velocity field u (which are on a surface of a sphere with
radius a) to a simple spatial coordinate. Unfortunately,
if we consider the first and second spatial derivatives and
plug them into the Navier–Stokes equation we cannot get
a pure η dependent ordinary differential equation (ODE)
system some explicit x, y, z or t dependence tenaciously
remain. For a telegraph-type heat conduction equation
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both these Ansatzes are useful to get solutions for the
two-dimensional case.[19]

Now we concentrate on the first Ansatz (4) and search
the solution of the Navier–Stokes PDE system in the fol-
lowing form:

u(x, y, z, t) = t−αf
(x+ y + z

tβ

)

,

v(x, y, z, t) = t−γg
(x+ y + z

tδ

)

,

w(x, y, z, t) = t−ǫh
(x+ y + z

tζ

)

,

p(x, y, z, t) = t−ηl
(x+ y + z

tθ

)

, (6)

where all the exponents α, β, γ, δ, ǫ, ζ, η, θ are real numbers
(Solutions with integer exponents are called self-similar
solutions of the first kind, non-integer exponents mean
self-similar solutions of the second kind). The functions
f, g, h, l are arbitrary and will be evaluated later on. Ac-

cording to Eq. (2) we need to calculate all the first time
derivatives of the velocity field, all the first and second spa-
tial derivatives of the velocity fields and the first spatial
derivatives of the pressure. All these derivatives are not
presented in details. Note that both Eq. (2) and Eq. (8)
have a large degree of exchange symmetry in the coordi-
nates x, y, and z. Later we want to have an ODE system
for all the four functions f(ω), g(ω), h(ω), l(ω) which all
have to have the same argument ω. This dictates the
constraint that β = δ = ζ = θ have to be the same
real number, which reduces the number of free parame-
ters (let us use the β from now on ω = (x+ y + z)/tβ).
From this constrain follows that e.q. ux = f ′(ω)/tα+β ≈
vy = f ′(ω)/tγ+β where prime means derivation with re-
spect to ω. This example shows the hidden symmetry of
this construction, which may help us. For the better un-
derstanding we present the second equation of (2) after
the substitution of the Ansatz (9).

− αt−α−1f(ω) − βt−α−1f ′(ω)ω + t−2α−βf(ω)f ′(ω) + t−γ−α−βg(ω)f ′(ω) + t−ǫ−α−βh(ω)f ′(ω)

= ν3t−α−2βf ′′(ω) − t−µ−βl′(ω)

ρ
. (7)

To have an ODE which only depends on ω (which is now the new variable instead of time t and the radial
components) all the time dependences e.g. t−α−1 have to be zero or all the exponents have to be the same. After some
algebra it comes out that all the six exponents α− ζ included for the velocity filed (the first three functions in Eq. (8))
have to be +1/2. The only exception is the term with the gradient of the pressure. There η = 1 and θ = 1/2 have
to be. Now in Eq. (9) each term is multiplied by t−3/2. Self-similar exponents with the value of +1/2 are well-known
from the regular Fourier heat conduction (or for the Fick’s diffusion) equation and give back the fundamental solution
which is the usual Gaussian function. For pressure the η = 1 exponent means, a twice times quicker decay rate of the
magnitude than for the velocity field.

Now we may write down the concrete form of the Ansatz (6)

u(x, y, z, t) = t−1/2f
(x+ y + z

t1/2

)

= t−1/2f(ω), v(x, y, z, t) = t−1/2g(ω) ,

w(x, y, z, t) = t−1/2h(ω), p(x, y, z, t) = t−1l(ω) , (8)

and the corresponding coupled ODE system

f ′(ω) + g′(ω) + h′(ω) = 0 ,

− 1

2
f(ω) − 1

2
ωf ′(ω) + [f(ω) + g(ω) + h(ω)]f ′(ω) = 3νf ′′(ω) − l′(ω)

ρ
,

− 1

2
g(ω) − 1

2
ωg′(ω) + [f(ω) + g(ω) + h(ω)]g′(ω) = 3νg′′(ω) − l′(ω)

ρ
,

− 1

2
h(ω) − 1

2
ωh′(ω) + [f(ω) + g(ω) + h(ω)]h′(ω) = 3νh′′(ω) − l′(ω)

ρ
+ a . (9)

From the first (continuity) equation we automatically get

f(ω) + g(ω) + h(ω) = c, and f ′′(ω) + g′′(ω) + h′′(ω) = 0 , (10)

where c is proportional with the constant mass flow rate. Implicitly, larger c means larger velocities. From the second
equation we can express −l′/ρ and can substitute it into the third and fourth equation. After some algebra we arrive
at

f(ω) − g(ω)

2
+
ω(f ′(ω) − g′(ω))

2
+ 3ν(f ′′(ω) − g′′(ω)) + [f(ω) + g(ω) + h(ω)](g′(ω) − f ′(ω)) = 0 ,

f(ω) − h(ω)

2
+
ω(f ′(ω) − h′(ω))

2
+ 3ν(f ′′(ω) − h′′(ω)) + [f(ω) + g(ω) + h(ω)](h′(ω) − f ′(ω)) + a = 0 . (11)

Now inserting f ′′(ω) = −g′′(ω)− h′′(ω), f ′(ω) = −g′(ω)− h′(ω), and f(ω) = c− g(ω)− h(ω) we get the final equation

9νf ′′(ω) − 3(ω + c)f ′(ω) +
3

2
f(ω) − c

2
+ a = 0 . (12)
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The solutions are the Kummer functions[20]

f(ω) = c1 · KummerU
(

−1

4
,
1

2
,
(ω + c)2

6ν

)

+ c2 · KummerM
(

−1

4
,
1

2
,
(ω + c)2

6ν

)

+
c

3
− 2a

3
, (13)

where c1 and c2 are integration constants. The KummerM function is defined by the following series

M(a, b, z) = 1 +
az

b
+

(a)2z
2

(b)22!
+ · · · + (a)nz

n

(b)nn!
, (14)

where (a)n is the Pochhammer symbol

(a)n = a(a+ 1)(a+ 2) · · · (a+ n− 1), (a)0 = 1 . (15)

The KummerU function is defined from the KummerM function via the following form

U(a, b, z) =
π

sin(πb)

[ M(a, b, z)

Γ(1 + a− b)Γ(b)
− z1−bM(1 + a− b, 2 − b, z)

Γ(a)Γ(2 − b)

]

, (16)

where Γ() is the Gamma function. Exhausted mathematical properties of the Kummer function can be found in [20].

Fig. 3 The KummerM(−1/4, 1/2, (ω + c)2/6ν) function
for c = 1 and ν = 0.1.

Fig. 4 The KummerU(−1/4, 1/2, (ω + c)2/6ν) function for
c = 1 and ν = 0.1.

Note, that the solution depends only on two parameters where the ν is the viscosity, and c is proportional with

the mass flow rate. Figures 3 and 4 show the KummerM and KummerU function for c = 1 and ν = 0.1, respectively.
For stability analysis we note that the power series which is applied to calculate the Kummer function has a pure

convergence and a 30 digit accuracy is needed to plot the KummerU function, otherwise spurious oscillations occur on
the figure. Note, that for ω = 6.5 the KummerM goes to infinity, and ω → ∞ KummerU function goes to ∞ which is
physically hard to understand, which means that the velocity field goes to infinity as well.

The complete self-similar solution of the x coordinate of the velocity reads

u(x, y, z, t) = t−1/2f(ω) = t−1/2
[

c1 · KummerU
(−1

4
,
1

2
,
((x + y + z)/t1/2 + c)2

6ν

)]

+ t−1/2
[

c2 · KummerM
(

−1

4
,
1

2
,
((x+ y + z)/t1/2 + c)2

6ν

)

+
c

3
− 2a

3

]

. (17)

On Fig. 5 an implicit plot of Eq. (17) is visualized. The KummerU function is presented only, the used parameters are
the following c1 = 1, c2 = 0, t = 1, c = 1, ν = 0.1, a = 0. Note, that the initial flat surface of Fig. 2 is mapped into

a complicated topological surface via the NS dynamical equation. The following phenomena happened, an implicit
function is presented, we have already mentioned that all the x+y+z = 0 points considered to be the same. Therefore

we get a multi-valued surface because for a fixed x numerical value various y+ z combinations give the same argument
inside the Kummer function. Unfortunately, this effect is hard to visualize. This can be understood as a kind of

fingerprint of a turbulence-like phenomena, which is still remained in the equation. An initial simple single-valued
plane surface is mapped into a very complicated multivalued surface. Note, that for a larger value (now we presented

KummerU() = 2 case) or for larger flow rate (c = 1) the surface gets more structures. Therefore Fig. 5 presents only
a principle. At this point we can also give statements about the stability of this solution, the solution the Kummer
functions are fine, but for larger flow values a more precise and precise calculation of the solution surface is needed

which means larger computational effort which is well known from the application of the NS equation.
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From the integrated continuity equation (f = c− g− h) we automatically get an implicit formula for the other two
velocity components

v(x, y, z, t) + w(x, y, z, t) = −t−1/2
[

c1 · KummerU
(−1

4
,
1

2
,
((x + y + z)/t1/2 + c)2

6ν

)]

− t−1/2
[

c2 · KummerM
(

−1

4
,
1

2
,
((x+ y + z)/t1/2 + c)2

6ν

)

+
c

3
− 2a

3

]

+ c . (18)

For explicit formulas of the remaining two velocity components the two ODEs of (11) have to be integrated. For
v(x, y, z, t) = t−1/2g(ω) the ODE is the following

−3νg′′(ω) + g′(ω)
(

−ω
2

+ c
)

− g(ω)

2
+ F (f ′′(ω), f ′(ω), f(ω)) = 0 , (19)

where F (f ′′(ω), f ′(ω), f(ω)) contains the combination of the first and second derivatives of the Kummer functions.
This is a second order linear ODE and the solution can be obtained with the following general quadrature

g(ω) =
[

c2 +

∫

{−c1 +
∫

F (f ′′(ω), f ′(ω), f(ω))dω · exp((−ω2/4 + cω)/−3ν)

3ν

}

dω
]

exp
(−ω2/4 + cω

3ν

)

. (20)

For the sake of simplicity we present the formulas of the first and second derivatives of the KummerU functions only

d

dω
KummerU(a, b, ω) =

(ω + a− b)KummerU(a, b, ω) − KummerU(a− 1, b, ω)

ω
, (21)

d2

dω2
KummerU(a, b, ω) =

1

ω2
[a{ωaU(a+ 1, b, ω) − ωU(a+ 1, b, ω)b+ ωU(a+ 1, b, ω)

− aU(1 + a, b, ω)b+ U(a, b, ω)b+ U(a+ 1, b, ω)b2 − U(a+ 1, b, ω)b}] . (22)

Unfortunately, we could not find any closed form for

v(x, y, z, t) and for w(x, y, z, t). Only v the x coordinate

of the velocity v field can be evaluated in a closed form.

Fig. 5 The implicit plot of the self-similar solution
Eq. (17). Only the KummerU function is presented for
t = 1, c1 = 1, c2 = 0, a = 0, c = 1, and ν = 0.1.

As we mentioned at the beginning there are analytic

solutions available in the literature which are very simi-

lar to our one. Fushchich et al.
[3] presented 19 different

solutions for the full three dimensional NS and continuity

equation. (For a better understanding we used the same

notation here as well). For the last (19th) solution they

apply the following Ansatz of

u(z, t) =
f(ω)√
t
, v(y, z) =

g(ω)√
t

+
y

t
,

w(z, t) =
h(ω)√
t
, p(t, z) =

l(ω)√
t
, (23)

where ω = z/
√
t is the invariant variable. The obtained

ODE is very similar to ours (9)

h′(ω) + 1 = 0 ,

−1

2
(f(ω) + ωf ′(ω)) + h(ω)f ′(ω) = f ′′(ω) ,

1

2
(g(ω) + ωg′(ω)) + h(ω)g′(ω) = g′′(ω) ,

−1

2
(h(ω) + ωh′(ω)) + h(ω)h′(ω) + l′(ω) = f ′′(ω) . (24)

The solutions are

f(ω) =
(3

2
ω − c

)

−1/2

exp
[

−1

6

(3

2
ω − c

)2]

w

×
[

− 1

12
,
1

4
,
1

3

(3

2
ω − c

)2]

,

g(ω) =
(3

2
ω − c

)

−1/2

exp
[

−1

6

(3

2
ω − c

)2]

w

×
[

− 5

12
,
1

4
,
1

3

(3

2
ω − c

)2]

,

h(ω) = −ω + c, l(ω) =
3

2
cω − ω2 + c1 , (25)

where w is the Whitakker function, c and c1 are in-
tegration constant. Note that the Whitakker and the
Kummer functions are strongly related to each other (see
Eq. (13.1.32) of Ref. [20]),

w(κ, µ, z) = e−1/2zz1/2+µKummerM

× (1/2 + µ− κ, 1 + 2µ, z) . (26)

More details can be found in the original work.[3]

As a second comparison we show the results of [4].
They also have a modified form of (2) which is the follow-
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ing

U1t + cU1 + U2U1y + U3U1z − ν(U1yy + U1zz) = 0 ,

U2t + U2U2y + U3U2z + πy − ν(U2yy + U2zz) = 0 ,

U3t + U2U3y + U3U3z + πz − ν(U3yy + U3zz) = 0 ,

U2y + U3z + c = 0 , (27)

where Ui, i = 1 · · · 3 are the velocity components Ui(y, z, t)
and π is the pressure, c stands for constants, ν is viscosity,
and additional subscripts mean derivations. After some
transformation they get a linear PDA as follows

U1t + k1yU1y + (σ − k1z)U1z − ν(U1yy +U1zz) = 0 , (28)

it is convenient to look the solution in the form of

U1 = Y (y)T (z)Φ(t) . (29)

Note, that they also consider the full 3-dimensional prob-
lem, but the velocity field has a restricted two-dimensional
(y, z) coordinate dependence. There are additional condi-
tions but the general solution can be presented

Φ = c1 exp(c2)t ,

Y = c3M
(

−c4,
1

2
,
y2

2ν

)

+ yc5M
(1

2
− c4,

3

2
,
y2

2ν

)

,

T ≈M
(

c6,
1

2
,
z2

2ν

)

+ zM
(1

2
− c6,

3

2
,
z2

2ν

)

, (30)

where M is the KummerM function as presented below.
The exact solution in [4] [Eqs. (4.10a)∼(4.10c)] contains
more constants as presented here. It is not our goal to re-
produce the full calculation of [4] (which is not our work)
we just want to give a guideline to their solution vigor-
ously emphasising that our solution is very similar to the

presented one. Note that in both results the arguments of

the KummerM function (13) and (30) are proportional to
the square of the radial component divided by the viscos-
ity, additionally one of the parameters is 1/2. As a last
word we just would like to say, (as this example clearly
shows) that the Lie algebra method is not the exhaustive

method to find all the possible solutions of a PDA.

We introduced and gave a geometrical interpretation
of a three-dimensional self-similar Ansatz. We applied it
to the three-dimensional Navier–Stokes equation in Carte-

sian coordinates. The question of another Ansätze was
mentioned briefly as well. Some part of the results could
be written as Kummer functions. Unfortunately, some
other parts of the results could not be written in closed
forms. Further work is in progress, (we still have some

hope) to learn something new from Eq. (19). We com-
pared our results with other analytic solutions obtained
from various Lie algebra studies. The structure of the re-
sult - the implicit coordinate dependence of the Kummer

function - was analyzed as well. We hope that even this
moderate result can give any simulating impetus to the
investigation of the Navier–Stokes equation. Our solution
can have some real interest and can be used as a test case
for various numerical methods or commercial computer

packages like Fluent or CFX.
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