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b KFKI-AEKI Atomic Energy Research Institute of the Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest, Hungary

a r t i c l e i n f o
Article history:
Received 2 September 2010
Accepted 3 October 2011
Available online 3 November 2011
0960-0779/$ - see front matter � 2011 Elsevier Ltd
doi:10.1016/j.chaos.2011.10.002

⇑ Corresponding author.
E-mail address: matyaslaszlo@sapientia.siculoru
a b s t r a c t

We present a study of the chaotic behaviour of the bouncing ball billiard. The work is rea-
lised on the purpose of finding at least certain causes of separation of the neighbouring tra-
jectories. Having in view the geometrical construction of the system, we report a clear origin
of chaoticity of the bouncing ball billiard. By this we claim that in case when the floor is
made of arc of circles – in a certain interval of frequencies – one can give semi-analytical
estimates on chaotic behaviour.
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1. Introduction

Deterministic features of transport have been studied in
different problems [1]. These works have also shown that
transport may be related to the chaotic aspects of the
dynamics [2].

The idea of bouncing ball was studied in different prob-
lems where analytical approximations [3] and comprehen-
sive numerical works can also be found [4]. The analytical
approximations have been shown the possible evidence of
bifurcations while the numerical works presented chaotic
regimes of the bouncing ball system.

The bouncing ball billiard as a spatial extension of the
one dimensional bouncing ball problem has been intro-
duced in [5]. This first work enhances the irregular diffu-
sivity of the system which is similar to certain models of
transport [6]. The following work has outlined the spiral
modes in the phase space of this problem [7] and also
pointed out its relevance on granular matter [8]. Idealised
versions where the bounces are performed without loss of
energy, i.e. the restitution coefficient is one, and there is no
oscillation of the floor may be found in [9].

The chaoticity of the sawtooth type of the bouncing ball
billiard has been studied in [10], with considerable theo-
retical background [11]. Considering the problem as a
. All rights reserved.
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gravitational billiard, aspects on chaotic features are also
approached by numerical methods in [12].

The present work focuses on the geometrical origin of
chaoticity of the bouncing ball billiard where it is investi-
gated the impact of the curvature of the arcs of circles on
the maximal Lyapunov exponent. The derivation shows,
that in case of resonance one may give semi-analytical
estimates for a lower bound of this exponent.

The study on manifolds for multi-dimensional billiards
related to geometric properties is presented in [13]. Certain
microscopic aspects of the dynamics in the bouncing ball
type models are treated in [14,15]. Possible connections
to non-equilibrium phenomena one may find in the works
[16,17].

From the practical point of view the reaction of CO with
O2 on Pt surface, which is under thermal excitation, the
molecules CO performs diffusive motion on the surface be-
fore the reaction would occur [18].

Quasi-deterministic aspects on diffusion may occur in
the behaviour of certain species where in the process of
food searching one can find a randomness, but there is also
a kind of determinism because the animals may have cer-
tain remembrances on the places where they found food in
the past [19].

The article is organised as follows. In Section 2 we
shortly describe the bouncing ball billiard system. The Sec-
tion 3 makes a presentation of that frequency region where
the semi-analytical approaches to some extent are
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possible. Section 4 shows an evaluation which has a semi-
empirical and analytical background giving a lower bound
for the maximal Lyapunov exponent.

2. The bouncing ball billiard

At this point we make a review of the most important
features of the bouncing ball problem. The system studied
is a point particle, which bounces on a floor realised of arc
of circles. The floor is oscillating with a frequency f corre-
sponding to a circular frequency x = 2pf. The system is
presented below. The bouncing ball billiard from the point
of view of the diffusion was presented in a comprehensive
way in [5,7]. The main conclusions are that the system pos-
sesses irregular diffusion, and the principal maximum val-
ues for the diffusion occurs at the resonances. These
resonances are at the frequencies, where the time of the
flight becomes equal or multiple of the period of vibration
applied.

The bouncing ball billiard that we study in this paper,
with the floor formed by circular scatterers, is depicted in
Fig. 1.

The equations of motion of this system are presented as
follows: The particle performs a free flight between two
collisions in the gravitational field gky. Consequently, its

coordinates x�nþ1; y
�
nþ1

� �
and velocities v�xnþ1;v�ynþ1

� �
at time

tn+1 immediately before the (n + 1)th collision and its coor-

dinates xþn ; y
þ
n

� �
and velocities vþxn;vþyn

� �
at time tn immedi-

ately after the nth collision are related by the following
equations

x�nþ1 ¼ xþn þ vþxnðtnþ1 � tnÞ ð1Þ
y�nþ1 ¼ yþn þ vþynðtnþ1 � tnÞ � gðtnþ1 � tnÞ2=2; ð2Þ
v�x;nþ1 ¼ vþxn ð3Þ
v�y;nþ1 ¼ vþyn � gðtnþ1 � tnÞ: ð4Þ

At the collisions the change of the velocities is given by

vþ?n � vci?n ¼ kðvci?n � v�?nÞ ð5Þ

vþkn � vcikn ¼ b v�kn � vcikn

� �
; ð6Þ

where vci is the velocity of the corrugated floor. We distin-
guish between the two different velocity components rela-
tive to the normal vector at the surface of the scatterers,
where the scatterers are represented by the arcs of the cir-
cles forming the floor. v\, vk and vci\, vcik is the normal and
tangential components of the particle’s, respectively the
floor’s velocity with respect to the surface at the scattering
Fig. 1. The bouncing ball billiard. A point particle realises bo
point. Correspondingly, we introduce two different restitu-
tion coefficients k and b that are perpendicular, respec-
tively tangential to the normal. These coefficients has
their values between zero and one: k, b 2 [0,1].

As in case of the vertically bouncing ball problem we as-
sume that the floor oscillates sinusoidally, yci = �Asin(xt),
where A and x are the amplitude respectively the fre-
quency of the vibration, see Fig. 1.

The radius of circles are R = 15 mm and the restitution
coefficients k = 0.7, b = 0.99, respectively. It is important
that the slope of the arcs of the circles is very shallow.
The distance between two arc of circles is d = 2 mm. By this
terms proportional with d2/R2 or less are considered terms
with second- or higher-order. The shallowness of the arcs
implies that the distance between subsequent bounces is
small, correspondingly jxn+1 � xnj < d, and the terms
(jxn+1 � xnj)2/R2 are similar to d2/R2, which is of higher
order.

The chaos of the bouncing ball which spatially is a one
dimensional system and which is performed on the vertical
direction has been discussed in [4]. One of the issues that
raised difficulties in the study of the bouncing ball was re-
lated to the fact that at certain frequencies the dynamics
lead to orbits, which even temporary, becomes stuck to
the surface.

In spite of the fact that in two dimensions it is almost
impossible to have neighbouring orbits stucked at the
same place, the following study will try to avoid that fre-
quency regions where stucking orbits might be possible.
3. General considerations

We discuss the chaoticity of the bouncing ball billiard at
the frequency region where the 1/1 resonance holds. The
approximation we try to make is semi-empirical and the
related considerations are presented below. The first
observation we make is, that the time of the flight between
subsequent collision at 1/1 resonance is approximately the
same. We note this time with tfly and corresponds to that
time while the particle makes one bounce and it is close
to the time while the floor makes one complete oscillation.
Subsequent values of tfly at 1/1 resonance are shown in Ta-
ble 1.

One can see that these values do not differ too much.
They cannot be the same, for instance because the surface
is not flat, but they are close to each other and around a
specific value.

The other observation is, that the first resonance mani-
fests so that the elongation almost reaches its maximum A,
unces on a vibrating floor consisting of arcs of circles.



Table 1
Time lengths elapsed between subsequent
bounces. One can see that they are around a
certain value.

Time of flight (s) Collision no.

0.0183 29
0.0191 30
0.0185 31
0.0190 32
0.0184 33
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and the particle meets the floor for almost all cases very
close to this height A – see Fig. 2.
4. Geometrical origin of chaoticity

The horizontal velocity component vx is considered from
now on. We are interested in change in difference of the
horizontal component of the velocities of two neighbouring
trajectories. By this we try to make an estimate of a lower
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Fig. 2. Typical trajectory of the 1/1 resonance. While the particle arrives at a hei
first conclusion is, that the particle in most of the cases will arrive in a steep ang
other conclusion is, that quite a number of such bounces occurs while the p
neighbouring one, caused to a deflection of angles of initial velocities at the sta
bound of the Lyapunov exponent, which manifests on the
vx direction of the phase space, which would also give a pic-
ture on the horizontal chaoticity of this problem.

The figure below – Fig. 2 – shows two trajectories, start-
ing from the same place, with slightly different velocity vec-
tors. The picture is at 1/1 resonance, where after a certain
transient the bounces are made a little bit above the vertical
coordinate A = 0.1 mm which denotes the amplitude.

We assume that at the starting point there is a differ-
ence in angles but not in the magnitude of the velocities
v0. This initial deflection in angles we denote by d. The cor-
responding difference in initial velocities – on the horizon-
tal projection – we denote by Dvx,ini. Because of this initial
deflection in angle there will be at final arrival a change in
horizontal coordinates Dx.

Due to the convex curvature of the arcs characterised by
the radius R, the displacement Dx at the arrival on this cur-
vature will cause further deflection in angles after one col-
lision which we denote by d0. This cause a final difference
in the horizontal component of velocities after the first
bounce Dvx,fin.
 1.35  1.4  1.45
x

ght close to 0.6, horizontally in general a length around 0.15 is made. The
le, so the incident angle relative to the normal to the surface is small. The
article arrives from one arc to another one. The second trajectory is a
rting point.
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The rate of exponential separation of the trajectories
after such a bounce due to the finite radius R we denote
with kvx,R

kvx;R ¼
1

tfly
ln
jDvx;finj
jDvx;inij

ð7Þ

At the launch of the trajectory we consider the magni-
tude of the velocity v0, the angles relative to the vertical
are a(1) and a(2), the complementary angles are að1Þc and
að2Þc , where as it was mentioned above a(2) = a(1) + d.
Correspondingly

jDvx;inij¼ v0 cosað1Þc �v0 cosað2Þc

�� ��¼ v0 sinað1Þ �v0 sinað2Þ
�� ��

¼ v0dcosað1Þ
�� ��þh:o:t: ð8Þ

where the higher order terms means terms which are pro-
portional with at least the second power of d. Correspond-
ingly if d0 is the angle between the directions of trajectories
after the first bounce

jDvx;finj ¼ jv0d
0 cos að1Þ

0 j þ h:o:t: ð9Þ

Because there is a free flight in gravitational field and the
arcs are with shallow slope practically að1Þ0 ’ að1Þ, very pre-
cisely their difference is a second order term. We mention,
that a(1) is also small as one can see on the Fig. 2, so its
product with d is also considered a value with second
order.1

As a result we get for the value kvx,R, which has a defi-
nite contribution due to the finite value of

kvx;R ¼
1

tfly
ln

d0

d

����
����þ h:o:t: ð10Þ

where one can see that the ratio between the deflection of
the angles after the bounce and before the bounce counts.

The bounce is presented on Fig. 3.
Based on Fig. 3 we can conclude that the deflection be-

tween the two reflected trajectories (d0) one hand is due to
the initial deflection d. For the reflected trajectories there is
a contribution due to the curvature. If the point of inci-
dence of the first trajectory is at h then the point of inci-
dence of the second one is at h + dh. The incident angles
relative to the normal differs by dh and in addition the re-
flected angles – on the Fig. 3 – c01 and c02 has also a differ-
ence dh. Consequently the term dh has to be counted twice

d0 ¼ dþ 2dh: ð11Þ

Inserting this relation in Eq. (10) one gets

kvx;R¼
1

tfly
ln

dþ2dh
d

����
����þh:o:t:¼ 1

tfly
ln 1þ2

dh
d

����
����þh:o:t: ð12Þ

At the arriving point on the surface the initial difference
d will cause a displacement Dx. This means that on the arc
of the circle the trajectories will arrive at a difference
dh ’ jDxj/R as one can see on Fig. 3. Now follows the eval-
uation of Dx and correspondingly of the dh.

The length Dx is due to the difference in angles of the
velocities, at the starting point. The first one is launched
1 Even if a term proportional with a or sina would be kept, at the end
where the average value is calculated for kvx or it drops out or it is proved to
be of higher order.
at an angle að1Þc the other one with an angle að2Þc ¼ að1Þc � d.
At the end one of the particles arrives at x2, the other one
at x1

Dx¼x1�x2¼2
v2

0

g
cosað1Þc sinað1Þc �cosað2Þc sinað2Þc

� �
ð13Þ

where að1Þc is the angle of the velocity made with the hori-
zontal direction of the first trajectory at the starting point.
During the evaluation we make the approximation, that
sind is approximately d and cosd ’ 1 or the differences
are at least second order in d, and are included in the high-
er order terms

Dx ¼ x1 � x2 ¼ 2
v2

0

g
d cos2 að1Þc � sin2 að1Þc

h i
þ h:o:t: ð14Þ

– here a(1) being the incident angle relative to the vertical.
At this point one can see that cos2 að1Þc ¼ sin2 að1Þ can be ne-
glected, consequently dh yields the following value

dh ’ jDxj
R
’ 2d

v2
0

gR
sin2 að1Þc

� �
ð15Þ

If we take into account that the time for the flight is
tfly ’ 2v0 sin að1Þc =g then

2
dh
d
’ 4

v2
0

gR
sin2 að1Þc

� �
’

gt2
fly

R
ð16Þ

By this we get for the value kvx,R in leading order

kvx;R ¼
1

tfly
ln 1þ

gt2
fly

R

 !
þ h:o:t: ¼

gtfly

R
þ h:o:t: ð17Þ

where the logarithm has been expanded, and terms pro-
portional with 1/R2 have been also considered as being of
higher order.

The average of kvx,R means averaging the expression
above. By this the higher order terms vanishes or becomes
smaller so they remain of higher order. Consequently it re-
duces to the average of the time of the flight tfly. Its average
is given by the period of oscillations T resulting for �kvx;R in
leading order

�kvx;R ’
gT
R
’ gK

f
: ð18Þ

Because �kvx;R is a manifestation of the separation of the
neighbouring trajectories in the vx direction due to the
geometry, consequently this value can be considered a
lower bound for the maximal Lyapunov exponent.

4.1. The case of two periodic orbits

As it is pointed out in the work [3] – with increasing the
frequency – bifurcation of the resonant trajectory may be
possible. This means that the time of flight consists of a
shorter and a longer time alternating one after the other
which we denote by tfly,1 and tfly,2, but they still do not dif-
fer too much from each other.2
2 In general in the case of the bouncing ball billiard to have a
considerable difference between tfly,1 and tfly,2 even it is not possible, or
because the dynamics enters in further bifurcations, or simply it crashes to
a scenario with lots of sticking orbits.



Fig. 3. Illustration of the bounce of neighbouring trajectories on an arc of circle. The figure enhances the displacement of trajectories and their velocities
after the bounce due to the geometry of the floor.
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In such case the approximation that have been pre-
sented previously are still valid and one gets after two con-
sequent flights – one is shorter, one is longer –

kvx;R ¼
1

tfly;1 þ tfly;2
ln

d0

d
d00

d0

����
����þ h:o:t: ð19Þ

The argument of the logarithm can be written as

kvx;R¼
1

tfly;1þ tfly;2
ln 1þ

gt2
fly;1

R

 !
1þ

t2
fly;2

R

 !" #
þh:o:t: ð20Þ

After the expansion to the first order we have

kvx;R ¼
g
R

t2
fly;1 þ t2

fly;2

tfly;1 þ tfly;2

 !
þ h:o:t: ð21Þ

In the numerator of the second fraction the decomposi-
tions are made

tfly;1ð2Þ ¼
tfly;1 þ tfly;2

2
� tfly;1 � tfly;2

2
: ð22Þ

Finally, we arrive to the relation

kvx;R ¼
g
R

tfly;1 þ tfly;2

2
þ g

R
ðtfly;1 � tfly;2Þ2

2ðtfly;1 þ tfly;2Þ
þ h:o:t: ð23Þ

This expression can be averaged and the term proportional
with (tfly,1 � tfly,2)2 is still too small and is considered of sec-
ond order. The average of the last expression yields the value

�kvx;R ’
g
R
ðT1 þ T2Þ

2
ð24Þ

where T1 and T2 represents the average values of the tfly,1,
tfly,2, respectively. Because even in the case of the two peri-
odic orbit (T1 + T2)/2 equals an average time flight T0 which
is the inverse of that frequency f where the dynamics is al-
ready bifurcated. This is in fact an interval of frequencies,
so the latter formula for two periodic orbits still shows a
strong analogy with Eq. (18) and it may be written

�kvx;R ’
g
Rf
: ð25Þ

This latter formula shows that the relation (18) may be va-
lid for the full 1/1 resonance and for bifurcated trajectories
not too far from it.

5. Conclusions

The problem of chaoticity of the bouncing ball billiard
have been put even from the very first years of its appear-
ance. Certain aspects have pointed to the fact that the
dynamics may be chaotic, of coarse for a wide interval of
the frequency there was a need of numerical simulations.
These simulations has shown that the dynamics of the
bouncing ball billiard in a wide range of the parameters is
chaotic without analysing too much the cause of such a
behaviour. In this work we have tried to find at least part
of the causes which yields an exponential separation of
the neighbouring trajectories. In the case when the dynam-
ics exhibits resonance a certain semi-analytical evaluation
can be carried out. The final result shows that the chaoticity
is related to the frequency of the vibration, to the gravity and
of course to the radius of the arcs of circles of which the floor
is made. In principle the chaoticity may have also other
causes than the geometrical one, but this might be a further
possible problem which may be worth to be investigated.
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