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Abstract
We investigate the incompressible and compressible heat conducting boundary layer with applying the two-dimensional 
self-similar Ansatz. Analytic solutions can be found for the incompressible case which can be expressed with special func-
tions. The parameter dependencies are studied and discussed in details. In the last part of our study we present the ordinary 
differential equation (ODE) system which is obtained for compressible boundary layers.
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Introduction

The study of hydro-dynamical equations has a crucial 
role in general in science with applications in engineer-
ing, environmental studies or meteorology. Regarding flow 
systems there are different type of classifications, one of 
them is related to the constraints in space which the fluid 
occupies. One class of fluid flows is the field of bound-
ary layer. The development of this scientific field started 
with the pioneering work of Prandtl [1] who used scaling 

arguments and derived that certain terms of the Navier-
Stokes equations are negligible in boundary layer flows. 
In 1908 Blasius [2] gave the solutions of the steady-state 
incompressible two-dimensional laminar boundary layer 
equation forms on a semi-infinite plate which is held par-
allel to a constant unidirectional flow. Later Falkner and 
Skan [3] generalized the solutions for steady two-dimen-
sional laminar boundary layer that forms on a wedge, i.e. 
flows in which the plate is not parallel to the flow. An 
exhaustive description of the hydrodynamics of boundary 
layers can be found in the classical textbook of Schlicht-
ing and Gersten [4], and recent applications in engineer-
ing is discussed by Hori [5]. The mathematical properties 
of the corresponding partial differential equations (PDEs) 
attracted remarkable interest as well. Without complete-
ness we mention some of the available mathematical 
results. Libby and Fox [6] derived some solutions using 
perturbation method. Ma and Hui [7] gave similarity solu-
tion to the boundary layer problems. Burde [8–10] gave 
additional numerous explicit analytic solutions in the 
nineties. Weidman [11] presented solutions for boundary 
layers with additional cross flows. Ludlow and cowork-
ers [12] evaluated and analyzed solutions with similar-
ity methods as well. Vereshchagina [13] investigated the 
spatial unsteady boundary layer equations with group 
fibering. Polyanin in his papers [14, 15] presents numer-
ous independent solutions derived with various methods 
like general variable separation. Studies on heat transfer 
in a boundary region have been also realized in refs. [16, 
17]. Makinde [18] investigated the laminar falling liquid 
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film with variable viscosity along an inclined heated plate 
problem using perturbation technique together with a spe-
cial type of Hermite – Padé approximation. In nanofluids 
the importance of buoyancy [19], aspects on bioconvection 
[20, 21], and possible modified viscosity [22, 23] are also 
discussed. One may find exact solutions for the oscillatory 
shear flow in [24, 25].

Bognár [26] applied the steady-state boundary layer 
flow equations for non-Newtonian fluids and presented 
self-similar results. Later it was generalized [27], and the 
steady-state heat conduction mechanism was included in 
the calculations as well. Certain parameters of the nano-
fluid can be tuned by varying the amount of nanoparticles 
in the fluid [28–34]. Recently, the micropolar fluid flow 
dynamics were investigated by Ahmad at al. in [35] and 
[36].

In our former studies we investigated three different kind 
of Rayleigh-Bénard heat conduction problems [37–39] 
which are full two-dimensional viscous flows coupled to 
the heat conduction equation. We might say that the heated 
boundary layer equations - from the mathematical point of 
view - show some similarities to the Rayleigh-Bénard prob-
lem. These last five publications [26, 27, 37–39] led us to 
the decision that it would be worthwhile examining heated 
boundary layers with the self-similar Ansatz.

In the following we apply the Sedov type self-similar 
Ansatz [40, 41] to the original PDE systems of incompress-
ible and compressible boundary layers with heat conduction 
and reduce them to coupled non-linear ODE system. For 
the incompressible case the ODE system can be solved with 
quadrature giving analytic solutions for the velocity, pres-
sure and temperature fields. Due, to our knowledge there are 
no self-similar solutions known and analyzed for any type 
of time-dependent boundary layer equations including heat 
conduction.

Theory

We investigate the incompressible and compressible heated 
boundary layer. The presented models are not new just 
use the basic equations, but the analytic solutions which 
are given are not yet known. Our new analytical solutions 
describing time-dependencies are important for understand-
ing the general power-law-like transient behaviour of heated 
boundary layers. As examples we may say, that the given and 
analyzed solutions show what happens after when a short 
and local heat shock is deposited in the layer. It relaxes and 
disperses in space and time. Such transients in heated bound-
ary layers might occur when radiated heat is deposited in the 
layer e.g. heat shocks given by quick laser pulses [42] or by 
energetic short bunch of charged particles [43]. The second 

phenomena should occur in the blankets of the planned 
ITER fusion plasma reactor [44].

The incompressible case

We start with the PDE system of

where the dynamical variables are the two velocities compo-
nents u(x, y, t), v(x, y, t) of the fluid the pressure p(x, y, t) and 
the temperature T(x, y, t). The additional physical parameters 
are �∞, cp,�, �, the fluid density at asymptotic distances and 
times, the heat capacity at fixed pressure, the kinematic vis-
cosity and the thermal diffusivity, respectively. It is impor-
tant to emphasize at this point, that this description for the 
heated boundary layer is only valid for small velocities in 
laminar flow and for large Reynolds numbers. More informa-
tion can be found in the classical book of Schlichting and 
Gersten [4] (8th addition page 211). Outside the laminar 
flow regime a viscous heating term should be added to the 
final temperature equation with the form of �(uy)2.

There is no general fundamental theory for nonlinear 
PDEs, but over time, some intuitive methods have evolved, 
most of them can be derived from symmetry considerations. 
Numerous functions can be constructed which couple the 
temporal and spatial variables to a new reduced variable 
from intuitive reasons. Our long term experience shows 
that two of them are superior to all others and have direct 
physical meanings. These are the traveling wave and the 
self-similar Ansatz. The first is more or less well known 
from the community of physicists and engineers and, has 
the form of G(x, t) = f (x ∓ ct) and we may call � = x ∓ ct as 
the new reduced variable, where c is the propagation speed 
of the corresponding wave. Here G(x, t) is the investigated 
dynamical variable in the PDE. G(x, t) could be any physi-
cally relevant quantity, like temperature, pressure or electric 
field. This Ansatz can be applied to any kind of PDE and 
will mimic the general wave property of the investigated 
physical system.

The second (and not so well known) is the self-similar 
Ansatz with the from of G(�) = t−�f (�), � = x∕t� . There, � 
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and � are two free real parameters, it can be shown that 
this Ansatz automatically gives the Gaussian or fundamen-
tal solution of the diffusion (or heat conduction) equation. 
In general, and this is the key point here, this trial func-
tions helps us to get a deeper insight into the dispersive and 
decaying behavior of the investigated physical system. This 
is the main reason why we use it in this form. Viscous fluid 
dynamic equations automatically fulfill this condition, there-
fore it is highly probable, that this Ansatz leads to physically 
rational solutions. It is easy to modify the original form of 
the Ansatz to two (or even three) spacial dimensions and 
generalize it to multiple dynamical variables, hereupon we 
apply the following form of it:

with the new argument � =
x+y

t�
 of the shape functions. (To 

avoid later physical interpretation problems of negative val-
ues we define temperature as a temperature difference rela-
tive to the average T = T̃ − Tav .) All the exponents �, �, � , � 
are real numbers. (Solutions with integer exponents are 
called self-similar solutions of the first kind, non-integer 
exponents generate self-similar solutions of the second 
kind.) It is important to emphasize that the obtained results 
fulfill well-defined initial and boundary value problems of 
the original PDE system via fixing their integration con-
stants of the derived ODE system.

The shape functions f, g, h and i could be any continu-
ous functions with existing first and second continuous 
derivatives and will be evaluated later on. The physical and 
geometrical interpretation of the Ansatz were exhaustively 
analyzed in all our former publications [37–39], therefore 
we skip it here. The general scheme of the calculation, how 
the self-similar exponents can be derived is given in [45] in 
details. The main idea is the following: after having done the 
spatial and temporal derivatives of the Ansatz the obtained 
terms should be replaced into the original PDE system. Due 
to the derivations all terms pick up an extra time dependent 
factor like t−�−1 or t−2� because of the reduction mechanism, 
the new variable of the shape functions is now � therefore all 
kind of extra time dependencies have to be canceled. There-
fore, all the exponents of the time dependences eg., � + 1 or 
2� should cancel each other which dictates a relation among 
the self-similar variables. In our first paper we gave all the 
details of this kind of a calculation for the non-compressible 
Newtonian three dimensional NS equation [45].

The main points are, that �, �, � , � are responsible for the 
rate of decay and � is for the rate of spreading of the corre-
sponding dynamical variable for positive exponents. Nega-
tive self-similar exponents (except for some extreme cases) 
mean unphysical, exploding and contracting solutions. The 
numerical values of the exponents are now the following:

(5)
u(x, y, t) =t−�f (�), v(x, y, t) = t−�g(�),

T(x, y, t) =t−�h(�), p(x, y, t) = t−�i(�),

Exponents with numerical values of one half mean the regu-
lar Fourier heat conduction (or Fick’s diffusion) process. 
One half values for the exponent of the velocity components 
and unit value exponent for the pressure decay are usual for 
the incompressible NS equation [45].

The obtained ODE system reads

where prime means derivation in respect to the variable 
� . The first two equations are total derivatives and can be 
integrated directly yielding: f + g = c1 and i = c2 . Having 
total derivatives in a dynamical system automatically mean 
conserved quantities, (the first of them is now mass conser-
vation). After some straightforward algebraic manipulation 
we arrive to a separate second order ODE for the velocity 
shape which is also a total derivative and can be integrated 
leading to:

with the analytic solution of

where erf means the usual error function [46]. Note, that 
for the positive real constants �∞,� , the complex quantity 
√

−�∞� appears in the argument of the error functions and 
as a complex multiplicative prefactor simultaneously making 
the final result a pure real function. The second important 
thing is to note, that for c1 = c2 = 0 , trivial integration con-
stants, the solution is simplified to the Gaussian function of

This means that the velocity flow process shows similarity to 
the regular diffusion of heat conduction phenomena. Similar 
solutions (containing exponential and error functions) were 
found for the stationary velocity field by Weyburne in 2006 
with probability distribution function methodology [47].
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� = � = � = 1∕2, � = 1, � = arbitrary real number.
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Figure 1 shows the general velocity shape function (12) 
for various parameter sets. The choice of these parameters 
are arbitrary, we are not limited to real fluid parameters, 
however we try to create the most general and most informa-
tive figures, which mimic the general features of the solu-
tion function. The functions are the modification of the error 
function. The crucial parameter is the ratio �∞∕� , if this is 
larger than unity then the function tends to a sharp Gaussian.

Figure 1 presents the velocity distribution function. Note, 
the very sharp peak in the origin and the extreme quick time 
decay along the time axis.

There is a separate ODE for the temperature distribution 
as well

For the most general case (when � is an arbitrary real num-
ber,) and c1 ≠ 0 , the solutions of Eq. (14) can be expressed 
with the Kummer M and Kummer U functions [46]

(14)
�

�∞cp
h�� − h�

(

c1 −
�

2

)

+ �h = 0.

M is regular in the origin and U is irregular, therefore we 
investigate only the properties of M which means (c3 = 0) . 
The M and U functions form a complete orthogonal func-
tion system if the argument is linear. Now, the argument is 
quadratic, in our former studies we found similar solutions, 
for incompressible [45] or for compressible [48] multidi-
mensional NS or Euler equations.

It can be easily proven with the definition of the Kummer 
functions using the Pochhammer symbols [46], that for neg-
ative integer � values our results can be expanded into finite 
order polynomials, which are divergent for large arguments 
� . For non-integer 𝛾 < 0 values, we get infinite divergent 
polynomials as well.

The most relevant parameter of the solutions is evidently 
� . The integral constant c1 just shifts the solutions parallel to 
the x axis, c2 scales the solutions, and cp�∞∕� parameter just 

(15)

h =c2M

(

� , 1
2
; −

cp�∞[� − 2c1]2

4�

)

+ c3U

(

� , 1
2
; −

cp�∞[� − 2c1]2

4�

)

.

3

2

1

– 1

– 20 – 10 0 10 20 30
η

f (η)

Fig. 1   The graphs of the velocity shape function f (�) in Eq. (12) for 
three different parameter sets ( c1, c2, c3,�, �∞ ). The solid, dashed 
and dotted lines are for (1,  0,  1,  4.1,  0.9), (2,−1, 0.5, 2.5, 1) and 
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scales the width of the solution. Figure 3 presents three dif-
ferent solutions for various positive � values. (All negative � 
values mean divergent shape functions for large � s which are 
nonphysical and outside of our scope.) Note, larger � s mean 
more oscillations. For a better understanding we present the 
projection of the total solution of the temperature field T(t, x, y) 
on Fig. 4 for the y = 0 coordinates.

For some special values of � the temperature shape func-
tion can be expressed with other simpler special functions. 
For values of � = ±

1

2
 and 0 all the shape functions contain 

the error function. Negative integer � s result even order 
polynomials. (E.g., � = −1 defines the shape function of 
f = (c2 + c3) ⋅ (2� + cp�∞[� − 2c1]

2) .) Polynomials are 
divergent in infinity therefore are out of our physical interest.

For the sake of completeness we present the solutions for 
the pressure as well. The ODE of the shape function is trivial 
with the solution of:

Therefore, the final pressure distribution reads:

which means that the pressure is constant in the entire space 
at a given time point, but has a quicker time decay than the 
velocity field.

The compressible case

In the last part of our study we investigate the compressible 
boundary layer equations. The starting PDE system is now 
changed to the following:

(16)i� = 0, i = c4.

(17)p(x, y, t) = t−� ⋅ i(x, y, t) =
c4

t
,

where the notation of all the variables are the same as for 
the incompressible case. For closing constitutive equation 
(or with other name ”equation of state” (EOS)) we apply the 
ideal gas p = R�T where R is the universal gas constant. (Of 
course, there are numerous EOS available for physically rel-
evant materials, and each gives us an additional new system 
to investigate, but that lies outside the scope of our present 
study.) For the dynamical variables we apply the next self-
similar Ansatz of:

with the usual new variable of � =
x+y

t�
.

To obtain a closed ODE system the following relations 
must held for the similarity exponents

Note, that now all the exponents have fixed numerical val-
ues. The � = 0 means two things, first, the density as dynam-
ical variable has no spreading property (just decay 𝛽 > 0 ), 
second, the first continuity ODE is not a total derivative and 
cannot be integrated directly. This system has an interesting 
peculiarity, our experience showed, that the incompressible 
NS equation [45] has all fixed self-similar exponents and the 
compressible one [48] has one free exponent. It is obvious 
that an extra free exponent makes the mathematical struc-
ture richer leaving more room to additional solutions. (As 
we mentioned above, self-similar exponents with the value 
of one half has a close connection to regular Fourier type 
heat conduction mechanism.) Parallel, the obtained ODE 
system reads
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where prime means derivation with respect to �.
Having done some non-trivial algebraic steps a decoupled 

ODE can be derived for the density field. First, the pressure 
Eq. (26) can be integrated, then i(�) can be expressed, after 
the derivatives i′ and i′′ can be evaluated, then plugging it 
into (28) the (g + h) quantity can be expressed with f , f ′ and 
f ′′ . Finally, calculating the derivatives of (f + g) and substi-
tuting them into (25) an independent ODE can be deduced 
for the density shape function. These algebraic manipula-
tions are more compound and contain many more steps what 
we had in the past for various flow systems like [39, 45]. 
With the conditions f (�) ≠ 0 and f �(�) ≠ 0 , the next highly 
non-linear ODE can be derived

Such ODEs have no analytic solutions for any kind of 
parameter set (of course � ≠ 0 and cp ≠ 0 ). Therefore, pure 
numerical integration processes have to be applied. We have 
to mention, that an analogous fourth-order non-linear ODE 
was derived in the viscous heated Bénard system [39] and 
was analyzed with numerical means.

The shape function of the temperature field can be easily 
derived from (26) without any additional derivation

We have to note two things here. First, the condition of 
f ≠ 0 should hold. Second, the numerical value c1 of the 
integration constant fixes the absolute magnitude of the 
temperature.

The final physical field quantity which has to be deter-
mined is the velocity shape function and distribution. Note, 
that due to our original Ansatz the two velocity components 
cannot be determined separately from each other, only the 
g + h is possible to evaluate. This can be easily done from 
(25) if we introduce the variable L ∶= g + h . Now the ODE 
is

The formal solution now became trivial, namely
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(30)i =
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Rf
.

(31)L�f + Lf � −
�f �

2
= 0.

This means that our Ansatz is not unique for the velocity 
field because the x and y coordinates are handled on the 
same footing. The in-depth numerical analysis of the density 
(29) and the velocity (32) shape functions lies outside the 
scope of the present study.

Here, we just wanted to present that incompressible and 
compressible flow systems having initially comparable PDE 
systems, which describe similar processes, but behave com-
pletely differently during a self-similar analysis. Such deri-
vations always give a glimpse into the deep mathematical 
layers of fluid flow structures.

Summary and outlook

We analyzed the incompressible and compressible time-
dependent boundary layer flow equations with additional 
heat conduction mechanism using the self-similar Ansatz. 
Analytic solutions were derived for the incompressible flow. 
The velocity fields can be expressed with the error func-
tions (in some special cases with Gaussian functions) and 
the temperature with the Kummer functions. The last one 
has the most complex mathematical structure including 
some oscillations.

It is often asked what are analytic results are good for, we 
may say that our analytic solution could help to test complex 
numerical fluid dynamics program packages, new numeri-
cal routines [49, 50] or PDE solvers. For a t = t0 initial time 
point the time propagation is exactly given by the analytic 
formula and can be compared to the results of any numeri-
cal scheme.

In the second part of our treatise we investigated the 
compressible time-dependent boundary flow equations 
with additional heat conduction again with the self-similar 
Ansatz. For closing constitutive equation, the ideal gas EOS 
was used. It is impossible to derive analytic solutions for the 
dynamical variables from the coupled ODE system. How-
ever, highly non-linear independent ODEs exist for each 
dynamical variables which can be integrated numerically. 
An in-depth analysis could be the subject of a next publica-
tion. Work is in progress to apply our self-similar method 
to more realistic complex boundary layer flows containing 
viscous heating or other mechanisms.
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