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* Correspondence: barna.imre@wigner.hu

Abstract: We study the diffusion equation with an appropriate change of variables. This equation
is, in general, a partial differential equation (PDE). With the self-similar and related Ansatz, we
transform the PDE of diffusion to an ordinary differential equation. The solutions of the PDE belong
to a family of functions which are presented for the case of infinite horizon. In the presentation, we
accentuate the physically reasonable solutions. We also study time-dependent diffusion phenomena,
where the spreading may vary in time. To describe the process, we consider time-dependent diffusion
coefficients. The obtained analytic solutions all can be expressed with Kummer’s functions.
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1. Introduction

The study of classical transport processes are crucial both from scientific and from
engineering points. One of such process is diffusion, which is a quite general phenomena.
It can be formulated for particles, which are the mass diffusion, or to energy transport,
which is related to thermal conduction. This manuscript is an extension of certain studies,
in which we present additional analytic solutions for the regular diffusion equation from
symmetry considerations. In our last paper [1], after a historical overview, we presented a
new class of analytic solutions derived with the help of the reduction mechanism provides
a more detailed analysis of various self-similar and generalized self-similar solutions. Here,
we show how the original self-similar trial function can be generalized in a kind of power
law expansion. All the presented solutions are new and cannot be found elsewhere in
the literature.

The whole diffusion phenomena is, in general, well introduced—with cases and
studies—by the monograph of Ghez [2]. Embedding into the larger field of transport
processes diffusion is discussed by John Newman and Vincent Battaglia in their series of
lectures [3]. Gillespie and Seitariodu provided an introduction to the standard theoretical
models for simple Brownian type diffusion [4] in 2013. The diffusion equation can be also
related to the Wiener process [5]. The anomalous diffusion was analyzed with statistical
methods by Weihua and co-workers [6]. Uchaikin investigated self-similar anomalous
diffusion [7]. Ari Arapostathis et al. studied the ergodic control of diffusion processes in a
monograph [8]. One may find applications in solid state physics, binary alloys, thin films,
etc., in [9–15]. Defects and diffusion in nanotubes was summarized by Fisher [16]. Diffusion
processes a peculiar material in ceramics was analyzed in the monograph by Pelleg [17].
Atomic diffusion processes is a scientific field which was presented in a monograph as
well [18]. Diffusion processes are the starting points for reaction diffusion processes [19]
or diffusion in porous media [20]. A vitally important application of such mathematical
equations is the mathematical modeling of aircraft cabin fires [21,22]. The two dimensional
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diffusion equation, completed with certain reaction terms may lead to pattern formation,
for instance the Turing patterns derived from Schnakenberg equations [23] or Brusselator
model [24]. If the diffusion equation is completed with the simplest nonlinear term, the
gradient of the variable on the second power we arrive to the Kardar–Parizi–Zwang (KPZ)
equation which is the simplest successful model for surface growth phenomena. In two of
our former studies we investigated the KPZ equation (with additional noise terms) with the
self-similar [25] and the traveling waves Ansatz [26]. Interesting results have been obtained
in the study of irregular diffusion [27,28]. Now, in the following we deepen this analysis
and present additional analytic solutions with detailed parameter study. We present a series
of solutions which are defined on the whole real axis having a decaying and spreading
property with additional oscillations. Our main investigation tool, the self-similar Ansatz,
helps us to build a link from the regular to irregular diffusion processes, which makes up
the second part of the study.

Although the diffusion process can be studied in different dimensions, here, we
consider only one Cartesian coordinate therefore the equation reads

∂C(x, t)
∂t

= D
∂2C(x, t)

∂x2 , (1)

where C(x, t) is the distributions of the particle concentration in space and time and D is
the diffusion coefficient. C(x, t) in the equation above is considered up to a constant, which
means, that C(x, t) + C0 may be also a solution, depending on the initial conditions. The
function C(x, t) fulfills the necessary smoothness conditions with existing continuous first
and second derivatives in respect to time and and space. From causality, the diffusion
coefficient should be a positive real number (D > 0). Numerous physics textbooks gives us
the derivation how the fundamental (the Gaussian) solutions can be obtained, e.g., [29,30].

The derivation and analysis of various analytic solutions of physical processes de-
scribed by various mathematical equations, (e.g., algebraic, differential or partial differ-
ential) have crucial importance. As it was shown in our former paper [1] and as it will
be shown here, there are far more solutions known for diffusion than the Gaussian and
the error functions. We presented some relatively simple solutions (e.g., Dt + x2/2), other
solutions which can derived with the general symmetry analysis method by Clarkson
and Kruskal [31], the traveling profile method of Benhamidouche [32] or the self-similar
Ansatz of Sedov [33]. Beyond the Gaussian and error functionsm most of our results are
expressible with the Kummer special functions. In the following, we try additional two
trial functions and enlarge the number of solutions known from the self-similar Ansatz. In
the last part of the study, we investigate less regular diffusion processes where the diffusion
coefficients gain temporal dependencies. The diffusion equation stands at the basis of more
complex equations: in case on the r.h.s. beyond the second derivative, there is a function
F(C) with certain properties, we can talk about the Kolmogorov–Petrovskii–Piskunov
equation [34]. Explicitly, on the r.h.s., the term C(1− C) yields the Fisher equation [35,36].
Environmental aspects can be found in [37]. The term pC + rCq in general means the
Newel–Whitehead–Segel (NWS) equation [38,39] and the term C(1− C)(C − α) where
0 < α < 1 defines the general Zeldovich equation (or Huxley equation) which arises in
combustion theory [40]. For certain non-trivial values of p, r and q, one may find exact
solutions of the NWS equation [41,42]. Frank–Kamenetzkii used the exp(a · e− b

C ) term [43]
to explain thermal explosion.

Burgers used the C ·Cx (where the subscript stands for partial derivation) term to study
turbulence [44]. Nariboli and Lin introduced the quadratic Burgers equation with the term
of C2 · Cx [45]. Sachdev [46] modified the original Burgers equation and used a third order
term of C3 · Cx . Later numerous generalization saw the light of sun by various authors,
and the originality of the models are hard to identify. The generalized Huxley equation [47]
has the source term of βC(1− Cδ)(Cδ − γ) where β, δ, γ are free real parameters. Lastly,
we mention the the Burgers–Huxley and the Burgers–Fisher equations [48]. The first has
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the source term of −γCx + βC(1− Cδ)(Cδ − γ) and the second of −γCx + βC(1− C). Our
presented list is of course far from being complete.

Applications in different fields—for instance, plasma physics or condensed matter—
one may find in [49–51].

We hope that this work may bring deeper understanding in the study of vapor diffu-
sion [52,53], of the one dimensional convection- diffusion-reaction problem [54–56], and of
diffusive aspects in different flows [57].

Diffusion processes can be coupled to fluid dynamics phenomenon to describe the
double (or multiple) diffusive convection phenomena [58] where a convection is driven by
two (or more) different density gradients described with different rates of diffusions.

Another way of generalization of diffusion is the application of fractional derivatives.
First, consider when the time derivative is fractional. Such a study was conducted in the
work of Wyss [59]. The solutions were exactly given and could be expressed with the Fox
functions. For the mathematical details of Fox functions, see [60]. Regarding the space
fractional diffusion equation, one may find studies in [61]. Comparison of our results to
such functions could be the subject of future study.

The analysis and control of coupled neural networks can be conducted with the
reaction diffusion term, as was given in the monograph of Wang et al. [62]. It is obvious,
but we mention that the diffusion equation has the same form as the heat conduction
equation. This field has a wealth of literature as well, from which we mention only two
monographs [63,64]. Lastly, not to forget the field of continuously developing numerical
methods of PDEs, it is worthwhile to mention the new results obtained by [65,66].

2. Theory and Results
2.1. Self-Similar Ansatz

We start the analysis with the self-similar Ansatz

C(x, t) = t−α f
(

x
tβ

)
= t−α f (η), (2)

where α and β are the self-similar exponents being real numbers describing the decay
and the spreading of the solution in time and space. These properties makes this Ansatz
physically extraordinarily relevant; it was first introduced by Sedov [33]. Together with
dimension-analysis method He applied it to various fluid mechanical problems such as in-
compressible heavy fluids or gas dynamics. Later Zeldovich [67] exhaustively investigated
high temperature gas dynamical problems. The most recent and modern literature where
the reader can learn the method and the possible connections to dimension-analysis was
written by Barenblatt [68] in 2003. He addressed problems such as very intense concentrated
flooding or flow in porous media.

For the present diffusion equation, after some trivial algebra (which can be found in
our previous paper [1]) we get:

α = arbitrary real number, β = 1/2, (3)

and there is a clear-cut time-independent ordinary differential equation (ODE) of

− α f − 1
2

η f ′ = D f ′′. (4)

with the choice of α = 1/2 and setting the first integration constant to zero c1 = 0 we obtain
back the well-known Gaussian solution.

This is the so-called fundamental solution and sometimes referred to as source type
solution—by mathematicians—because for t→ 0 the C(x, 0)→ δ(x).

The main goal of the present study is to evaluate and analyze the solutions for general
(α 6= 1/2) real parameter values. All the subsequent results are completely new and
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cannot be found elsewhere in the scientific literature. Luckily, the ODE Equation (4) has
closed-form analytic values, which are

f (η) = η · e−
η2
4D

(
c1M

[
1− α,

3
2

,
η2

4D

]
+ c2U

[
1− α,

3
2

,
η2

4D

])
, (5)

where M(·, ·, ·) and U(·, ·, ·) are the Kummer functions. As definition consider the series
expansion of M

M(a, b, z) = 1 +
az
b
+

(a)2z2

(b)22!
+ ... +

(a)nzn

(b)nn!
, (6)

with the (a)n = a(a + 1)(a + 2)...(a + n− 1), (a)0 = 1 which is the so-called rising factorial
or Pochhammer’s Symbol [60]. In our present case, b has a fix non-negative integer value,
so none of the solutions have poles at b = −n. For the Kummer function M, when the
parameter a has negative integer numerical values (a = −m), the solution is reduced to a
polynomial of degree m for the variable z. In other cases, a 6= −m, we obtain a convergent
infinite series for all values of a, b and z. There is a connecting formula between the two
Kummer’s functions, U is defined from M via

U(a, b, z) =
π

sin(πb)

(
M[a, b, z]

Γ[1 + a− b]Γ[b]
− z1−b M[1 + a− b, 2− b, z]

Γ[a]Γ[2− b]

)
, (7)

where Γ(a) is the Gamma function [60]. For exhaustive details (e.g., integral representation,
recursion formula), see the NIST Handbook [60]. For non-negative integer αs, an alternative
formulations of the result is possible in the form of

f (η) = e−
η2
4D

(
c̃1H2α−1

[
η

2
√

D

]
+ c̃2 · 1F1

[
1− 2α

2
,

1
2

;
η2

4D

])
, (8)

where Ha(η) is the Hermite polynomial and 1F1(·, ·; ·) is the hypergeometric function. The
first part of the solution, the Hermite polynomials, form a complete orthonormal basis
set on the −∞. . . + ∞ range with the Gaussian weight function and defines a Hilbert
space (note that Hermite polynomials play an extraordinary role in quantum mechanics as
the solution of the harmonic oscillator problem [69] which pioneered the way to second
quantization or field theory). Unfortunately, the second term in Equation (8) if c2 6= 0
destroys the orthogonality causing over-completeness, which is an interesting feature,
taking out the scope that the functional analysis might have far-reaching consequences,
needing further in-depth investigation. We have an intuition that such a property could
also help us say something new about turbulence. However, that is out of the scope of the
present study, but is in line with our long-range scientific interest.

It is important to emphasize that there are four parameter ranges where the derived
solutions behave qualitatively differently:

• α < 0, where the derived solutions are divergent for large ηs, such solutions are
nonphysical and out of the scope of our present analysis

• α = 0, the solution is zero in the origin and has an asymptotic positive finite value at
asymptotic large η

• 0 < α < 1, the solution is zero in the origin has a local maxima and a decay to zero as
η goes to infinity

• 1 < α, the solutions are again zero in the origin then have a local maxima and a quick
oscillatory decay to zero, larger α values mean more oscillations with more and more
zero transitions.
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We present here the form of f for the cases of α = 0, 1, 2, 3, 4; the last two cases are
evaluated for the first time:

f (η) = er f
(

η

2
√

D

)
,

f (η) = κ0 · η · e−
η2
4D ,

f (η) = κ0 · η · e−
η2
4D ·

(
1− 1

6D
η2
)

,

f (η) = κ0 · η · e−
η2
4D ·

(
1− 1

3D
η2 +

1
60

1
D2 η4

)
,

f (η) = κ0 · η · e−
η2
4D ·

(
1− 1

2D
η2 +

1
20

1
D2 η4 − 1

840
1

D3 η6
)

, (9)

the κ0 is an arbitrary normalization constant and will be given later on. For completeness,
the final concentration distributions are also provided; by inserting η = x/t1/2 and the
actual value of α, we obtain:

C(x, t) = er f
(

x
2
√

Dt

)
,

C(x, t) =

(
κ1x

t
3
2

)
e−

x2
4Dt ,

C(x, t) =

(
κ1x

t
5
2

)
e−

x2
4Dt

(
1− x2

6Dt

)
,

C(x, t) =

(
κ1x

t
7
2

)
e−

x2
4Dt

(
1− x2

3Dt
+

x4

60(Dt)2

)
,

C(x, t) =

(
κ1x

t
9
2

)
e−

x2
4Dt

(
1− x2

2Dt
+

x4

20(Dt)2 −
x6

840(Dt)3

)
. (10)

Figure 1 shows the given five shape functions. Functions with α > 0 clearly show a
decaying and oscillatory behavior in terms of η. Figure 2 shows six C(x, t)s for different
αs; for generality, we also show two solutions for half-integer αs. The quick decay and
the slight oscillations are clear to see in all cases. Due to the linearity of the diffusion
equation, any linear combination of Equation (5) is automatically a solution, also enriching
the possible mathematical structure of the diffusion process.

To complete our investigation, we have to analyse which kind of initial and boundary
value problems can be satisfied by these solutions. Our answer is twofold: Firstly, if one
of the above solutions (10) is explicitly given, with a fixed numerical value of c1, c2, D and
κi, then we may fix an arbitrary time point as t0 = t, and the corresponding C(x) curve
can be defined as the initial problem. This curve is presented in Figure 2 for α = 1. We
focus on physically relevant boundary values, which mean, asymptotically for x → ±∞,
the solutions C()→ 0, to which one may arrive if α > 0.
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Figure 1. Five evaluated shape functions f (η) in Equation (9). The gray, black, blue, red and green
curves are for α = 0, 1, 2, 3 and 4, respectively. Additional parameters κ1 and D are set to unity.

α = 1 α = 3/2

α = 2 α = + 5
2

α = 3 α = 4
Figure 2. The total solutions C(x, t) with the shape function of Equation (5) for six various α values.
For α = 1 a possible initial condition is given for t = t0 with the black curve. Additional parameters
D = 2, c2 = 1, c2 = 0 are the same in all cases. Note that for a better comparison the same ranges are
taken for the spatial and temporal variables in all six graphs.
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Secondly, even the general initial value problem can be handled with the help of the
Green’s functions formalism. According to the standard theory of Green’s functions the
solution of the diffusion Equation (1) can be obtained via the following convolution integral

C(x, t) =
1√
πt

∫ +∞

−∞
w(x0)G(x− x0)dx0 (11)

where (x0) contains the initial condition of the problem, C|t=0 = w(x0) .
The Green function for diffusion is well-known and can be found in numerous mathe-

matical textbooks, such as [70–73],

G(x− x0) = exp
[
− (x− x0)

2

4tD

]
, (12)

which is the fundamental solution of diffusion.
It is now straightforward to use our new functions (10) in the convolution integral as a

Green’s function to derive solutions for arbitrary initial conditions C|t=0 = w(x0) . So, in
this sense, we can give the most general Green’s functions

C(x, t) = κn
tα

∫ +∞
−∞ w(x0) · (x−x0)

t1/2 · e−
(x−x0)

2

4Dt

(
c1M

[
1− α, 3

2 , (x−x0)
2

4Dt

]
+

c2U
[
1− α, 3

2 , (x−x0)
2

4Dt

])
dx0 (13)

where κn stands for the proper normalization. We see in the following that for some
special forms of the initial conditions, such as polynomials, Gaussian, Sinus, or Cosines,
the convolution integral can be conducted analytically. It is clear that, for α = 1/2, we
automatically obtain back the Gaussian Green’s function of (12).

Note that for positive integer values of α both Kummer’s U and Kummer’s M functions
contain the same polynomials the only difference is just an overall normalization constant.
It can be shown, as it was visualized in our last study [1], that for negative αs the shape
functions f (η) are divergent for large ηs. In the regime of 0 ≤ α ≤ 1 the solutions are
similar to the “usual Gaussian” solutions, positive on the whole axis and goes to zero at
infinite η. These solutions can be understood as different probability distribution functions
and the corresponding expectation values, variance, higher moments, skewness, kurtosis,
and other probabilities can be evaluated.

For α > 1, the shape functions show some oscillations have finite negative values at
some arguments and have a quick decay at large arguments η. The norm of the functions
are still finite but, due to the oscillations such functions, cannot be interpreted as probability
distributions.

To present a solution for a given initial value w(x0), the numerical values of the
normalization constants κα have to be given. We apply the L1 normalization with the
definition of

1 = κα

∫ ∞

0
η · e−

η2
4D M

[
1− α,

3
2

,
η2

4D

]
dη. (14)

arriving to the numerical values of: κ1,2,3,4 = ( 1
2 , 3

2 , 5
2 , 7

2 ). In some cases, the L2 normaliza-

tions have to be used with the coefficients of κ1,2,3,4 =
( √

2
4√2π

, 1
5

√
120

4√2π
, 1

21

√
21·160
4√2π

, 1
429

√
429·4480

4√2π

)
As a rather physical example, we study the α = 1, c1 = 1, c2 = 0 case for the initial

condition of

w(x0) =
Heaviside(x0 − 1) ·Heaviside(11− x0) · (−[x0 − 6]2 + 25)

25
(15)
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which is an up-shifted upside down parabola cut at the x0 = +1,+11 visualized in Figure 3.
Note that the w(x0 → −∞) = 0 and the w(x0 = +∞) = 0 boundary conditions are fulfilled.
The solution obtained with the convolution integral of (13)

C(x, t) =
1
t
·
(

2t
25
√

π(x− 6)
[

er f
{

x− 1
2
√

t

}
− er f

{
x− 11
2
√

t

}]
+

4
25

t
3
2

[
e−

1
4t {x−1}2

− e−
1
4t {x−11}2])

(16)

For a better understanding, this result is presented in Figure 3. Note that the solution func-
tion C(x, t) fulfills the C(x0 → −∞) = 0 condition and the C(x0 → +∞) = 0 asymptotic
condition as well. The convolution integral of (13) results a single-valued function of (16)
therefore the derived solution is unique.

(a) (b)

Figure 3. (a) The initial condition of Equation (15), (b) the full solution C(x, t) of Equation (16).

2.2. An Interesting Ansatz

To have a mathematically complete analysis of the possible Ansat,z we have to investi-
gate the “inverse self-similar Ansatz” in the form of:

C(x, t) = x−αg
(

t
xβ

)
= x−αg(ω). (17)

Now, the role of the temporal and spatial variables is interchanged. The physical inter-
pretation of this new trial function is hard to see; until now, we cannot find any kind of
reasonable physical explanation of this new Ansatz Equation (17). (To avoid confusion
with the original Ansatz, we use the g(ω) notation for this case.) After having conducted
the usual derivation and algebraic steps, we arrive at the relations of

α = arbitrary real number, β = 2. (18)

The obtained ODE looks similar but obviously contains more terms then the previous ones

4Dω2g′′ + ωg′[−2αD− 4D + 2(α− 1)D]− g′ + Dα(α− 1)g = 0. (19)
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The solutions for the shape functions can be evaluated with the help of the usual Kummer’s
and exponential functions in the form of

g = c1e−
1

4Dω ω

(
5
4−
√

25−4α2+4α
4

)
M
(

9
4 +

√
25−4α2+4α

4 ,
√

25−4α2+4α
2 , 1

4Dω

)
+

c2e−
1

4Dω ω

(
5
4−
√

25−4α2+4α
4

)
U
(

9
4 +

√
25−4α2+4α

4 ,
√

25−4α2+4α
2 , 1

4Dω

)
. (20)

The two parameters of the Kummer functions should be real therefore α must lie in the
interval of [ 1

2 −
√

26
2 , 1

2 −
√

26
2 ] which is approximately −2.1 < α < 3.1 . Our experience

showed, that basically for any numerical α values the shape functions have a power-law
dependence such as f (η) ∝ ηn where 0 < n < 1 and the C(x, t)s are divergent at large x
arguments. Therefore, we found no physically reasonable solutions, therefore present no
figures for Equation (20).

2.3. A Generalization

At this point, it is straightforward to try the generalized form of the self-similar Ansatz

C(x, t) = a(t) · h
(

x
b(t)

)
= a(t) · h(ω), (21)

where all a, b and h are continuous real functions with existing continuous first temporal
and second spatial derivatives and ω is the new reduced independent variable. Note that
now the functions which are responsible for the time decay and spreading have a general
form. Instead of the power law dependencies t−α and tβ, we apply a(t) and b(t). By
calculating the needed temporal and spatial derivatives and plugging back to the original
diffusion equation, we arrive to the ODE of

ath−
(

abt

b

)
ωh′ =

Da
b2 h′′, (22)

where prime means derivation in respect to ω and subscript t in respect to time. This
equation should be an ODE for h(ω); therefore, the coefficients of h and h′ should be
independent of time therefore should be equal to constants, so Equation (22) become:

h−ωh′ = Dh′′, (23)

It has the solution of

h(ω) = C1ω + C2

(
2De−

ω2
2D +

√
2πDω · er f

[√
2ω

2
√

D

])
. (24)

The equations of constraints have to be fulfilled as well:

b2at = a · b · bt = a, b2 6= 0. (25)

The corresponding solutions can be easily obtained by direct integration and read:

a(t) = ±
√

2t + c1, b(t) = c2 ·
√

2t + c1. (26)
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Using the original definitions of the Ansatz (21) we can obtain the final solution in the
form of:

C(x, t) = (±
√

2t + c1) ·
(

C1x
c2 ·
√

2t + c1
+ C2

[
2De

− x2

2Dc2
2(2Dt+c1)+

√
2πD · x

c2 ·
√

2t + c1
· er f

{ √
2x

2c2
√

D(2t + c1)

}])
. (27)

where c1, c2, C1, C2 are integration constants. Choosing C1 = c1 = 0, we obtain back the
usual solution which is a sum of a Gaussian and and error function. Note that this is
equivalent to the self-similar solution where α = β = 1/2. It is instructive to see that a
more general form of the Ansatz does not necessarily lead to a larger class of solutions.
The functions a(t) and b(t) do not have additional freedom, the power laws however
have two free parameters—α and β two real numbers—which expand the class of possible
solutions. To the best of our best knowledge, this relatively simple derivation is not yet
published or widely known in the scientific community. At this point, we have to note
that, in our former study [1], we investigated the traveling-profile Ansatz from [32], which
interpolates between the traveling wave and the self-similar trial functions in the form
of C(x, t) = a(t) · h([x − b(t)/c(t)] = a( f )h(ω), where a(t), b(t) and c(t) are arbitrary
continuous functions, with existing first derivatives. The derived results were very similar
to the Equation (5).

2.4. A Redefinition of Variables

In the following, we use the conjecture that the f function can be written as:

f (η) = ηe−
η2
4D g(η). (28)

It is worth checking this form to derive possible new results. The derivative of the function
f (η) is:

f ′(η) = e−
η2
4D g(η)− η

η

2D
e−

η2
4D + ηe−

η2
4D g′(η). (29)

The second derivative of function f reads as follows:

f ′′(η) =

e−
η2
4D

[
−−η

2D g(η) + g′(η)− −η
D g(η) + η

η2

4D2 g(η)− η2

2D g′(η) + g′(η)

− η2

2D g′(η) + ηg′′(η)
]
. (30)

Inserting these functions into the equation, while keeping in mind that β = 1
2

− α f − 1
2

η f ′ = D f ′′, (31)

we obtain for g = g(η)

− αηg = 2Dg′(η)− ηg− η2

2
g′ + ηg′′D. (32)

Reordering the terms leads to

ηg′′ + 2g′ − η2

2D
g′ + (α− 1)

η

D
g = 0. (33)
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The solutions read

g(η) = c1M
[

1− α,
3
2

,
η2

4D

]
+ c2U

[
1− α,

3
2

,
η2

4D

]
, (34)

note that these are the same solutions as for the self-similar Ansatz, only in a separated
form. These two examples clearly show that there is a relatively large freedom to define an
Ansatz, but only few of them lead to reasonable new solutions.

2.5. Using Various Series Expansions of f (η)

As a possible generalization of the self-similar Ansatz, we may define the following
infinite power series of

C(x, t) =
∞

∑
i=1

ai · t−αi · ( f [η])i, (35)

where ais and αis are arbitrary real numbers. As first (and most logical case) just take the
following two terms of:

C(x, t) = at−α f
(

x
tβ

)
+ bt−α f

(
x
tβ

)2
= at−α f (η) + bt−α f (η)2, (36)

the role of α and β is still the same, and the role of a and b are to fix the ratio of the two
components or—more importantly—to turn-on or turn-off one of them. It is clear that if we
want to derive an ODE for the shape function the argument η should remain on the same
first power.

After some relatively simple algebraic steps we got the usual constraints for the
two exponents

α = arbitrary real number, β = 1/2. (37)

The derived ODE is

− aα f − a
2

η f ′ − b(α f 2 − η f f ′) = D(a f ′′ + 2b[ f ′2 + f f ”]), (38)

for general α, the solution is cumbersome containing large number of Kummer’s M and
Kummer’s U functions and given in the Appendix A at the end of the paper. However, for
some given small values α = 1,±1/2,±1, 3/2, 5/2, the results can be expressed with the
help of Gaussians and with the error function. The overall and complete function test of the
solutions of Equation (38) is a hard question due to the five parameters of {D, a, b, c1, c2}
(c1 and c2 stand for the integration constants).
For α = 1/2 and for arbitrary other real parameters the result reads the follows:

f =

−
ae

η2
4D
√
− 1

D±

√√√√−e
η2
4D

[
a2e

η2
4D −4bc1D

√
− π

D +4Dbc2
√
− π

D er f
{

1
2

√
−1
D η

}]
/D

2be
η2
4D
√
− 1

D

, (39)

where erf is the usual error function. Note that this solution let (a = 0 & b ε R), but
not the opposite case. Therefore, it is impossible to obtain back the fundamental or
Gaussian solution.

Figure 4 shows the shape functions of Equation (39) for a = 2, b = 1 and for a = 0, b = 1
and the corresponding final C(x, t)s as well. Note the remarkable new feature when the
f 2(η) term is considered alone; the solutions have a compact support. In this sense, a
linear PDE is reduced with a non-linear Ansatz to a non-linear ODE having non-linear
properties. This solution is definitely unknown in the scientific community. We might begin
to speculate about that even the regular diffusion equation could describe non-regular
diffusion phenomena such as the porous media equation [20].
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(a) (b) (c)

Figure 4. (a) Equation (39) the black and red lines are for a = 2, b = 1 and for a = 0, b = 1 case
for D = c1 = c2 = 1, (b) the full solution C(x, t) for a = 2, b = 1 , (c) the full solution C(x, t) for
a = 0, b = 1 .

If we consider the quadratic term in (36) alone, we obtain a solution which is just
a little more simplified than the one provided in the Appendix A. Therefore, we skip to
presenting it.
After this idea, we may go a bit further, considering additional generalized forms such as

C(x, t) = t−α f
(

x
tβ

)
+

∞

∑
i=1

ai · t−αi · ηi · ( f [η])i, (40)

Keeping only the first two terms, we arrive to

C(x, t) = t−α f
(

x
tβ

)
+ at−αη f

(
x
tβ

)
= t−α f (η) + at−αη f (η), (41)

which has the solutions of

f (η) =

(
e−

η2
4D

[
c1M

{
1− α, 3

2 , η2

4D

}
η + c2U

{
1− α, 3

2 , η2

4D

}
η
])

a + bη
. (42)

Note that, for a, b > 0, the only change is only a little different in terms of the scaling of
the results. However, if the a · b < 0, the solution has an obvious singularity, which makes
it interesting, but nonphysical; therefore, for now, we ignore this. Last along this line of
thought, we may try an Ansatz with the shape of:

C(x, t) = at−α f
(

x
tβ

)
+ bt−α f

(
x
tβ

)1/2
, (43)

which, unfortunately, provides no analytic solutions. Generally, higher order terms in
power expansions provide higher degree non-linear second-oder ODEs, which rarely have
analytic solutions.

2.6. Arbitrary Self-Similar Exponents

Lastly, we arrived at a question which leads us out of the problem of regular diffusion.
We might ask (if nothing else, only for the sake of completeness): what does it mean when
both α, β are arbitrary real numbers dictating the ODE of

− α f − βη f ′ = D f ′′. (44)

where D is still the usual diffusion coefficient. The solutions remain similar

f (η) = ηe−
βη2
2D

(
c1M

[
2β− α

2β
,

3
2

,
βη2

2D

]
+ c2U

[
2β− α

2β
,

3
2

,
βη2

2D

])
. (45)
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With some easy reasoning, we can find out the the original form of PDE. An additional
t2β−1 time dependence has to be included to cancel the usual β = 1/2 constraint. Therefore,
the starting PDE reads

∂C(x, t)
∂t

= D · t2β−1 · ∂2C(x, t)
∂x2 . (46)

The role of the α parameter—which is responsible for the temporal decay—could be easily
investigated, as we saw above; however, now the role of the β—which is responsible for
the spreading—was hidden until now. The solution functions are even functions; therefore,
we only concentrate on positive arguments and investigate the Kummer M function only.
From the formula of (45) two conditions are easy to notice. The first one is that β 6= 0 this is
due to the denominator of the first parameter in the Kummer function, and the second one
is that for β < 0 the exponential multiplier function goes to infinity at large arguments. We
ignore such nonphysical solutions.

The next figure, Figure 5a, presents various f (η) shape functions for α = 1. Three
cases can be distinguished:
When 2β < α, the functions have zero transitions and show oscillatory behavior.
When 2β = α, Kummer’s functions are equal to unity; hence, the solution is purely
Gaussian, with the quickest possible decay to zero.
When 2β > α, the larger the beta the lower the global maximum and the slower the decay
at large argument. The numerical value of α is irrelevant if it is positive. It is interesting that
for negative αs and for positive βs the total solution is again divergent at large arguments.
For completeness, we show the C(x, t) for α = 1 and β = 1 on Figure 5b.

(a) (b)

Figure 5. (a) Functions of Equation (45) for α = 1 where black,red,blue,green and brown lines are for
β = 1/4, 1/2, 1, 2 and 3, (b) The C(x, t) solution of Equation (46) for α = β = 1.

One can see, that for sufficiently large values of β, the shape function f has a maximum,
which is followed by a relatively slow decay. For β = 1/4, there is one root of the shape
function f (η), and correspondingly of the function C(x, t). This shows that for values β
smaller than 1/2, the existence of nontrivial fluctuations in the value of C(x, t) is possible,
which means that it may become smaller than the average of the background. If β is smaller
than 1/4, more roots of the shape function f (η) are possible, on Figure 6. These values of β
shows a special behavior of the system, where the nontrivial diffusive effects may lead to
temporal mass concentrations in case of mass diffusion.
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(a) (b)

Figure 6. (a) Functions of Equation (45) for α = 1 when β = 1/8 , (b) magnification of f (η) for values
close to zero.

3. Summary and Outlook

We investigated the regular diffusion equation with the usual self-similar Ansatz and
discussed all the solutions which are achievable beyond the Gaussian one. Most of the
solutions can be described with the help of Kummer’s M and Kummer’s U functions. In
certain cases, the linear combination of these functions, which lead to solutions, are explic-
itly evaluated. For some special parameters, the solutions go over the Hermite polynomials.
In the second part of the study, we presented additional solutions which all can be derived
from different modifications of the original self-similar Ansatz. Such solutions are again far
from being well-known among the scientific community and therefore have to be published
and discussed in detail. At the end of our manuscript, we investigated a special diffusion
process which has time-dependent diffusion coefficient. This time dependence may be
associated to the parameter of spreading, and certain analytic forms can be obtained. Work
is in progress to analyze spatial and temporal dependent diffusion equations, which will
be the topic of out next study. In the long run, we would like to also investigate reaction–
diffusion equations (even with non-constant diffusion coefficients). Our experience so far
suggests that numerous existing models can have new solutions with interesting features.
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Appendix A

To be complete we give the exact form of the solution of Equation (38) for arbitrary α.
For a better transparency we introduce the following four abbreviation:

M1−α := M
(

1− α,
3
2

,
η2

4D

)
, U1−α := U

(
1− α,

3
2

,
η2

4D

)
, (A1)

and similary

M−α := M
(
−α,

3
2

,
η2

4D

)
, U−α := U

(
−α,

3
2

,
η2

4D

)
. (A2)

The solution formula is very elaborate but contains these four Kummer’s functions only,
therefore the notation is applicable. Note that due to second degree of the ODE, two
solutions exist:

f (η) = − 1
2
(
2aM1−αU−α + aM−αU1−α + 2aαM−αU1−α ±

[
4a2M1−αU2

−α+

M−α M1−αU−αU1−α{4a2 + 8a2α}+ M−αU1−α{a2 + 4a2α}+
4a2α2M−αU1−α + 8c2bαM−αU2

1−α − 8c1bαM−α M1−αU1−α +

8c2bM1−αU−αU1−α − 8c1bM1−αU−α +

4c2bM−αU1−α − 4bc1M−α M1−αU1−α]
1
2
)

/

(b[2αM−αU1−α + 2M1−αU−α + M−αU1−α]). (A3)
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