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Abstract. Transport phenomena plays an important role in science and techno-
logy. In the wide variety of applications both advection and diffusion may appear.
Regarding diffusion, for long times, different type of decay rates are possible for differ-
ent non-equilibrium systems. After summarizing the existing solutions of the regular
diffusion equation, we present solutions derived from three different trial functions, as
a key point we present a family of solutions for the case of infinite horizon. By this we
tried to make a step toward understanding the different long time decays for different
diffusive systems.
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1. INTRODUCTION

The process of spreading is a quite common and relatively often occurring phe-
nomena. If the process is sufficiently slow and exhibits certain features then it is
called as a diffusion process. When the particle diffuses into it’s own environment
than it is called self-diffusion. This kind of diffusion is characterized often by differ-
ent parameters in different regions of space.

This fundamental question became an enormous scientific field in the last cen-
tury a historical review can be found in [1, 2]. Beyond the most studied regular case
there are non-linear (or anomalous) [3–5], non-local [6] or even fractional processes
[7]. Far from completeness we just mention some of the most relevant monographs.
In the following we deal with the regular diffusion equation therefore we mention
three basic references [8–10]. It is obvious that this phenomena has an important
number of applications in engineering [11, 12], in meteorology [13, 14] in polymer
science [15], in finance [16] or even in social networks [17].

Beyond the phenomenological macroscopic description of diffusion there are
numerous models exist to study the process. For instance the inhomogeneity in a gas
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means a non-constant density, and usually also an inhomogeneous pressure. Gene-
ral equations of motion of the one component fluid can be found in [9]. The case
of binary diffusion means a diffusion of given particles among other ones which are
different. The binary diffusion has interesting properties and eventually spectacular
in case if it is visible. Regarding models of binary diffusion, it is worthwhile to men-
tion the Lorentz gas model. In this model certain results have been obtained related
to diffusion by Machta and Zwanzig [18], Claus and Gaspard [19]. Connections with
non-equilibrium thermodynamics were analyzed in [20], and [21]. Beyond diffusion
Mátyás and Gaspard [22] discussed diffusion with a simple reaction - isomerization -
where not only the diffusion coefficient, but the reaction rate is also evaluated. One
may also find diffusive processes where the diffusion is determined by the surround-
ings or the boundaries or the shape of the surface [23–26].

Diffusive aspects one may find in certain hydrodynamic equations with dissi-
pation [27–35].

Regarding biological applications, the diffusion equation has an important role
at mesoscopic cell size scale [36], and also in the design of bioreactors [37].

We find it important to emphasize that the free-particle Schrödinger equation –
from mathematical viewpoint – is also a kind of diffusion equation [38, 39] therefore
all the forthcoming analysis could lead to reasonable results for that equation as well.

It is obvious, but we have to state that mathematically heat conduction is similar
to diffusion. The field has its mighty literature as well from which we mention two
recent monographs [40, 41]. Regarding numerical methods is worthwhile to mention
the solutions obtained in [43, 44].

Similar equations which may take into account certain other perturbations in
the system are the telegraph equation which is ”obviously hyperbolic” [42] or other
telegraph-type equations like the Euler-Poisson-Darboux which can be derived from
the modified Fick’s (or Fourier’s) law [45, 46]. Another answer is the investigation of
the nonlinear hyperbolic system of diffusion flux relaxation and energy conservation
equations instead of the second order diffusion equation [47, 48]. Such first order
system may have shock-wave characters as well. The literature of this question is
again numerous and we do not go into further details.

As final point we should mention scientific research fields and mathematical
problems which grew out of the original diffusion problem such as reaction-diffusion
[49, 50], porous media studies [51], surface growth phenomena [52], fractional dif-
fusion [53] or p-Laplacian [54, 55] equations.
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2. THEORY AND RESULTS

Having in mind that the general diffusion process is three dimensional we con-
sider only one Cartesian coordinate, therefore the equation reads

∂C(x,t)

∂t
=D

∂2C(x,t)

∂x2
, (1)

where C(x,t) is the distributions of the particle concentration in space and time
and D is the diffusion coefficient. C(x,t) in the equation above is considered up
to a constant, consequently it may also refer to the concentration above or around
the average. The function C(x,t) fulfils the necessary smoothness conditions with
existing continuous first and second derivatives in respect to time and space and from
physical reasons D > 0. Numerous physics textbooks gives us the derivation how
the fundamental (the Gaussian) solutions can be obtained e.g. [8, 56–58]. First, to
dispel misunderstandings we have to express one thing clearly, the regular diffusion
equation has existence and unicity theorem for initial and boundary problems, but
this is not contradictory to our forthcoming analysis. We will apply three different
trial functions (or Ansätze [this is the plural form] ) but neither the initial nor the
boundary problems are being well defined. The obtained results may fulfil well-
defined initial and boundary problems via fixing their integration constants c1 and
c2.

In 1969 Bluman and Cole [59] gave an analysis based on a general symmetry
analysis method giving numerous analytic solutions, some of them are expressible
with Gaussian or error functions. At this generality, presented below, there was a
need of almost all confluent hypergeometric functions, to describe the phenomena.
In the following first we give some additional exact solutions of the diffusion equation
ending up with an in-depth analysis of the classical self-similar solutions which can
have physical applications.

As note zero we must say that with trivial derivation all reader can verify that
the functions{

t+
Dx2

2
, exp(t∓

√
Dx), exp(−t) · (cos[

√
Dx] +sin[

√
Dx])

}
, (2)

are all solutions of Eq (1). These are called separable solutions, the first one is an
additive separable solution C(x,t) = f(t) + g(x) and the following two are multi-
plicative separable C(x,t) = h(x) · (t) solutions in respect to the spatial and tempo-
ral variables. These solutions are usually mentioned in textbook analysis, and will
be relevant later on, as we will see. It is also interesting to note, that the travel-
ling wave Ansatz – which mimics the wave properties of the investigated PDE –
C(x,t) = f(x∓ ct) automatically gives the exponential solutions.

Beyond the analysis of Bluman and Cole there is an other celebrated work of

(c) RJP67(Nos. 1-2), ID 101-1 (2022) v.2.3r20210620 *2022.2.25#e84d0c7a
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Clarkson and Kruskal [60] describing the non-classical method of group invariant
solutions, which is often used to obtain similarity solutions of (mostly non-linear)
PDEs. Originally it was introduced and applied for the Boussinesq equation. Now
we apply it to the diffusion equation. (Due to our best knowledge it was not done and
not presented in a clear-cut way till now.) The Ansatz has the form of

C(x,t) = β(x,t) ·W (z[x,t]) (3)

where all real functions α,β,W and z should have existing first continuous deriva-
tives with respect to time and the second existing continuous derivatives with respect
to the coordinate x, finally W (z[x,t]) is a compound function. The method to derive
the solution is the following, the first temporal and second spatial derivatives have to
be evaluated and replaced into Equation (1) giving

βtW +βW ′zt =D(βxxW + 2βW ′zx+βxW
′zx+βW ′′(zx)2 +βW ′zxx), (4)

where the subscripts x and t mean partial derivation in respect to time and coordinate,
and prime means derivation of W (z) in respect to z. The key idea is the following
we should like to have an ordinary differential equation (ODE) forW as independent
variable z. With reorganization of the terms it reads

W ′′(Dβ(zx)2)+W ′(βzt−2Dβzx−Dβxzx−Dβzxx)+W (βt−Dβxx) = 0. (5)

To solve this expression as an ODE for W (z) we have to fix that the factors of the
second, first and zeroth derivative are real constants

Dβ(zx)2 = C̃1, (6)

βzt−2Dβzx−Dβxzx−Dβzxx = C̃2, (7)

βt−Dβxx = C̃3, W 6= 0. (8)

There are numerous ways to solve this system. Note, that (8) is identical to the
original diffusion equation if C̃3 = 0. Therefore if we know and kind of solution,
(as starting point we may take the trivial solutions of Eq. (2) – which are additive or
multiplicative solutions –) then simply integrating Eqs. (6 - 7) and finally the ODE
Eq. (5) numerous solutions can be derived. (Finally, it is important to note, that in the
original paper of Clarkson and Kruskal there is an additional functions in the Ansatz
C(x,t) = α(x,t) + β(x,t) ·W (z[x,t]) which is α(x,t) and is important for non-
linear PDE. However for the linear diffusion equation the superposition is valid and
we can neglect it.) These mathematically correct solutions become very compound
and complicated if we start with the Gaussian solution and has little physical interest.

Before we get to our essential point we show a second kind of solution which
– in theory – interpolates the travelling wave Ansatz C(x,t) = g(x∓ c · t) and the
disperse self-similar Ansatz of C(x,t) = t−αf(x/tβ). This trial function is called
travelling-profile function and was introduced by Benhamidouche [61] with the form
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C(x,t) = a(t) ·h
(
x− b(t)
c(t)

)
= a(t) ·h(ω), (9)

where all a,b,c and h are continuous real functions with existing continuous first
temporal and second spatial derivatives and ω is the new reduced independent vari-
able. The solution method is similar as explained above. Performing the spatial and
temporal derivations and substitution back to (1) we arrive to

c2at
a
h+ah′[btc−ηcct] =Dh′′, a(t)/c(t)2 6= 0, (10)

where prime means derivation in respect to ω and subscript t in respect to time. This
equation should be an ODE for h(ω) therefore the coefficients of h and h′ should be
independent of time, should be constants, therefore the following constraints have to
be fulfilled:

c2at
a

= C̃1, btc= C̃2, ctc= C̃3. (11)

All three solutions can be easily obtained by direct integration, (starting with the last
equation) and read

c(t) =∓
√

2C̃3t+ c1, b(t) =
∓
√

2C̃3t+ c1

C̃3

+c2, a(t) = c3(2C̃3t+c1)
C̃1
2C̃3 , (12)

finally the solution of the traveling profile shape function is

h(ω) = c4M

(
− C̃1

2C̃3

,
1

2
,
[C̃2− C̃2ω]2

DC̃3

)
+ c5U

(
− C̃1

2C̃3

,
1

2
,
[C̃2− C̃2ω]2

DC̃3

)
, (13)

where M and U are the Kummer functions [72] with the argument of

ω =
x− b(t)
c(t)

=
x√

2C̃3t+ c1
− c2√

2C̃3t+ c1
− C̃2

C̃3

. (14)

Finally, we concentrate on our main Ansatz, on the self-similar one

C(x,t) = t−αf
( x
tβ

)
= t−αf(η) (15)

where α and β are the self-similar exponents being real numbers describing the de-
cay and the spreading of the solution is time and space. These properties makes this
Ansatz physically extraordinary relevant and was first introduced by Sedov [62] later
used by Zel’dowich and Raizer [63] and Barenblatt [64]. In the last decade we ap-
plied this trial function to numerous non-linear PDE systems, most of them are from
fluid dynamics [65] but investigated electromagnetic [66] or quantum mechanical
problems [67] as well. The self-similar analysis have been successfully applied to
different systems, where diffusion may also appear [68–70].
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The forthcoming analysis is quite simple, and similar to the former ones. Let’s
calculate the first time and second spatial derivative of the Ansatz (15) using the
derivation rule of the indirect function and put in into the diffusion equation (1), we
arrive at

−αt−α−1f(η)−βt−α−1ηdf(η)

dη
=Dt−α−2β

d2f(η)

dη2
. (16)

Now comes the crucial point of the reduction mechanism (or the applicability of
the Ansatz) if all three terms has the same time dependence, (all exponents are the
same) then all can be canceled by an algebraic simplification and a clear-cut ODE is
derived for the shape function. So the relation among the all time dependent factors
(now only two)

t−α−1
?
= t−α−2β, (17)

have to investigated. At this point we have to mention that this analysis can be ge-
neralized for PDE systems with 4-5 variables even for multiple spatial dimensions
as well, e.g. [65–67, 71] which makes the method very striking and effective. Com-
pared to the general Lie symmetry analysis the method remains transparent even for
a PDE system of 4-5 variables. The analysis of the relations among the self-similar
exponents (now for α,β) can end up with three different scenarios:

• The linear algebraic equation system among the exponents can be overdeter-
mined, which automatically means contradiction. Therefore the system has in-
herently no physically self-similar power-law decaying or exploding solutions.
Such systems are rare but some damped wave equations e.g. telegraph equations
are so.

• All exponents have well-defined numerical values, the analysis of the solutions is
straightforward, the remaining coupled non-linear ODE system can be analyzed,
in some lucky cases even it can be decoupled and in best cases all variables can
be expressed with analytic formulas. Such a system is the incompressible Navier-
Stokes equation [31] where all exponents have the same numerical value of 1/2,
except the time decay of the pressure function which is +1.

• The linear algebraic equation system for the exponents are under-determined,
leaving usually one self-similar exponent completely free, which means an ex-
tra free parameter in the obtained ODE system, causing a very rich mathematical
structure. The free exponent can have either positive or negative sign. Negative
values usually result in power-law divergent or exploding solutions in contrary,
positive exponents mean power-law decaying solutions which are desirable for
dissipative systems. This is the case for the present regular diffusion equation.

For the present diffusion equation, assuming that in (17) the equality strictly
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holds, after some trivial algebra we get:

α= arbitrary real number, β = 1/2, (18)

there is a clear-cut time-independent ODE of

−αf − 1

2
ηf ′ =Df ′′. (19)

With α = 1/2 the left-hand side of ODE is total derivative and can be integrated
getting

−1

2
ηf + c1 =Df ′, (20)

if the integration constant – which can be interpreted as a source term – is taken to
be zero c1 = 0 we get back the usual Gaussian solutions of

f(η) = c2e
− η2

4D , (21)

from the final solution of

C(x,t) = c2t
−1/2e−

x2

4Dt , (22)

we can read, that β is responsible for the spreading and α is for the decay of the
solution. This is a general, (and very powerful) feature of the self-similar Ansatz that
positive α and β values always represent decaying and spreading solutions, which
have great physical relevance. (This fundamental solution is sometimes referred to as
source type solution – by mathematicians – because for t→ 0 then C(x,0)→ δ(x).)

We will see later on that, α < 0 values mean exploding solutions which have
only mathematical interest in most cases. It is also clear from (22) that no real solu-
tions can be defined for t < 0. The spreading and decaying properties are visualized
on Fig. 1 below.

If the more general c1 6= 0 is taken then the solutions is changed to

f(η) =

c1√π · erf
[
1
2

√
− 1
Dη
]

D
√
− 1
D

+ c2

 ·e− η2

4D , (23)

where erf is the error function [72]. (We present the formal solutions obtained by the
Maple 12 Software [Copyright (c) Maplesoft, a division of Waterloo Inc. 1981-2008]
from now on.) This solutions is not so commonly known. Non zero c1 integration
constant modifies the shape of the Gaussian solution. For clarity, Fig. (2) shows the
solutions for different initial conditions. The second – and more general – case is for
α 6= 1/2, (β is still one half) now the solution of Eq. (19) reads:

f(η) = η ·e−
η2

4D

(
c1M

[
1−α, 3

2
,
η2

4D

]
+ c2U

[
1−α, 3

2
,
η2

4D

])
, (24)
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t1
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α
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(x
,t)
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α
f(
x/
tβ
)

Fig. 1 – A self-similar solution of Eq. (1) for t1 < t2. The presented curves are the Gaussians. The
physical role of the self-similar exponents are indicated with arrows.

where M(·, ·, ·) and U(·, ·, ·) are the Kummer’s functions for exhaustive details see
the NIST Handbook [72].

For α > 0 the solution tends to zero for large values of η.
For α < 0 one can see divergent solutions, which go to infinity at infinite argu-

ment. (The blow-up type of solutions are different and will be defined later.) From
the series expansion of M we get

M(a,b,z) = 1 +
az

b
+

(a)2z
2

(b)22!
+ ...+

(a)nz
n

(b)nn!
, (25)

with the (a)n = a(a+1)(a+2)...(a+n−1),(a)0 = 1 is the so-called rising factorial
or Pochhammer’s Symbol [72]. In our present case b has a fix non-negative integer
value, so none of the solutions have poles at b = −n. For the Kummer function M
when the parameter a has negative integer numerical values (a = −m) the solution
is reduced to a polynomial of degree m for the variable z. In other cases a 6= −m
we get a convergent infinite series for all values of a,b and z. There is a connecting
formula between the two Kummer functions, U is defined from M via

U(a,b,z) =
π

sin(πb)

(
M [a,b,z]

Γ[1 +a− b]Γ[b]
−z1−bM [1 +a− b,2− b,z]

Γ[a]Γ[2− b]

)
, (26)

where Γ(a) is the Gamma function [72]. Figure 3 shows the shape functions for nu-
merous different values of α. Note, that all positive αs mean solution with asymptotic
decay which means that for η→∞ the f(η)→ 0. This can interpreted as certain kind
of boundary conditions f(0) = 0 and f(η→∞)→ 0. The α > 0 means additional
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Fig. 2 – (Color online). Numerous shape functions f(η) Eq. (23) for three different initial conditions
the black, red and blue curves are for c1 = 1, c2 = 0, c1 = c2 = 1 and for c1 = 0, c2 = 1, respectively.

Fig. 3 – (Color online). Numerous shape functions f(η) Eq. (24) for various αs all are for β = 1/2
and for c1 = 1, c2 = 0,D = 2. The gold, gray, black, blue, red, green, pink, brown and cyan curves are
for α= 2,1,1/2,1/4,0,−1/8,−1/4,−1/2 and for −1, respectively.
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oscillations. Zero alpha value means a solution which converges to a finite value, and
negative values means divergent solutions.

Note, the clear difference between the two solutions obtained from the travel-
ling profile (13) and the self-similar Ansatz (24). Both contain Kummer functions
but with different arguments and coefficient functions.

As one can see, α= 0 is a special case, when Eq. (19) is simplified to

−ηf
′

2
=Df ′′, (27)

resulting

f(η) = c1 + c2 · erf

(√
β

2D
η

)
, (28)

which is a sigmoid function which starts from zero and tends to a non-zero constant
at large values argument η. As a consequence C(x,t) also tends to a constant for
these values.

From practical point of view, this case has certain similarities with the evap-
oration phenomena [73], when initially there is no vapour concentration above the
liquid, and as the time passes above the liquid phase vapour appears, which becomes
denser with time.

If α = 1 we have an interesting case. The first argument of the Kummer func-
tions M and U is 1−α= 0. This means, that

M

(
0,

3

2
,
η2

4D

)
= 1, (29)

and the other function U(0,3/2,η2/[4D]) is also constant. Consequently the general
solution is

C(x,t) =
1

t
f(η) =

1

t
ηe−

η2

4D ·Const. (30)

Case α = 2 yields more in the expression of the function f(η). The first argu-
ment of the functions M and U is 1−α =−1. In this case the function M is a first
order polynomial, the higher order coefficients vanishes,

M

(
−1,

3

2
,
η2

4D

)
= 1− 2

3

η2

4D
, (31)

and the function U is also a polynomial with the first order. We can conclude, that
the sum of c1M + c2U is also a polynomial with the first order. The general solution
reads in this case

C(x,t) =
1

t2
f(η) =

1

t2
ηe−

η2

4D ·
(
κ0 +κ1

η2

4D

)
, (32)

where κ0 and κ1 are real constants.
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Following the above argumentation, for α = n, (where n > 2) yields the solu-
tion of

C(x,t) =
1

tn
f(η) =

1

tn
ηe−

η2

4D ·

(
κ0 +κ1

η2

4D
+ ...+κn−1 ·

[
η2

4D

]n−1)
. (33)

At this point we try to determine the concrete values of the coefficients κn. For
the very first case, if α = 1, there is a single multiplicative constant multiplying the
function f(η).

For α= 2, the situation is a little bit more complex. By reinserting the function
f(η) of formula (32), into the equation (19) we get

f(η) = η ·e−
η2

4D ·κ0
[
1− 1

6D
η2
]
. (34)

If we incorporate the diffusion coefficient by rescaling the time, or if it is taken to be
one D = 1, we have for C(x,t)

C(x,t) =
1

t2
f(η) =

1

t2
ηe−

η2

4D ·κ0
[
1− 1

6
η2
]
. (35)

Figure 4 presents the final solutions of C(x,t) evaluated from the shape func-
tion of Eq. (24) for six different αs. Note, that all positive αs mean decaying solu-
tions. The α= 0 is the limiting case means an asymptotically constant solution, and
negative αs solutions diverge at large times.

For η→ 0, the expression e−η
2/(4D) tends to one. By this, the function f for

given x, and large times decays like

f ∼ 1

t
. (36)

As a consequence for finite x, and given value of α> 0 mentioned above, the expres-
sion C(x,t) decays for sufficiently large times in the following way

C(x,t)∼ 1

t(α+1)
. (37)

At last just for the sake of completeness, we mention that with the t = t0− t
substitution we can get the so called blow-up solutions. The functional form of (24)
remains unchanged, and the graphs of the shape functions are changeless. Just the
final C(x,t) solutions go to infinity after a finite time for positive αs. Solutions
with zero and negative α values however remain unchanged. Two of such solutions
are visualized in the last, 5th figure. We think that our exhaustive analysis in general
helps the reader to understand the complex beauty of the solutions of PDEs especially
the diffusion equation. The second aim of our study is, that these concrete results
could attract the interest of the community of anomalous diffusion [74] or anomalous
transport [75–79].
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α= +2 α= +1

α= +1
2 α= +1

4

α= 0 α=−1
2

Fig. 4 – (Color online). The total solutions C(x,t) with the shape function of (24) for six various α
values. Additional parameters D = 2, c2 = 1, c2 = 0 are the same in all cases. Note, that for a better
comparison the same ranges are taken for the spatial and temporal variables in all six graphs.
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α= +1 α= +1
2

Fig. 5 – (Color online). Two solutions from the blow-up kind, with the same parameters given above.

3. SUMMARY

After a short historical summary of diffusion we presented analytic results ob-
tained from three different Ansätze. First from the non-classical method of group
invariant method, then from the travelling profile and finally the classical self-similar
Ansatz. The results evaluated from the last trial function were analyzed in details, nu-
merous formulas are given for different α≥ 0 self-similar exponents which all mean
physically relevant decaying solutions with different temporal asymptotics. Such
results might exist deeply hidden in intrinsic dynamics of certain systems. As lim-
iting solution the α = 0 was discussed in connection with fluid evaporation. Future
work is in progress to perform comparable analysis among the three mentioned trial
functions for non-linear diffusion equations as well. A straightforward organic ge-
neralization is when both α,β exponents can take arbitrary real numbers, it will be
shown in future studies that such cases may be related to diffusion equations which
have time-dependent diffusion coefficients. Investigation of processes where the dif-
fusion coefficients have spatial dependence is also a future challenge. This kind of
in-depth similarity analysis would be desirable and instructive for second order wave
equations, too.
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