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Abstract. Coherent control calculations are presented for helium. With the help of a genetic algorithm
(GA) phase-modulated extreme ultra violet (XUV) laser pulses were controlled to maximize or minimize
the non-resonant two-photon 1s1s → 1s3s excitation. Linearly polarized laser pulses were chosen at the
frequency of 0.4 a.u. with a duration of about 15 fs and 1014 Wcm−2 peak intensity. We verified the theory
that an antisymmetric spectral phase around the two-photon resonance frequency maximizes the transition
probability. Dark pulses which do not excite the system at all have however symmetric spectral phases
around the two-photon resonance frequency.

PACS. 32.80.Wr Other multiphoton processes – 32.80.Qk Coherent control of atomic interactions with
photons – 31.15.Ar Ab initio calculations

1 Introduction

It is experimentally possible with tailored femtosecond
laser pulses from a computer-controlled pulse shaper [1]
to optimise the branching ratios of different chemical re-
actions [2]. These experiments are based on the original
ideas of optimal control theory [3–5] later expanded by [8]
into a hypothetical experimental setup making it possible
to solve and control the Schrödinger equation in real time.
There are basically two different controlling schemes ex-
ist. The ‘pump-dump control’ developed by Tannor and
Rice [6], which relies on the timing between two laser
pulses to manipulate the quantum dynamics such as the
fracturing of specific bonds in the given molecule. The
second control mechanism was introduced by Shapiro and
Brumer [7] and is based on quantum interference of differ-
ent light-induced reaction paths. Further details including
references about pulse-shaping and coherent control mech-
anisms are given in the review by [9].

Here we report on quantum interference coherent con-
trol calculations with short and intensive XUV pulses
which may attract interest in future Free-Electron-Laser
(FEL) experiments. We implement our coupled-channel
method for controlling laser driven helium atoms. So far,
the method has been successfully applied to ionization
of helium in heavy ion collisions [10] and photoioniza-
tion of helium [11] in the 0.2−1.2 a.u. photon energy
regime. In our method we can approximate the discrete
and continuum parts of the spectrum of helium with suf-
ficient accuracy. We investigate non-resonant two-photon
1s1s → 1s3s excitation in helium. Resonant two-photon

a e-mail: barna@concord.itp.tuwien.ac.at

excitation processes in atoms have been extensively stud-
ied, both experimentally [13] and theoretically [14–16].

In this study we generalise the theory of [15,16] max-
imizing and minimizing non-resonant two-photon tran-
sition probabilities. Following the experimental set-ups
available today, we apply phase modulation with the ge-
netic algorithm (GA) [17] as an optimisation procedure
to create the best interacting and most ineffective pulses
(dark pulses) for the 1s1s → 1s3s excitation. A de-
tailed analysis about the evolutionary algorithms in op-
timal control studies was presented in [18]. Further de-
tails about different learning algorithms can be found in
reference [19].

Atomic units are used throughout the paper unless
otherwise indicated.

2 Theory

To describe controlled laser-driven atomic processes in he-
lium we solve the coupled-channel differential equation
system for the time-dependent wavefunction expansion co-
efficients

dak(t)
dt

= −i

N∑

j=1

Vkj(t)ei(Ek−Ej)taj(t) (k = 1, ..., N),

(1)
where Ek and Ei are the channel eigenvalues of the unper-
turbed spin-independent helium Hamiltonian and Vkj(t) is
the coupling matrix element

Vkj(t) = 〈Φk|V̂ (t)|Φj〉. (2)
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Fig. 1. The low-lying excited states of the helium atom with
the non-resonant frequency of the laser pulse.

The eigenfunctions {Φj} are obtained by diagonalising
the helium Hamiltonian in a configuration interaction ba-
sis of orthogonal symmetrized two-particle wavefunctions.
V (t) is the dipole interaction operator between the laser
pulse and the atomic electrons, and will be specified later
on. For the single-particle wavefunctions we use an an-
gular representation with spherical harmonics Ylm with
hydrogen-like radial Slater functions and regular Coulomb
wave packets. Further technical details can be found in [11]
or [12].

In our basis 40 channels were used with angular mo-
menta L = 0, 1, 2 up to the second ionization threshold
of helium. According to test calculations if the density of
states reached the required level (for ωcar = 0.4 a.u in en-
ergy range ≈ [−3 : 0] means at least 8 states per angular
momenta), the optimisation process becomes stable. Be-
yond the 1s1s and 1s3s states different bound states were
included such as 1s2s, 1s4s, 1s2p or 2s2s. The list of the
bound states can be found in reference [11]. Figure 1 shows
some low-lying excited states in the helium atom, together
with the applied non-resonant laser pulse frequency.

The probabilities for the transitions into final helium
states j after the pulse are simply given by

Pj = |aj(t → +∞)|2. (3)

When a state-selective excitation probability is controlled
then the corresponding channel is considered.

To describe the external field we restrict ourselves to
linearly polarized laser pulses parallel to the z-axis. The
length gauge with the dipole approximation is applied as

V (t) =
∑

i=1,2

E(t) · ri (4)

where E(t) is the electric field strength of the laser and ri

is the coordinate of the electrons. To start phase modu-
lation a transform-limited pulse spectrum is needed. We
calculate the Fast-Fourier Transformation (FFT) of a nar-
row Gaussian pulse

E(t) = E0 exp
[
−a (T/2 − t)2

]
sin(ωt)ez (5)

where ω is the carrier frequency. The parameters a help us
to fix the width of the pulse and T shifts it into the middle

of the required time window. For ω = 0.4 carrier frequency
we used the following parameters: T = 188 a.u. (4.5 fs)
E0 = 0.091 a.u. (I = 2.92 × 1014 W/cm2) and a = 0.02
with 512 different time points. To have stable numerics
we embedded this short pulse between two 15T long zero
padded intervals using 15872 time points. From this large
number of Fourier frequencies 128−130 relevant frequen-
cies emerged following the experimental setup of [2]. Phase
modulation can be defined as:

Ẽ(ω) = E(ω)eif(ω) (6)

where E(ω) is the spectrum of the initial pulse and f(ω)
is the phase function. In our case f(ω) must be a con-
tinuous function without any sharp peaks or singularities.
To avoid numerical difficulties, only eleven Fourier coeffi-
cients are modulated where the phase function is a ran-
domly given real number in the [−π : π] interval. These
eleven points were equidistantly distributed. To get the
phase function between these given points, a spline inter-
polation is applied. This procedure reduces the number of
free parameters, accelerating the optimisation algorithm
and giving a quite general and flat phase function which is
comparable to the experimental results of [20]. Our inves-
tigation shows that this realization of phase modulation
with a FFT algorithm is robust and reliable for control
calculations which is in agreement with [18].

Phase modulation preserves pulse energy conservation
and needs no renormalization. Pulses with modulation
have a longer duration and lower peak intensity than the
initial narrow Gaussian pulse. Our phase modulation al-
gorithm may give pulses with different length up to 15T
(67.5 fs). The length of these pulses are defined through
99.9 percent energy conservation, integrating the intensity
and comparing to the initial Gaussian pulse. To acceler-
ate the time propagation of the coupled-channels equa-
tions we cut and integrate the relevant time window only
(see Fig. 3). For time propagation we use a Runge-Kutta-
Fehlberg method of fifth-order embedding an automatic
time-step regulation [12].

To optimise the free phases we apply the genetic algo-
rithm. The GA represents each possible solution, or indi-
vidual, with a string of bits, termed a chromosome. For
example, a possible phase is represented as [01101111].
(For the sake of clarity, we assume that each parameter
can only take 28 values in this example.) The first genera-
tion of individuals is selected randomly. Typically, we use a
population with 20 individuals which is about a factor two
larger than the number of the optimisable variables. For
each generation, the following steps are carried out: (i) all
the individuals are evaluated and assigned a fitness value.
In our case, we calculate the ionization or state selective
excitation probability resulting from each parameter con-
figuration, calling it a fitness value. The next generation
of individuals is chosen by applying the three GA opera-
tors: selection, mutation and crossover. (ii) The selection
operator chooses which of the individuals from the present
generation will be transferred to the next generation. The
individuals are ranked according to their fitness, and then
selected randomly with a certain probability based on
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the fitness. A fit individual thus receives a high proba-
bility and can be selected many times, while a low-fitness
individuals may not be selected at all. (iii) The muta-
tion operator, which is very seldom used, selects a few
individuals and replaces one (randomly selected) bit in
chromosome by randomly 0 or 1 (i.e. creating the chro-
mosomes [11010111] from [11000011].) (iv) The crossover
operator takes two individuals at a time and exchanges
part of their chromosomes. For example, the two chromo-
somes [00110100] and [11100111] can create the chromo-
somes [00110111] and [11100100]. The use of the mutation
and crossover operators ensures that the GA does not get
trapped in a local minimum or maximum. The fittest in-
dividuals, however, always survive to the next generation
which is called elitism. The steps (i–iv) are then repeated
until convergence is achieved.

3 Results

Our coupled-channel method was tested and verified for
photon energies between 0.2 and 1.2 a.u. The applied pulse
duration was 3.8 fs. Above this energy range, we enter the
working range of the planned Free Electron Laser (FEL)
where only single photon processes come into play, leav-
ing no room for control. On the other hand, with photon
energies below 0.2 a.u. we enter into a range where our
method becomes inaccurate due to the large number of
absorbed photons. The carrier frequency of our pulse is
now ωcar = 0.4 a.u., which is slightly smaller than the
resonant two-photon 1s1s-1s3s photon energy, which is
0.42 a.u. (E1s1s = −2.903 a.u. and E1s3s = −2.06 a.u.)
The carrier is now non-resonant for the 1s1s → 1s3s two-
photon excitation process.

We chose eleven free phases covering the spectrum of
the pulse to optimise. If we slightly enhanced the number
of the free parameters, (free phases e.g. from 11 to 22)
then the shape of the pulses may differ, but the proper-
ties of the wave packet remains the same. If we drasti-
cally enhanced the number of the free phases (e.g. from
22 up to 64), then the phase function became oscillat-
ing, the duration of the pulse became very long and the
time propagation took much more time. Due to the energy
conservation, long pulses have low peak intensities which
bring down the transition probabilities. And at last, the
optimisation problem with a large number of parameters
once again requires much time. These experiences confirm
the statements of [18].

We used 20 different pulses in our calculations per gen-
eration (population size), and let the process run through
40 generations to achieve convergence. This means that
800 different pulses were checked to find the most favor-
able ones. The value used for the permutation probability
was (≈1/population size) 0.05, for the crossover probabil-
ity was 0.4, and for creeping probability was 0.06, match-
ing the recommendation of the routine [17].

Figure 2 shows the convergence properties of our cal-
culations. The filled circles present the convergence of the
best pulse, and the hollow triangles show convergence of
the dark pulse, respectively. We found that optimisation
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Fig. 2. The convergence of the genetic algorithm for the
1s1s → 1s3s transition. The full circles show the excitation
probabilities of the best pulse, and the hollow triangles the
dark pulse. The solid lines are for guiding the eyes. The dashed
line shows the result of the Gaussian pulse.

for the best pulse converges much faster and results in
smaller gain than optimisation for dark pulses for loss. The
Gaussian pulse equation (5) gives an excitation probabil-
ity of about 0.02. The maximized excitation probability is
0.6 which means a factor of 30 in gain. The darkest pulse
causes excitation with a probability of P = 5.37 × 10−5,
which is a factor of 372 in loss. Theoretically, dark pulses
may exist with zero two-photon excitation probability. We
could not find such pulses during our investigation.

We started two optimisation procedure, one for the
best and one for the worst pulse with different random
pulses which is why the first generations have different
results.

Figure 3a shows the electric field strength of the trans-
form limited Gaussian pulse equation (5). Figures 3b
and 3c present the electric field of the optimised best and
dark pulses, respectively. The best pulse has a length of
about 625 a.u. (15 fs) and the worst pulse is about a fac-
tor of two longer. Note that these pulses are not the ab-
solute best or darkest pulses which exist, but optimised
enough, to show the feature of the non-resonant two-
photon coherent control mechanism. These two pulses are
the most extreme individuals from the last generations.
We analyzed our results with the help of the second-order
time-dependent perturbation theory formula of [15]. If the
two-photon process is non-resonant, then the probability
of inducing a transition to the excited state by the laser
pulse is proportional to:

S2 =

∣∣∣∣∣∣

+∞∫

−∞
Ẽ (ω0 + Ω) Ẽ (ω0 − Ω) dΩ

∣∣∣∣∣∣

2

=

∣∣∣∣∣∣

+∞∫

−∞
E (ω0 + Ω) E (ω0 − Ω) e{i[f(ω0+Ω)+f(ω0−Ω)]}dΩ

∣∣∣∣∣∣

2

,

(7)
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Fig. 3. Electric field strength of the applied pulses. (a) The
transform-limited initial pulse, (b) optimised best pulse and
(c) the optimised dark pulse.

where Ẽ(ω) = E(ω)eif(ω) is the Fourier transform of
the electric field of the excitation pulse E(t), and E(ω)
and f(ω) are the spectral amplitude and the spectral
phase, respectively. Ω is an arbitrary frequency close to
the resonant frequency inside the spectrum of the pulse.
Equation (7) clearly reflects the fact that two-photon tran-
sitions occur for all pairs the frequency when ω1 + ω2 =
2ω0, and ω1, ω2 lie within the spectrum of the exciting
pulse. For a given pulse spectrum it is obvious that S2

is maximized by the transform limited pulse with mini-
mal time duration with f(ω) = 0. Consider a pulse with
the same energy and power spectrum, but having any an-
tisymmetric spectral phase distribution around the reso-
nant two-photon frequency ω0, f(ω0 + Ω) = −f(ω0 −Ω).
The phase terms cancel each other, and the two-photon
transition probability is independent of the spectral phase.
It is clear that an infinite number of antisymmetric phase
functions exist which unambiguously determine the pulse
shape. Figure 4a presents the phase function of the opti-
mised best pulse, and Figure 4b the worst pulse respec-
tively. The two arrows mark the carrier ωcar and the res-
onance ω0 frequencies. Note that the phase function of
the best pulse has clean antisymmetry around the two-
photon resonance frequency ω0 = 0.42. Contrary to this,
the dark pulse has a clean symmetry around ω0. If we
tune or detune the ωcar carrier frequency relative to the
resonance frequency ω0, then the symmetry properties
of the best and worst (dark) pulses remain the same.
Of course, the gain or loss through optimisation will be
changed. If the carrier frequency of the pulse is equal to
the two-photon resonant frequency ωcar = ω0 then the
transform limited Gaussian pulse is one of the best pulse.
However, pulses with symmetric phase functions are com-
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Fig. 4. Two phase functions f(ω), (a) of the optimised best
and, (b) the optimised dark pulse.

pletely ‘dark’ producing no 1s3s excitation at all. We did
calculations for the 1s1s → 1s3d non-resonant two-photon
transitions as well. The energy difference between the 1s3s
and 1s3d energy levels is minimal, (E1s3s = −2.06 a.u. and
E1s3d = −2.05 a.u.), which is why the same pulses were
taken. The results did not show significant deviation from
the results analyzed above.

4 Summary and outlook

We have presented coherent control calculations for the
helium atom in short and intensive XUV laser pulses.
The optimised pulses have a peak intensity of about
1014 Wcm−2, duration of a 15−30 fs and carrier frequency
of 0.4 a.u.

With the help of the genetic algorithm, the spectral
phases of the pulses were controlled for the non-resonant
two-photon 1s1s → 1s3s excitation. The second-order
perturbation theory for two-photon excitation processes
helped us to understand and explain the gain and loss of
the optimisation.

Coherent control experiments work in the visible or
infrared frequency range nowadays. Our calculations were
done in the XUV energy regime with the hope that the
rapid development of femtosecond laser technology will
make this pulses realizable in the near future.
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