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Abstract

We consider a particle that is subject to a constant force and scatters inelastically on a vibrating periodically corrugated floor.
At small friction and for small scatterers the dynamics is dominated by resonances forming spiral structures in phase space.
These spiral modes lead to pronounced maxima and minima in the diffusion coefficient as a function of the vibration frequency,
as is shown in computer simulations. Our theoretical predictions may be verified experimentally by studying transport of single
granular particles on vibratory conveyors.
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1. Introduction a gravitational field must be a very simple dynami-

cal system. Surprisingly, such a ball exhibits an ex-

One might naively assume that a ball bouncing in- tremely rich dynamics providing a prominent example
elastically on an oscillating plate under the action of for complexity in a seemingly trivial nonlinear dynam-

ical system. Experiments indicated period-doubling
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Oscillating surfaces, on the other hand, are often Y
used in the field of granular material in order to drive a M gl
gas of granular particles into a nonequilibrium steady e
state[9-11]. A model that is somewhat intermedi- A’f[ . ] %

ate between an interactingamy-particle system and

a single bouncing ball is th_bouncmg ball bll_“a]_’d Fig. 1. Sketch of the bouncing ball billiard: a point particle col-
(BBB) [12]. Here the surface is not flat but periodically  jiges inelastically with circular scatterers forming a periodic lattice
corrugated mimicking a fixed periodic grid of steel on a line. Parallel toy there is an external field with constant ac-
balls[11]. A single particle bouncing inelastically on  celerationg. The corrugated floor oscillates with amplitudeand
this vibrating surface thus performs diffusive motion. freauencyy.

Studying the BBB at large friction and large radius of

the scatterers, the diffusion coefficient turned out to centers are a distance 8= 2 apart from each other.
be a highly irregular function of the driving frequency We now consider a point partideerforming a free
[12]. As the dynamical reason for the largest maxima flight between two collisions in a gravitational field
some integer frequency locking between bouncing ball with accelerationg = 9800|| y. The particle’s coor-
and yibrating plate could be identified, a phenomenon dinates(x, .y, ;) and velocitiesv,_, . ,. Uy i) at
that is well known for a ball bouncing on a flat vibrat- time 7,11 immediately before thén + 1)th collision
ing plate[2—4,6,7,13,14]Additionally, we detected an  and its coordinatesy,", y,/) and velocitiev,, v},
irregular structure on fine scales that is supposedly dueat timez, immediately after theith collision are re-
to some subtle effects like pruning of orbits under pa- lated by the equatior{42]

rameter variatiofil5].

In this Letter we show that yet there exists an- *,41 =" + 03, (tnt1—In), (1)
p_ther_ microscopic mechanism crea_ting _nonmongt_onic- = v+ v;tn([”-l‘l 1) — gltisr — 1)2/2, (2)
ities in the frequency-dependent diffusion coefficient. ™™ ’

Our starting point is to study diffusion in the BBB  Vs+1= Ui 3

at smaller frict?on .and _smaller_scattgrer_radius than in V) g = v, = 8ltas1 — ) (4)
Ref.[12]. In this situation we find apiraling bounc- ' |

ing ball mode, which changes under parameter vari- At a collision the velocities change according to
ation. We show that this mode is again responsible _

for the emergence of local maxima and minima in VLn — V/Ln =a(vrin—vi,), ®)
the diffusion coefficient as a function of the vibration UH+,n — v =BV, = Vrin), (6)
frequency. We conclude with a brief outlook towards
consequences of our work for the standard bouncing
ball as well as for transport on vibro-transporters.

wherevy is the velocity of the corrugated floor. The
local coordinate system for the velocities andv is
given inFig. 1L We assume that the scattering process
is inelastic by introducinghte two restitution coeffi-
cientse and 8 perpendicular, respectively, tangential
to the surface at the scattering point.

In Ref. [12] we studied the BBB forR = 25,

The model is depicted iRig. L it consists ofafloor ~ « =0.5 andg = 0.99. Here we consider the case of
oscillating withy r = —A sin(2r ft), whereA = 0.01 R = 15 anda = 0.7, which is closer to the experi-
and f are the amplitude, respectively, the frequency ments of Urbach et aJ11]. In contrast to naive expec-
of the vibration! This floor is equipped with a pe- tations, this simple variation of parameters profoundly
riodic grid of circular scatterers of radiu® whose changes the diffusive dynamics of tB8B, as we will
show in the following.

2. Thebouncing ball billiard

1 We work with reduced units, where all quantities are dimen-
sionless in terms of the unit amplitudg) = 1 mm, respectively, the 2 Note that the radii of the moving particle and of a scatterer are
unit frequencyfp = 1 Hz. additive, hence we only neglect any rotational energy.
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Fig. 2. The diffusion coefficienD( f) of the bouncing ball billiard
Fig. 1at friction« = 0.7 and scatterer radiug = 15 as a function of
the vibration frequency of the corrugated floor. The graph consists
of 124 data points with error bars gt= 55, 70.8 and 82. The
labels (a) to (e) refer to the respective phase space pléiigo8.

3. Deterministic diffusion, frequency locking, and
spiral modes

The diffusion coefficientD was computed from
simulations according to the Einstein formula

2
D = lim M,
2t

—00

@)
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The first maximum ofD(f) around f = 54 re-
flects a ¥1 frequency locking between particle and
plate, as is shown ifrig. 3(a) by the large number
of points accumulating aroung, v;) ~ (0.1, 100.

In other words, the time of flight, of the parti-
cle is identical with the vibration perio@s of the
floor. Additionally, the system may exhibit a dynamics
where this behavior is interrupted by periods of creepy
motion. Whether this happens depends on the initial
conditions, hence the dynamics is nonergodic. How-
ever, only for the peak aroungl= 55 we could detect
such difficulties, whereas fof > 58 our numerics in-
dicated ergodic motion. Frequency locking has been
widely discussed for the simple bouncing b7,
13,14]and has already been found to enhance diffu-
sion in the BBB[12], where all the major peaks of
the frequency-dependentdiffusion coefficient could be
identified in terms of integer frequency locking.

Around f = 58 this resonance is completely de-
stroyed resulting in a local minimum ab(f). In
Fig. 3(b) this is represented by a “smearing out” of the
1/1 frequency locking spot together with a dominance
of creeps. Surprisingly, the next local maximum at
f =60 corresponds to a new structure in phase space:
similar to a harmonic oscillator, the granular parti-
cle locks onto a circle in the projected phase space.
However, this circle is not situated around the origin
but shifted up byv;” ~ 70 along the vertical axis, cf.

where the brackets denote an ensemble average oveFig. 3(c), reflecting the dissipation due to the harmonic

moving particles; for further numerical details cf.
Ref.[12]. Fig. 2 shows thatD exhibits local maxima
and minima as a function of the driving frequengy
However, already at a first view this curve looks very
different from the corresponding one in R¢L2],
where the diffusion coefficient was computed at dif-
ferent parameter values.

The major irregularities dfig. 2can be understood

driving. We call this structure that obviously enhances
diffusion avirtual harmonic oscillator mode (VHO).
Around f =62 this mode again becomes unstable
leading to a local minimum. Af = 66 the VHO starts

to “spiral out”, seeFig. 3(d), eventually resulting in

a two-loop spiral Fig. 3(e). This causes a drastic in-
crease ofD(f) on a global scale. Note that we could
not detect any simple periodic motion on this spiral,

by means of the phase space projections displayedhence this scenario may not be understood as a simple

in Fig. 3. Here we have plotted the positionsand
the veIocitiesv;r of a moving particle immediately
after its collisions with the plate. The onset of diffu-
sion aroundf = 50 is characterized by the existence
of many creeping orbits, where the particle performs
long sequences of tiny little jumps along the surface
hence moving parallel tg like the harmonically oscil-
lating plate. InFig. 3this dynamics yields incomplete
ellipses arounaiy+ = 0 thus representing a simple har-
monic oscillator mode.

period-doubling bifurcation. We furthermore empha-
size that parallel tor the motion is always highly
irregular, as exemplified in the existence of a diffu-
sion coefficient. Atf = 76 another loop develops, see
Fig. 3(f) with f =78 for a slightly advanced stage,
before this structure settles into a three-loop spiral
that explains the washed-out local maximun?igf)
aroundf = 80. A fourth loop emerges gt = 86 be-

ing completed aroung’ = 90, followed by the onset
of a fifth one atf = 96.
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Fig. 3. Projections of the phase space of the bouncing ball billiard @y$o (6) onto positions and velocities along theaxis at the colli-
sions. The frequencies of the vibrating plate gre- (a) 54, (b) 58, (c) 60, (d) 66, (e) 72, (f) 78. The spiraling lines represent the analytical
approximation EqY9), (10).

In order to understand the frequency dependence T, = 2v;f/g, hence one may calculate
of this spiral more quantitatively we analyze the data
presented irFig. 3 using a simple argument of Warr oy
et al. [7]: the time of flightT, between two colli-  j._ Iy = Lf (8)
sions of the particle with the plate is determined by Iy 8



R. Klages et al. / Physics Letters A 333 (2004) 79-84

and check whether this fraon yields some rational
number indicating some frequency locking. Extract-
ing v;r from Fig. 3 one can easily verify that the
black spot in (a) indeed correspondskto: 1. Com-

83

vious work Ref.[12]. Computer simulations demon-

strated that, again, the diffusion coefficient is a highly
irregular function of the vibration frequency. However,
for the present parameters only the first local maxi-

plete spiral loops at higher frequencies appear to be mum could be identified in terms of simple frequency

situated around, + cAf, ¢ € Np, with f. ~ 60 and
Af =~ 10. Letv] be the maximal values of the spi-
rals in Fig. 3. We then find thatt ~ 1.47 around
f =60,k>~25 around f = 72, k >~ 3.43 around
f =80, andk >~ 4.5 aroundf = 90. The spiral mode

locking. We showed that there exist local extrema due
to what we called a spiral mode in the BBB. Whenever
the vertical velocity of the particle, respectively, the
vibration frequency of the plate, is large enough such
that the particle can lock into a multiple half-integer

thus locks into “smeared-out” half-integer resonances frequency of the plate, the spiral mode develops an-

starting around; +iAf,i € Ng, f; >~ 66.
We remark that, for a ball bouncing on a flat plate,

other loop. The coarse functional form of this spiral
was extracted from the equations of motion by ne-

signs of such spiral modes were already observed ex-glecting the radius of the scatterers and by assuming

perimentally[7] and described theoreticall3—6,8]
Particularly, Luck and Mehtgp] provided a simple an-
alytical approximation for the coarse functional form
of this mode. Their derivation can straightforwardly
be repeated for Eq$l) to (6) let us approximate the

memory loss at the collisions.

In Ref. [8] these spiral structures have been de-
noted as “chattering bands” of the simple bouncing
ball, and it has been argued that they are rather stable
against random perturbations. In the BBB the scatter-

surface to be flat, and let us assume that there are noers are defocusing indugnan additional determin-

correlations between the collisions. By using E@.
and (5)we then arrive at

¥ =—Asin2rft),
vl =ag/2(t1—10) — A2nf (14 a) cos2m f11),
(10)
cp. Eg.(10) to Eq. (3.20) of Ref[6], wherer is the
initial time at which the particle was launched from
the plate and; is the time of the first collision. For
to we calculated the time at which the plate moves
with maximum positive velocity, since here, for high
enough frequency, a particle will be launched which
previously is at rest. Fonm we obtained the distribu-
tions of collision timest, from simulations yielding
a range of 0< t. < tmax(f). In order to ensure that
11 —tg > 0 we then defined, := ¢, + tg. Consequently,
Egs.(9), (10) contain no fit parameter. Results from
Egs.(9), (10)are displayed irFig. 3(d) to (f). Natu-
rally, this approximation does not work well for small
collision times, respectively, in the regime of creeping
orbits. However, starting from the VHO it reproduces
the whole structure of the spiral mode very well.

©)

4. Outlook and conclusions

In this Letter we have studied the BBB for smaller
friction and smaller scatterer radius than in our pre-

istic chaotic component into the dynamifdsb]. In-
terpreting the geometry of the BBB as a “perturba-
tion” thus leads to the conclusion that spiral modes
form states of the bouncing ball dynamics which are
much more stable than simple frequency locking reso-
nances.

Interestingly, bouncing ball-type models have been
used since quite some time in order to understand
transport on vibro-transporters, which are common
carriers of agricultural material and related matter.
For a corrugated version that very much reminds of
the BBB and is widely used in industrial applications
see, e.g., Refl16]. In order to transport particles on
such devices one generates an average drift velocity
by means of some symmetry breaking. For tilted sys-
tems with a flat surface Hongler et fl3,14]predicted
an integer frequency locking leading to local extrema
in the transport rate as a function of a control para-
meter, as was recently verified in experimefig].
Grochowski et al. constructed a circular vibratory con-
veyor, where the trough was driven by asymmetric os-
cillations[18-20] Both for a tracer particle in a layer
of granular matter and for a single highly inelastic test
particle they observed a nonmonotonic current rever-
sal of the transport velocity under variation of control
parameters. This ratchet-like effect was recently re-
produced in simulationf21] again indicating some
underlying frequency locking.
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In contrast to single bouncing balls, the core of References
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surprising transport properties for even a single, or
just a few, granular particles moving on suitable sur-
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research.
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