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a b s t r a c t 

The original Oberbeck–Boussinesq (OB) equations which are the coupled two dimensional Navier–

Stokes(NS) and heat conduction equations have been investigated by E.N. Lorenz half a century ago with 

Fourier series and opened the way to the paradigm of chaos. In our former study—Chaos, Solitons and 

Fractals 78, 249 (2015)—we presented fully analytic solutions for the velocity, pressure and temperature 

fields with the aim of the self-similar Ansatz and gave a possible explanation of the Rayleigh–Bènard con- 

vection cells. Now we generalize the Oberbeck–Boussinesq hydrodynamical system, going beyond the first 

order Boussinesq approximation and consider a non-linear temperature coupling. We investigate more 

general, power law dependent fluid viscosity or heat conduction material equations as well. Our analytic 

results obtained via the self-similar Ansatz may attract the interest of various fields like meteorology, 

oceanography or climate studies. 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Introduction 

The investigation of coupled viscous flow equations to heat con-

duction has a fifteen-decade long history started with Boussinesq

[1] and Oberbeck [2] who applied it to the normal atmosphere.

The simplest way to couple these two phenomena together is the

Boussinesq approximation which is used in the field of buoyancy-

driven flow (also known as natural convection). It ignores density

differences except where they appear in terms multiplied by g, the

acceleration due to gravity. The essence of the Boussinesq approx-

imation is that the difference in inertia is negligible but gravity is

sufficiently strong to make the specific weight appreciably differ-

ent between the two fluids. Sound waves are completely impossi-

ble when the Boussinesq approximation is used since sound waves

move via density variations. Boussinesq flows are common in na-

ture (such as katabatic winds, atmospheric fronts, oceanic circula-

tion), industry (fume cupboard ventilation, dense gas dispersion)

and the built environment (natural ventilation, central heating).

Due to the approximation the calculations are easy and straightfor-

ward to do and the interpretation are quite simple but the preci-
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ion remains extremely high. The Boussinesq approximation is ap-

lied to problems where the temperature of the fluid depends on

he location, driving a flow of fluid and heat transfer. In such sys-

ems the mass, momentum and energy conservation is satisfied.

n this approximation, density variations only appear when they

re multiplied by g, the gravitational acceleration. The advantage

f the approximation arises because when considering a flow of,

ay, warm and cold water of density ρ1 and ρ2 one needs only to

onsider a single density ρ: the difference �ρ = ρ1 − ρ2 is negligi-

le. The mathematics of the flow is therefore simpler because the

ensity ratio ρ1 / ρ2 , a dimensionless number, does not affect the

ow; the Boussinesq approximation states that it may be assumed

o be exactly one. 

At the beginning of the sixties—via the stream function

ormalism—the Lorenz equations were derived from the Oberbeck–

oussinesq approximation to the equations describing fluid circu-

ation in a shallow layer of fluid, heated uniformly from below and

ooled uniformly from above [3] . This fluid circulation is known

s Rayleigh–Bènard convection. The fluid is assumed to circulate in

wo dimensions (vertical and horizontal) with periodic rectangular

oundary conditions. 

The partial differential equations (PDE) modeling the stream

unction of the system and temperature are subjected to a spectral

alerkin approximation: the hydrodynamic fields are expanded in

http://dx.doi.org/10.1016/j.chaos.2017.06.024
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
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Fig. 1. The geometrical scheme of two dimensional convection rolls. In our model- 

ing the x-z vertical plain is investigated as a cut of the more irregular three dimen- 

sional Rayleigh–Bènard convection cells. 

F  

f  

r  

o  

b  

L  

l  

t  

w

 

q  

o  

[  

b  

s  

m  

o

 

w  

b  

i  

t  

s  

u  

i  

v  

b  

v  

s  

o

2  

w  

p  

r

O  

a  

a  

h  

w  

g  

P  

t  

w  

v

B  

o  

F  

h  

h

 

s  

p  

c  

B  

c  

d  

a

 

y  

T  

i  

l  

d  

l  

o  

w  

i  

c  

m  

s  

c  

f

 

t  

p  

c  

e  

r  

i  

a  

c

 

e  

a  

c  

N  

b  

a  

t  

c

B  

l  

i  

w

2

 

v  

m

ourier series, which are then severely truncated to a single term

or the stream function and two terms for the temperature. This

educes the model equations to a set of three coupled, nonlinear

rdinary differential equations (ODE). A detailed derivation may

e found, for example, in nonlinear dynamics textbooks [4,5] . The

orenz system is a reduced version of a larger system studied ear-

ier by Barry Saltzman [3] . Lorenz [6] evaluated the numerical solu-

ions with computers and plotted the first strange attractor which

as the advent of chaos studies. 

Investigating chaotic dynamical systems are still open up new

uestions and methods. The Lorenz equations also arise in numer-

us systems like simplified models for thermosyphons [7] , lasers

8] , chemical reactions [9] , dynamos [10] , electric circuits [11] and

rushless DC motors [12] . From a technical standpoint, the Lorenz

ystem is nonlinear, non-periodic, three-dimensional and deter-

inistic. The Lorenz equations have been the subject of hundreds

f research articles, and at least one book-length study [13] . 

Regarding spatially extended systems the thermal convection

ithout boundary layers is studied in Ref. [14] . The idea have

een further developed and both numerical and analytical stud-

es have been realized [15] , as are the longitudinal structure func-

ions of velocity and temperature. In certain cases analytical or

emi-analytical consideration are also presented for some partic-

lar situations [16,17] . One may also find a considerable number of

nteresting studies related to the turbulent Rayleigh–Bènard con-

ection [18,19] . The dependence of viscosity on temperature have

een taken into account, having an effect on dynamics [20] . Con-

ection in flows, where a given geometry may also have a role, is

tudied in Refs. [21–23] . In case of the atmosphere, the buoyancy

f the moist air may lead to convection with phase changes [24–

6] . If the environmental lapse rate—the change of the temperature

ith altitude—is sufficiently large, then the buoyancy raises an air

arcel, which can lead to cloud formation. On the other hand, a

elative low environmental lapse rate brings stability [27–29] . 

In our former study [30] we analyzed the original Boussinesq–

berbeck PDE system with the self-similar Ansatz ending up with

 non-linear coupled ODE system, however the pressure, temper-

ture and velocity field was evaluated in analytic forms with the

elp of the error functions. The main point is that instead of the

ell-known linear Fourier series expansion technique we applied a

iven Ansatz which is a completely different method to analyze a

DE or a PDE system. Our Ansatz is inherently capable to describe

he dispersive and dissipative features of the solutions. Till today

e could not get any remaining ODE systems (evaluated from PDE

ia self-similar Ansatz) which show chaotic behavior. 

As main result we could see the possible birth of the Rayleigh–

ènard(RB) convection cell which is a type of natural convection,

ccurring in a plane horizontal layer of fluid heated from below.

or a better understanding Fig. 1 presents our recent model, which
as only two spatial dimensions a horizontal and a vertical one,

owever it is capable to describe convection rolls, as we will see. 

Rayleigh–Bènard convection is one of the most commonly

tudied convection phenomena because of its analytical and ex-

erimental accessibility. These convection patterns are the most

arefully examined example of self-organizing nonlinear systems.

uoyancy, and hence gravity, is responsible for the appearance of

onvection cells. The initial movement is the upwelling of lesser

ensity fluid from the heated bottom layer. Regular pattern of cells

re spontaneously organized by the upwelling. 

When, the temperature of the bottom plane is increased slightly

ielding a flow of thermal energy conducted through the liquid.

he system will begin to have a structure of thermal conductiv-

ty: the temperature, the pressure and density with it, will vary

inearly between the bottom and top plane. A uniform linear gra-

ient of temperature will be established. Once conduction is estab-

ished, the microscopic random movement spontaneously becomes

rdered on a macroscopic level, forming Bènard convection cells,

ith a characteristic correlation length. The rotation of the cells

s a stable feature and will alternate from clock-wise to counter-

lockwise horizontally, giving a nice example of spontaneous sym-

etry breaking. Bènard cells are metastable which means that a

mall perturbation will not be able to change the rotation of the

ells, but a larger one could affect the rotation, they also exhibit a

orm of hysteresis. 

Microscopic perturbations of the initial conditions are enough

o produce a non-deterministic macroscopic effect. In a re-

eated experiment clock-wise rotating cells may turn to counter-

lockwise. Therefore there is no way to calculate the macroscopic

ffect of a microscopic perturbation. This inability to predict long-

ange conditions and sensitivity to initial-conditions are character-

stics of chaotic or complex systems. Detailed physical description

nd exhausted technical details about the field of Rayleigh–Bènard

onvection can be found in the books of [31–33] . 

The connection of the self-similar Ansatz to critical phenom-

na, scaling, and renormalization was addressed as well. As far

s we know all four concepts do not have a properly understood

ommon root. All our studies related to two or three dimensional

avier–Stokes equations analyzed with the self-similar Ansatz can

e found in the book of Campos [34] in Chapter 16. From our an-

lytic velocity field with Fourier transformation additional connec-

ions to turbulence or enstropy could be evaluated as well and

ould be a stating point for further investigations. 

In the present study we generalize the usual Oberbeck–

oussinesq system considering more advanced material equations,

ike temperature dependent heat conduction coefficient, or viscos-

ty. Secondly, we go beyond the simplest Boussinesq approximation

hich couples heat conduction to fluid dynamics as well. 

. Theory and results 

To describe the problem of two dimensional heat conduction in

iscous incompressible fluids one of the simplest way is the above

entioned Oberbeck–Boussinesq model [2,3] 

∂u 

∂t 
+ u 

∂u 

∂x 
+ w 

∂u 

∂z 
+ 

∂P 

∂x 
− ν

(
∂ 2 u 

∂x 2 
+ 

∂ 2 u 

∂z 2 

)
= 0 , 

∂w 

∂t 
+ u 

∂w 

∂x 
+ w 

∂w 

∂z 
+ 

∂P 

∂z 
− eGT 1 − ν

(
∂ 2 w 

∂x 2 
+ 

∂ 2 w 

∂z 2 

)
= 0 , 

∂T 1 
∂t 

+ u 

∂T 1 
∂x 

+ w 

∂T 1 
∂z 

− κ

(
∂ 2 T 1 
∂x 2 

+ 

∂ 2 T 1 
∂z 2 

)
= 0 , 

∂u 

∂x 
+ 

∂w 

∂z 
= 0 , (1) 
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where u, w , denote respectively the x and z velocity coordinates, T 1 
is the temperature difference relative to the average ( T 1 = T − T a v )

and P is the scaled pressure over the density. The free physical

parameters are ν , e, G, κ kinematic viscosity, coefficient of vol-

ume expansion, acceleration of gravitation and coefficient of ther-

mal diffusivity, respectively. (To avoid further misunderstanding we

use G for gravitation acceleration and g which is reserved for a

self-similar solution.) The first two equations are the Navier–Stokes

equations, the third one is the heat conduction equation and the

last one is the continuity equation. All of them contain two spatial

dimensions. We apply Cartesian coordinates and Eulerian descrip-

tion. 

For highly nonlinear media the temperature dependence of the

density can be approximated with the following Taylor series 

ρ(T ) = ρ0 + 

∂ρ

∂T 
(T − T 1 ) + 

∂ 2 ρ

∂T 2 
(T − T 1 ) 

2 , (2)

considering the linear term only gives us the Boussinesq approxi-

mation which is presented above. 

The main goal of our forthcoming paper is to discuss physically

relevant generalization of Eq. (1) and calculate the analytic self-

similar solutions. 

Our present problem can be summarized in the following PDE

system: 

∂u 

∂t 
+ u 

∂u 

∂x 
+ w 

∂u 

∂z 
+ 

∂P 

∂x 
− ν( T 1 ) 

(
∂ 2 u 

∂x 2 
+ 

∂ 2 u 

∂z 2 

)
= 0 , 

∂w 

∂t 
+ u 

∂w 

∂x 
+ w 

∂w 

∂z 
+ 

∂P 

∂z 
− eG · k ( T 1 ) −ν( T 1 ) 

(
∂ 2 w 

∂x 2 
+ 

∂ 2 w 

∂z 2 

)
= 0 , 

∂T 1 
∂t 

+ u 

∂T 1 
∂x 

+ w 

∂T 1 
∂z 

− κ( T 1 ) 

(
∂ 2 T 1 
∂x 2 

+ 

∂ 2 T 1 
∂z 2 

)
= 0 , 

∂u 

∂x 
+ 

∂w 

∂z 
= 0 , (3)

where k ( T 1 ) means any non-linear temperature dependence, ν( T 1 )

and κ( T 1 ) are temperature dependent viscosities and heat conduc-

tion coefficients. Of course, much more complex material equations

can be considered e.g non-Newtonian fluids where the viscosity is

velocity dependent. Analysis of such media was performed in one

of our former studies [35] . We restrict ourselves however, “only” to

these degrees of freedom which will open rich mathematical spec-

tra and can give remarkable results for the atmosphere (air) or for

oceans (water) as non-linear media. 

We neglect the stream function reformulation of the two di-

mensional flow and keep the original variables investigating the

original hydrodynamical system with the Ansatz of 

u (η) = t −α f (η) , 

w (η) = t −δg(η) , 

P (η) = t −εh (η) , 

T 1 (η) = t −ω l(η) , (4)

where the new variable is η = (x + z) /t β . All the five exponents α,

β , δ, ε, ω are real numbers. (Solutions with integer exponents are

the self-similar solutions of the first kind and sometimes can be

obtained from dimensional considerations [36] .) The f, g, h, l ob-

jects are called the shape functions of the corresponding dynam-

ical variables. These functions should have existing first and sec-

ond derivatives for the spatial coordinates and first existing deriva-

tives for the temporal coordinate. Under certain assumptions, the

partial differential equations describing the time propagation can

be reduced to ordinary differential ones which greatly simplifies

the problem. This transformation is based on the assumption that

a self-similar solution exists, i.e., every physical parameter pre-

serves its shape during the expansion. Self-similar solutions usu-

ally describe the asymptotic behavior of an unbounded or a far-
eld problem; the time t and the space coordinate x appear only in

he combination of x / t β . It means that the existence of self-similar

ariables implies the lack of characteristic lengths and times. These

olutions are usually not unique and do not take into account the

nitial stage of the physical expansion process. By this self-similar

onstruction we hope to find some scaling of certain physical pa-

ameters, at least for particular cases—for example at large or small

imes. This idea has certain similarities with situations where scal-

ng properties have been used [38] . Regarding further areas the

rinciple of scaling occur in the study of networks [39] or research

n connection with neural networks [40] . More detailed analysis of

he properties of the self-similar Ansatz is presented and discussed

n all our former studies like [30,35,37] . 

In the present study we analyze the generalization of the

berbeck–Boussinesq approximation. We consider a non-linear

emperature coupling k ( T 1 ) ∼ T λ in (3) but keeping the constant

iscosity and heat conduction coefficients. In our former study the

= 1 has been chosen. In present paper λ is a new parameter that

easures the strength of the coupling between the temperature

eld and flow velocity field. We will see there is a non-trivial con-

train between ω and λ. This relation will provide the fast decay

f the strong coupling. 

We also investigate the Oberbeck–Boussinesq approximation

ith non-constant, temperature dependent viscosity ν( x, z, t ) ∼
 ( x, z, t ) λ case. This would have been a desired generalization be-

ause of accurate functions available for the temperature depen-

ent viscosity for water [41] or for sea water [42] evaluated by

ardy. 

The case when Oberbeck–Boussinesq approximation is general-

zed with constant viscosity but non-constant, temperature depen-

ent heat conduction coefficient also can be investigated. It can be

ritten up in the κ( x, z, t ) ∼ T ( x, z, t ) λ functional form. The afore-

entioned motivations are the same in this case as well. 

We showed that a system with temperature dependent viscos-

ty cannot be solved by the Ansatz presented in Eq. (4) because the

elations between the exponents turn out to be contradictory. This

roblem does not arise in the case of the temperature dependent

eat conduction but the generalization still cannot be possible be-

ause the λ exponent turns out to be 1 which is the linear case. 

Our generalization can be summarized with the following: in

q. (3) ν(T 1 ) = ν = const., κ(T 1 ) = κ = const. and eGk (T 1 ) → bGT λ1 .

t is worth to note that constant e which is the coefficient of vol-

me expansion is changed to another constant b with another

hysical dimension. 

Thanks to the free physical parameter λ, after some algebraic

anipulations only some of the self-similarity exponents got fixed

o the following values: α = δ = β = 1 / 2 , ε = 1 and λω = 3 / 2

hich are called the universality relations. These universality re-

ations dictate the corresponding coupled ODE system which has

he following form of 

f 

2 

− f ′ η
2 

+ f f ′ + g f ′ + h 

′ − 2 ν f ′′ = 0 , 

g 

2 

− g ′ η
2 

+ f g ′ + gg ′ + h 

′ − bGl λ − 2 νg ′′ = 0 , 

ωl − l ′ η
2 

+ f l ′ + gl ′ − 2 κ l ′′ = 0 , 

f ′ + g ′ = 0 . (5)

rime means derivation in respect to η. From the last (continuity)

quation we automatically get the f + g = c and f ′′ + g ′′ = 0 condi-

ions which are necessary in the following. 

From the third equation we get 

 κ l ′′ + l ′ 
(
η

2 

− c 

)
+ 

3 l 

2 λ
= 0 , (6)

hich is an ODE for the temperature shape function. 
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Fig. 2. The graphs of Eq. (7) for c 1 = c 2 = 1 , c = 0 and κ = 0 . 5 , only the real part 

was taken. The black solid line is for λ = 0 . 1 , the black long dashed is for λ = 0 . 5 

the blue solid line (light grey) is for λ = 1 . 5 , the green solid line is for λ = 3 . (For 

interpretation of the references to colour in this figure legend, the reader is referred 

to the web version of this article.) 

Table 1 

The connection between the num- 

ber of interceptions and the values 

of λ for κ = 1 / 2 and for c 1 = c 2 = 

1 , c = 0 . 

Value of Nr. of zeros 

3 < λ 0 

1 < λ < 3 1 

0.6 < λ < 1 2 

0.41 < λ < 0.6 3 

0.29 < λ < 0.41 4 

0.19 < λ 0.29 6 

Fig. 3. The temperature field T ( x, z 0 , t ), where the real part of the solution is pre- 

sented with the parameter set of c 1 = c 2 = 1 , c = 0 , κ = 0 . 5 . with λ = 0 . 5 . The con- 

tour lines follow a logarithmic scale. The solid and dashed lines correspond to the 

positive and negative values of the temperature field, respectively. 

c  

v  

t  

T  

i  

f  

1  

o  

t  

v  

n  

t  

T  
The most general solutions are 

 = c 1 M 

(
3 

2 λ
, 

1 

2 

, − (2 c − η) 2 

8 κ

)
+ c 2 U 

(
3 

2 λ
, 

1 

2 

, − (2 c − η) 2 

8 κ

)
, (7)

he Kummer’s functions, for exhaustive details see the NIST Hand-

ook [43] . (We use the formal solutions obtained by Maple 12 Soft-

are [Copyright (c) Maplesoft, a division of Waterloo Inc. 1981–

008] from now on.) 

The key parameter of this function is λ which meets our phys-

cal considerations. c is just a shifting constant and κ scales the

iffusivity of the results. The smaller the κ value the sharper the

ain peak of the function. In the following we fix the c = 0 and

= 0 . 5 values. 

From the series expansion of M ( a, b, z ) we get 

(a, b, z) = 1 + 

az 

b 
+ 

(a ) 2 z 
2 

(b) 2 2! 
+ . . . + 

(a ) n z n 

(b) n n ! 
, (8)

ith the (a ) n = a (a + 1)(a + 2) . . . (a + n − 1) , (a ) 0 = 1 so-called

ising factorial or Pochhammer symbol. If b has a fix non-negative

nteger value (like n) then none of the solutions have poles at

 = −n . For M ( a, b, z ) if a has negative integer a = −m numerical

alue the solution is a polynomial of degree m in z . In other cases,

ike now when a is not an integer we get a convergent series for

ll values of a, b and z . There is a connection between the two

unctions, U is defined from M via 

(a, b, z) = 

π

sin (πb) 

[
M(a, b, z) 

�(1 + a − b)�(b) 

− z 1 −b M(1 + a − b, 2 − b, z) 

�(a )�(2 − b) 

]
, (9) 

here �( a ) is the Gamma function [43] . 

From the general properties of the self-similar Ansatz we know

hat (except some pathological cases) all positive exponents mean

ecaying and spreading solutions in time and space. Our inves-

igated system due to the dissipative NS part is so, therefore all

he exponents should be positive which means that both λ and ω 

hould be positive. (Negative integer values of λ define finite de-

ree polynomials in η which are divergent for large η which we

kip as non-physical non-dispersive solutions.) There are three dif-

erent regime available for positive λ which describes the weak-

ess or strengths of the coupling between the heat conduction and

ow in the system. These are the followings: 

• 0 < λ < 1 where numerous oscillations occur 
• 1 ≤ λ < 3 with a single aperiodic oscillation, (at η →

+ ∞ l(η) → 0 −) 
• 3 ≤ λ where l ( η) > 0. 

Fig. 2 presents such curves with different λ values. The main

esults of our study can be clearly seen on this figure. With the

ecreasing value of λ (for λ < 1) the number of oscillations in-

rease. Which means weaker coupling between the temperature

eld and the flow velocities in the second equation of the original

ystem. The term bGT λ
1 

in the second equation is responsible for

he oscillations. In our former study [30] the coupling was linear,

n other words the λ = 1 numerical value has been taken, which

lso means a single oscillation. With additional numerical investi-

ation the number of the interceptions of the shape function ver-

us the λ connection can be made clear. Table 1 shows this rela-

ionship. 

The argument of the temperature shape function is η = (x +
) /t 1 / 2 , we fix the time and one of the spatial coordinates (e.g. x )

o given values ( t 0 , x 0 ), even after this restriction there is a range of

(or z ) where the l ( η) function has a minimum and a maximum,

here additional temperature and velocity fluctuation may start

he Rayleigh–Bènard convection. (The analysis of the velocity field
learly showed, that with fixed t 0 , x 0 the velocity field v x ( z ) and

 z ( z ) are different at the minimum and maximum of the tempera-

ure field, therefore the driving is present to start the convection.)

his was clearly explained in our former study [30] . The situation

s very similar here, with restricted t 0 and x 0 values, the shape

unction has at least one local maximum and minimum, for λ <

 there are two or more such oscillations, which may be the place

f birth of parallel Rayleigh–Bènard convection cells. It is also clear

hat fixing the x spatial coordinate the vertical z dependent con-

ection cells are presented, however with a fixed z spatial coordi-

ate the horizontal x convection cells are visualized. Fig. 3 presents

he three dimensional space and time dependent temperature field

 ( x, z , t ). The constrain of λω = 3 / 2 dictates, that at low λ values
0 
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Fig. 4. The real part of the pressure shape function h ( η) of Eq. (10) for the param- 

eter set of c 1 = c 2 = 1 , c = 0 , κ = 0 . 5 . The black solid line is for λ = 0 . 1 , the black 

long dashed is for λ = 0 . 5 the blue solid (dark grey) line is for λ = 1 . 5 , the green 

(light gray) solid line is for λ = 3 . (For interpretation of the references to colour in 

this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. The real part of the shape function of g ( η) of (11) which is the z component 

of the velocity field. The black solid line is for the parameter set of c 1 = c 2 = 1 , 

c = 0 , κ = 0 . 5 , ν = 0 . 3 ., λ = 0 . 1 , the black long dashed is for λ = 0 . 5 the blue (dark 

grey) solid line is for λ = 1 . 5 , the green (light gray) solid line is for λ = 3 , the red 

dashed line is for the former linear case of (12) ( λ = 1 ). (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version 

of this article.) 
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(where two or three oscillations occur) omega has a large value ( ≈
3) which means a quick decay in time. 

At this point for sake of completeness we mention that the so-

lution of Eq. (6) for the parameters λ = 2 and c = 0 can expressed

with the help of the modified Bessel function of the first kind I ν ( z )

and K ν ( z ). For λ = 3 and c = 0 however, the solutions are the re-

lated to the error function. 

As a second step we calculate the pressure fields as well. In the

original OB problem, the shape function of the pressure field h ( η)

is fully analytic and can be obtained from the temperature shape

function via the following equation 

h 

′ = 

1 

2 

(
bGl λ − c 

2 

)
. (10)

Unfortunately, the general solution for an arbitrary λ does not exist

in a closed form. Even, if we restrict the Kummer functions in Eq.

(7) to a pure M or U function, the λ exponent makes it impossible

to get an analytic result. As we mentioned above T 1 ∼ l ( η) is the

discrepancy from average temperature, so it can be shifted to an

arbitrary level, it is needed because the fractional exponent value

l λ has to be taken before integration of the ODE Eq. (10) . After such

a constant shift the general graph of the pressure shape function

is presented on Fig. 4 . 

From the first two equations one of the velocity component can

be evaluated as follows 

4 νg ′′ + g ′ (η − 2 c) + g + 

c 

2 

+ bGl λ = 0 . (11)

Similarly to Eq. (10) there is no closed form available to the shape

function of the velocity field. To avoid unwanted spurious cuts in

the velocity field the original temperature shape function has to

be shifted to positive values. After such a transformation Fig. 5

presents a typical velocity shape function g ( η). For comparison we

plotted it together with the original solution for λ = 1 where the

solution has the form of 

g = c 1 e 
− η2 

8 ν er f 

( 

η

4 

√ 

− 2 

ν

) 

+ c 2 e 
− η2 

8 ν − c 3 
4 eGκ2 e −

η2 

8 κ

κ − ν
. (12)

Both parameter sets are the same. Note, that in spite of the oscil-

lating behavior in the initial temperature shape function l ( η) the

velocity field shape functions look very similar and smooth. The

twofold integration of Eq. (11) smooth out the initial temperature

fluctuations. 
. Summary and outlook 

With reasonable generalization we investigated the classical OB

quation which is the starting point of countless dynamical and

haotic systems. Instead of the usual Fourier truncation method

e applied the two-dimensional generalization of the self-similar

nsatz and found a coupled non-linear ODE system which can be

olved with quadrature. Our main result is that even this kind of

eneralization—which is beyond the linear Oberbeck–Boussinesq

pproximation—gave us an analytic temperature field which have

ome—not a single—oscillations. These oscillations could be the

ossible birth place of Rayleigh–Bènard convection cells. As a sec-

nd point, we may say that from the field quantities describing the

ystem, the temperature field is the most sensitive for variations of

. To our best knowledge certain parts of the climate models are

ased on the OB equations therefore our results might be an inter-

sting sign to climate experts. 
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